On transfinite iteration

by

B. Banaschewski (Hamilton, Ontario)

1. Let \mathfrak{D} be a class of sets closed under the union of chains and $f: \mathfrak{D} \to \mathfrak{D}$ an extensional operator on \mathfrak{D} , i.e., $fX \supseteq X$ holds for all $X \in \mathfrak{D}$. Then, the powers f^{α} of f for any ordinal α are defined, as usual, by

$$f^{\alpha}X = f \bigcup_{\beta < \alpha} f^{\beta}X$$
.

These f^a may, but need not be, distinct for all a. Of course, if all f^a are distinct $\mathfrak D$ cannot be a set, and if $\mathfrak D$ is a set of cardinal $\mathfrak d$ one must have $f^a=f^{\delta}$ for all $a\geqslant \delta$ when δ denotes the first ordinal whose cardinal is greater than $\mathfrak d$. Less obvious criteria for the equality of all powers of f from some ordinal onwards can be based on suitable properties of f. A property of this kind was described in a recent paper by G. Schwarz [1] in the following way:

(S₁) If $\mathfrak A$ is a collection of $\mathfrak k$ sets $A \in \mathfrak D$, then there exists a set Φ of sub-collections $\mathfrak B \subseteq \mathfrak A$, each consisting of less than $\mathfrak k$ sets, such that

$$f \bigcup_{\mathbf{A} \in \mathfrak{A}} A = \bigcup_{\mathfrak{B} \in \mathbf{\Phi}} f \bigcup_{\mathbf{B} \in \mathfrak{B}} B.$$

For any extensional isotonic $(^1)$ operator f satisfying (S_t) with some f which is either denumerable or has an immediate predecessor (in the natural well-ordering of the cardinals) Schwarz proves the equation

(1)
$$f^{\alpha}X = \bigcup_{\eta < \xi} f^{\eta}X \quad (\alpha \geqslant \xi)$$

where ξ denotes the first ordinal whose cardinal is f.

In the present note, a number of conditions for operators f will be considered which are similar to (S_t) and have the same effect on the powers of f as (S_t) . Also, their relations to each other and to (S_t) will be discussed and some statements concerning products of operators will be deduced from them.

⁽¹⁾ This means $fX \subseteq fY$ whenever $X \subseteq Y$.

- 2. The conditions for an extensional isotonic operator f to be studied here are (2):
- (A_t) If a chain \mathbb{C} of \mathfrak{k} sets is such that any $\mathfrak{B} \subseteq \mathbb{C}$ with $|\mathfrak{B}| < \mathfrak{k}$ has an upper bound in \mathfrak{C} , then $f \bigcup_{X \in \mathfrak{C}} X = \bigcup_{X \in \mathfrak{C}} fX$.

 (B_t) If a chain \mathfrak{C} of \mathfrak{k} sets is such that any $E \subseteq \bigcup_{X \in \mathfrak{C}} X$ with $|E| < \mathfrak{k}$ is
- contained in some $X \in \mathfrak{C}$, then $f \bigcup_{X \in \mathfrak{C}} X = \bigcup_{X \in \mathfrak{C}} fX$.
 - (T_f) $fX = \bigcup fE$ (all $E \subseteq X$ with |E| < f).

Amongst these, (At) comes closest to the formula (1) as is shown by the proof of the following (3)

Proposition 1. If an extensional isotonic operator f satisfies (At) for some regular ξ , then $f^{\alpha}X = \bigcup f^{\eta}X$ for any $\alpha \geqslant \xi$ where ξ is the least ordinal of cardinal \(\xi\).

Proof. If the $f^{\eta}X$ are not all distinct for $\eta < \xi$ one has $f^{\eta}X = f^{\gamma}X$ for all $\eta \geqslant \gamma$ with some $\gamma < \xi$ and then $\bigcup_{\eta < \xi} f^{\eta}X = f^{\prime}X = f^{\xi}X$. Otherwise, the $f^{\eta}X$, $\eta < \xi$, form a chain of ξ sets and the mapping $\eta \to f^{\eta}X$, $\eta < \xi$, is an order isomorphism. Since f is regular, any set of less than f ordinals $\eta < \xi$ has an upper bound less than ξ and therefore the chain $\{f^{\eta}X | \eta < \xi\}$ satisfies the hypothesis of (A_i). This leads to $f^{\xi}X = f \bigcup_{\eta < \xi} f^{\eta}X = \bigcup_{\eta < \xi} f^{\eta+1}X$ $=\bigcup_{\eta<\xi}f^{\eta}X$, and (1) now follows by induction.

