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On a theorem of Urbanik
by

P. Newman (Jamaica)

1. Suppose that we have in a space E a countably additive field M
of certain subsets of F (including @ and E), and n countably additive
finite. MeASUTES gy, fhy, ..., tn defined for each of the subsets of M. These
measures are assumed to have the following properties:

(i) They are non-atomic, i. e. for each 4=1,2,..n, and for each
X ¢ M, the inequality u{(X)> 0 implies the existence of a ¥ C.X such
that p(X) > w(¥Y) > 0.

(ii) They are non-proportional, i. e. there exists at least one pair
of indices i and § and a set X ¢ M, such that u(X)/udE) # ui(X)/pi(E).

2. Then, utilising a theorem of Urbanik [2], it is easy to prove %),
provided that the u; are non-negative:

TagorEyM 1. The assumptions (i) and (i) imply the existence of a parti-
tion B= EyuByu...wBy, suchthat u(B,) = p(E)jn for each t=1,2, ..., 1,
with strict imequality holding for at least ome 1.

Remark. Unless (ii) is satisfied, normalisation of the measures to
make p(E) =1 for each 4, will make each measure identical. The most
that can then be stated is that a partition exists such that u(E;) = pw(H)/n
for each <.

3. Urbanik [2] actually proved the stronger result, that given (i),
(ii) and

(iii) The family of sets of measure zero is the same for each u;,
then we have

TaEoREM 2. The assumptions (1)-(iil) imply the ewistence of a partition
E = EuByu...wB, such that p(E;) > u(B)n for each i=1,2,..,n.

This result has application to the quasi-economic problem of fair
division, proposed by Steinhaus [1].

(*) The vse of the Radon-Nikodym theorem does not require condition (iit), pro-
vided that the measures are non-negative.
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4. The assumption that the functions u; are measures is extremely
restrictive from an economic point of view, since their additivity prop-
erty is very special. On economic grounds, it is desirable to replace
the measures u; by more general sub-additive finite set functions V%,
which are assumed to posses a property analogous to (i), and the fol-
lowing additional properties: .

(iv) »(X) > 0 for any X ¢ M, and for each ¢=1,2, ..., .

(v). For any two subsets X and Y in M such that X CY, then

(X)) <v(Y) foreach i=1,2,..,n,
with strict inequality if »;(¥Y—X) > 0.
(vi) For any two subsets X and ¥ in M
2{XU¥) < 0(X)+2(¥) foreach i=1,2,..,n
with strict inequality if either »,(X) or v{(¥) is non-zero.

8, It is impossible to prove Theorem 1 for the new funetions V;
using Urbanik’s method, since this makes essential use, vie the Radon-
Nikodym theorem, of the additivity property of the measures. It is
possible to give a simple constructive proof of Theorem 1, however, for
the new conditions. We utilise Steinhaus’s picturesque but accurate de-
seription of the problem as that of dividing a cake among » persons.
The “cake” represents the space E and the set functions »; are the val-
uations which the persons place upon the cake, i. e. 24(X) iz the value
to the ith person of the portion X of the cake. The cake is then divided
among the n persons by a step by step process as follows:

The first person cuts from the cake a “slice” which he values at
o(E)/n (assuming (i)) and passes the slice to the second person. If the
v, value of the slice is not greater than v(E)/n, he passes it on untouch-
ed to the third person. If such is not the case, he diminishes the slice
to & smaller slice of v, value equal to v(E)/n (restoring the “crumbs”
80 removed to the original cake), and then passes it on to the third person.
A similar process is adopted for the 3rd, 4th, ..., nth person. After the
slice has been passed around to each of the » persons, it is awarded to
the last person who has diminished it; if there is no such person, it is
awarded to the person who originally cut the slice. The process then
recommences with the remainder of the cake and (n—1) persons, treating
it ag an entirely new cake; and so on for (n—2), (n—3), ... When there
are only two persons left, say 4 and j, person i cuts off a piece equal to
one half the v; value of the remaining cake, and j selects that one of the
two pieces which he values more highly, leaving i to take the remaining

piece. We shall show that such a process leads to a partition of the de-
sired type.
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6. TeEOREM 3. The assumptions (i), (iv)-(vi) imply the existence of
a partition B =E vl .. v B, such that

(B = vi(E)m  for each i=1,2,..,n

with strict inequality holding for at least one 4.

Proof. Without loss of generality, we may normalise the v, s'o tl.mtv
v(E) =1 for each ¢. If assumption (ii) is false, then this normalisation
will make each o; identical to a common valuation, say v. We may then
by (i), divide the cake into n pieces E, Ez., weey By, such that fu'(El)=
= 0(By) = ... = v(Hy) and v(F;) > 1/n, by (vi). Thu§ Thec?rem 3 is t?:ue
in this case. If (ii) is true, then we proceed by an inductive proof, first

ing it true for » = 2.
prOWSI;ice v, is non-atomie, person 1 may select a set X such that

oy(X) =%.