3. The relations between the four conditions stated above are listed in (4)

Proposition 2. For any \mathfrak{k} , $(T_{\mathfrak{k}}) \Rightarrow (S_{\mathfrak{k}}) \Rightarrow (A_{\mathfrak{k}}) \Leftrightarrow (B_{\mathfrak{k}})$ and if \mathfrak{k} is regular, also $(A_i) \Rightarrow (S_i)$.

Proof. $(T_i)=(S_i)$. If $\mathfrak A$ is a collection of $\mathfrak k$ sets and $E\subseteq\bigcup_{t\geq 0}A$ a set of less than f elements, then E determines a $\mathfrak{B} \subset \mathfrak{A}$ consisting of less than f sets such that $E \subseteq \bigcup_{B \in \mathbb{B}} B$ if one chooses for each $e \in E$ some $B \in \mathfrak{A}$ with $e \in B$. Since f is isotonic, one obtains $fE \subseteq f \bigcup_{B \in \mathfrak{B}} B \subseteq f \bigcup_{A \in \mathfrak{A}} A$ for this \mathfrak{B} and $(\mathbf{T}_{\mathfrak{k}})$ then leads to $f \underset{\mathcal{A} \in \mathfrak{U}}{\bigcup} A = \underset{\mathfrak{B}}{\bigcup} f \underset{\mathcal{B} \in \mathfrak{B}}{\bigcup} B$ with certain $\mathfrak{B} \subseteq \mathfrak{U}$ where $|\mathfrak{B}| < \mathfrak{k}$. This is (S_t) .

 $(S_t) \Rightarrow (A_t)$. If $\mathfrak C$ is a chain as described in (A_t) and Φ a collection of $\mathfrak{B}\subseteq\mathfrak{A}$ as given by (S_1) for $f\bigcup_{A\in\mathfrak{C}}X$, then each $\bigcup_{B\in\mathfrak{B}}B$, $\mathfrak{B}\in\Phi$, is contained in some $X \in \mathbb{C}$ by the hypothesis concerning \mathbb{C} and $f \bigcup_{X \in \mathbb{C}} X = \bigcup_{\mathfrak{B} \in \phi} f \bigcup_{B \in \mathfrak{B}} B$ $\subseteq \bigcup_{X \in \mathbb{Q}} fX$ gives (A_t) .

 $(A_i) \Rightarrow (B_i)$. If \mathbb{C} is a chain as described in (B_i) and $\mathfrak{B} \subseteq \mathbb{C}$ with $|\mathfrak{B}| < \mathfrak{f}$, then B is bounded above in C; for otherwise, a well-ordered subchain B* C B of C, cofinal with C, could be chosen and by taking one element from each B'-B (B and B' in \mathfrak{B}^* and B' immediate successor of B) one would obtain a set $E \subseteq \bigcup_{X \in \mathcal{C}} X$ of less than \mathfrak{t} elements which by its definition cannot be contained in any $X \in \mathbb{C}$. This shows that \mathbb{C} also satisfies the hypothesis of (At) and thus (At) implies (Bt).

 $(B_{\mathbf{f}}) = (A_{\mathbf{f}})$. If \mathfrak{C} is a chain as described in $(A_{\mathbf{f}})$ and $E \subseteq \bigcup_{\mathbf{x} \in \mathfrak{C}} X$ with $|E| < \mathfrak{k}$, then one can choose for each $e \in E$ some $X_e \in \mathfrak{C}$ such that $e \in X_e$ and this collection of less than f sets X_e has an upper bound in $\mathfrak C$ which contains E. Therefore C also fulfills the hypothesis of (Bt) and hence (Bt) implies (A_i) .

 $(A_{\mathfrak{k}}) \Rightarrow (S_{\mathfrak{k}})$ for regular \mathfrak{k} . If \mathfrak{A} is a collection of \mathfrak{k} sets, let $A_{\eta}, \ \eta < \xi$, be a well-ordering of it, of ordinal type ξ where ξ is the first ordinal of cardinal f and define the sets $X_{\eta} = \bigcup A_{\eta'}$. These may not all be equal from some η onwards. If so, one has $X_{\eta} = \bigcup_{A \in \mathfrak{A}} A$ for this η , and since X_{η} is the union of less than f sets (St) holds trivially. If, however, there exists, for each η , some $\eta' > \eta$ such that $X_{\eta'} \supset X_{\eta}$, one can select a subsequence of ordinals $\eta' < \xi$ such that all sets $X_{\eta'}$ are distinct and $\sup \eta' = \xi$. The $X_{\eta'}$ then form a well-ordered chain, again of ordinal type ξ since f was regular and by the regularity of f this chain satisfies the hypothesis of (A_i). In this case, one has $f \bigcup_{A \in \mathfrak{A}} A = f \bigcup X_{\eta'} = \bigcup f X_{\eta'}$ where each X_{η} is the union of less than f sets in A, and this is (St).

COROLLARY. If an extensional isotonic operator f satisfies (Tt), (St) or (Bt) for some regular f, then (1) holds.

This follows immediately from propositions 1 and 2.

4. Given an extensional isotonic operator f on the subsets of a fixed set E (5), one is often interested in those $A \subseteq E$ which are closed under f, that is for which fA = A. These A form what is called a closure system \Re : the intersection of any family of sets $A_{\alpha} \in \mathfrak{F}$ again belongs to \mathfrak{F} since $fA_a = A_a$ implies $f \cap A_a \subseteq \cap fA_a = \cap A_a \subseteq f \cap A_a$ and thus $f \cap A_a = \cap A_a$.

^{(2) |}A| denotes the cardinal of the set A.

⁽³⁾ A cardinal t is regular if the first ordinal ξ of cardinal t has the property that only sets of t ordinals $\eta < \xi$ have ξ as supremum.

^(*) Implication is abbreviated by => and each condition is regarded as applying to the same extensional isotonic operator f.

⁽⁵⁾ This condition will be assumed throughout the present section.

Now, if $f'X = f^{\xi}X$ for all $\gamma \geqslant \xi$ with some ξ , then $f^{\xi}X$ is exactly the closure of X with respect to \mathfrak{F} , i. e., the smallest $Y \supseteq X$ such that fY = Y (or: $Y \in \mathfrak{F}$), for obviously any such Y satisfies $Y \supseteq f^{\xi}X$ and $f^{\xi}X \in \mathfrak{F}$ since $f^{\xi}X = f^{\xi+1}X = f^{\xi}X$. Therefore, conditions on f which ensure the equality of all powers of f from some ordinal onwards also give a description of the closure operator associated with \mathfrak{F} .

Sometimes, one is led to consider more than one operator simultaneously, say two operators f and g, and correspondingly the collection of sets closed under both f and g. In this case, one has the

PROPOSITION 3. If two extensional isotonic operators f and g both satisfy (A_t) for some f, then their product fg also does and if f is regular the closure of any X relative to the simultaneous closure system f f f, where f and f belong to f and g respectively, is $(fg)^{f}X$ with the least ordinal f of cardinal f.

Proof. The first step is to show that fg (for which (fg)X = f(gX)) again satisfies (A_t) . Let $\mathfrak C$ be a chain as given in the hypothesis of (A_t) . Then, $(fg) \underset{X \in \mathfrak C}{\bigcup} X = f \underset{X \in \mathfrak C}{\bigcup} gX$ by (A_t) for g. Now, if $\mathfrak B'$ is a subchain of the chain $g\mathfrak C = \{gX | X \in \mathfrak C\}$ consisting of less than $\mathfrak t$ sets, one can choose a subchain $\mathfrak B \subseteq \mathfrak C$ with $|\mathfrak B| < \mathfrak t$ and $g\mathfrak B = \mathfrak B'$. This $\mathfrak B$ will have an upper bound g in g and g is then an upper bound for g in g. If g itself occurs among these g, one obtains $f \underset{X \in \mathfrak C}{\bigcup} gX = fgX$ or $fg \underset{X \in \mathfrak C}{\bigcup} x$ and fgX. If, however, $|g\mathfrak C| = \mathfrak t$, (A_t) for f implies $f \underset{X \in \mathfrak C}{\bigcup} gX = \underset{X \in \mathfrak C}{\bigcup} fgX$. In all, (A_t) holds for fg.