From (71 w(E—X)>0(X)> 3.

Suppose now that
(a) %(X) <
From (vi)

15

v(B—X)>1%.
Alternatively suppose that .
(b) vo(X) > 3.

In either (a) or (b) the partition ¥ = Xu(F—X) is a partition
satisfying Theorem 3.

7. Now consider the case of general n. Let person 1 cut a piece X
of v, value 1/n. Let this be reduced — if possible — to v, value 1/n and
%0 on. Let the kth person receive the slice, and then renumber the per-
sons involved so that he becomes person number 1. Then

v (X)=1/n
and )
z(X)<1/m for ¢=2,3,..,n.
From (vi)
(1) u(EB—X)>n—1)n, i=2,3,..,n.
Now define F=F-—X, M, = M~ F, and w; by
(2) wl{Y) =v X))o (E—X), 1=2,3,..,n.

Then each w; satisfies our assumptions, and may be normalised.
By the inductive hypothesis, there exists a partition F = Y,uY3v...v¥y
such that . i
3) wi(¥) =1n~1), =2,3,.,n0
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with strict inequality holding for least one 4. From (2),
v;(Y,-):'wi(Yi)v,-(E~—X), ?::2, 3, wery M
From (1) and (3),
1 »2-1 1

7){(Y{)>m'-—n—za, ’i:=2,3,...,?'b.
Therefore the partition ¥ = Xu¥,u¥;u..w¥,is a partition sat-
isfying Theorem 3. Since the theorem is true for » = 2, it is proved.

8. By adding an assumption corresponding to (iii), viz.
(iii)’ For each set X ¢ M such that »(X)= 0 for one 7, then v;(X)= 0,
for §=1,2,..,n{i+*j)
we obtain ' :
THEOREM 4. The assumptions (i), (iii)’, (iv)-(vi) imply the exvistence
of a partition B =B, uBE,u...uB, such that

v:(B;) >v{E)jn  for each t=1,2,..,n.

Proof. From Theorem 3; (a) if (ii) is false we have Theorem 4 di-
rectly, or (b) if (ii) is true, there will exist at least one % such that
2x{Ex) > 1/n. From (i) we may find a set Fy, C By such that v(Fy) = 1/n.
Leb vu(Ex—Fy) = v(Gr) = 6 > 0. By (i) again, Wwe may find an #-fold
partition Gy of Gy such that vi(Grs) = djn > 0.

By (iii)’ none of these sets Gy; can be of zero value to any of the
other “persons”. Hence, by (v), the partition

E=(B,vGu)v (Byu Gr)u . U (v Gr) u oo U (B Giy)
is a partition satisfying Theorem 4.

9. It may be possible to weaken (vi) by dropping the requirement
of strict subadditivity, and adding (ii), but a constructive proof does
not appear to be available.
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Sur la vitesse de la croissance des suites infinies
d’entiers positifs I
(Echelle des vitesses)
par
J. Popruzenko (L6dz)
1. Soit W Tespace composé de toutes les suites infinies d’entiers

positifs convergentes au sens large, c’est-A-dire des suites qui soit ten-
dent vers 'infini, soit deviennent stationnaires & partic d*un certain terme.

§= (Ngy Ny ooey gy o0) € T = (Mg, My, ..y My, ...) étant deux éléments
de I/, nous écrirons
(1.1) s> 1
lorsque
g
2y . lim —= =
(1.2) oY

et dans ce cas sewlement. Nous dirons alors que la vitesse de la croissance
de la suite s dépasse celle de t.

Deux snites s et 8 = (ni, 21, ..., 7}, ...) seront dites équivalentes
lorsque

0 < lim q—?”: < E-Iﬁii < o0,
im0 Wi dsoo Wy

On voit que la relation (1.1) subsiste lorsqu’on y remplace s ou f,
ou s et ¢ simultanément, par des suites équivalentes (); de méme, on
apercoit que toutes les suites stationnaires sont équivalentes et que la
formule (1.2), done aussi (1.1), est remplie par toute suite s tendant vers
linfini, lorsque ¢ est stationnaire, (Comparer [2], p. 309—310.)

La relation (1.1), transitive et non-refléxive, établit dans “¥{ un ordre
partiel; démontrons qu’elle jouit de la propriété suivante:

(a) M Gtant un ensemble au plus dénombrable CN, soit t un élément
de N tel que M >t (2). Alors il existe un s* e W satisfaisant & la condition

(1.3) M>s*>t.

(1) E. Marezewski a apergu que l'implication inverse est aussi vraie: lorsque y 3> 8
entraine y > s’ et réeiproquement, les suites s et s’ remplissent l'inégalité du texte.
(*) Cest-a-dire que p > ¢ pour tout p e M.
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