The remaining part follows from the inequalities $fX \subseteq fgX$ and $gX \subseteq fgX$ which imply $f((fg)^\xi X) \subseteq fg(fg)^\xi X = (fg)^\xi X \subseteq f((fg)^\xi X)$ and the same for g, and from the fact that for any $Y \supseteq X$ such that fY = gY = Y one has $Y \supseteq (fg)^\xi X$.

Since the rôles of f and g above are symmetrical, the same proposition is true for the product gf. Also, in view of proposition 2, similar statements hold concerning the conditions (B_t) , (S_t) and (T_t) .

The preceding can easily be extended to an arbitrary number of operators: If f_* , $v \in I$, is a family of extensional isotonic operators, their product p relative to a fixed well-ordering of I can be defined by the induction formulae

$$\left(\prod_{\nu'<\nu}f_{\nu'}\right)X=\bigcup_{\nu'<\nu}\left(\prod_{\nu''\leqslant\nu'}f_{\nu''}\right)X\quad\text{ and }\quad\prod_{\nu'\leqslant\nu}f_{\nu'}=f_{\nu}\prod_{\nu'<\nu}f_{\nu'}.$$

If (A_t) holds for all f_r and is already proved for $\prod_{\nu'<\nu} f_{\nu'}$ it follows for $\prod_{\nu'<\nu} f_{\nu'}$ by what was just shown. Similarly, if (A_t) holds for all $p_{\nu'} = \prod_{\nu'' \leq \nu'} f_{\nu''}$,

 $\nu' < \nu$, and C is a chain as described in the hypothesis of (A₁), then

$$\left(\prod_{v' < v} f_{v'}\right) \underset{X \in \mathfrak{C}}{\bigcup} X = \underset{v' < v}{\bigcup} p_{v'} \underset{X \in \mathfrak{C}}{\bigcup} X = \underset{v' < v}{\bigcup} p_{v'} X = \underset{X \in \mathfrak{C}}{\bigcup} p_{v'} X = \underset{X \in \mathfrak{C}}{\bigcup} \left(\prod_{v' < v} f_{v'}\right) X$$

and hence (A_t) also holds for $\prod_{\nu' < \nu} f_{\nu'}$. Thus, one sees by induction that $p = \prod_{r \in I} f_r$ satisfies (A_t) and therefore by proposition $1 \quad p(p^{\ell}X) = p^{\ell}X$ if f is regular. In virtue of the general relation $f_{\nu}X \subseteq pX$, $\nu \in I$, one also has $f_{\nu}(p^{\ell}X) = p^{\ell}X$ for all f_{ν} , and since $Y \supseteq X$ and $f_{\nu}Y = Y$ for all f_{ν} implies $Y = p^{\ell}Y \supseteq p^{\ell}X$, this leads to the

COROLLARY. If the extensional isotonic operators f_* , $v \in I$, all satisfy (A_I) for some \mathfrak{t} , then any of their products p, based on a well-ordering of I, again satisfies (A_I) and if \mathfrak{t} is regular the closure of any X relative to the closure system $\bigcap \mathfrak{F}_*$, \mathfrak{F}_* the collection of sets closed under f_* , is $p^{\mathfrak{t}}X$ with the least ordinal \mathfrak{t} of cardinal \mathfrak{t} .

Reference

[1] G. Schwarz, A note on transfinite iteration, J. Symb. Logic 21 (1956), p. 265-266.

HAMILTON COLLEGE, MCMASTER UNIVERSITY

Reçu par la Rédaction le 24. 3. 1958