On a theorem of Urbanik

by

P. Newman (Jamaica)

- 1. Suppose that we have in a space E a countably additive field M of certain subsets of E (including \emptyset and E), and n countably additive finite measures $\mu_1, \mu_2, \ldots, \mu_n$ defined for each of the subsets of M. These measures are assumed to have the following properties:
- (i) They are non-atomic, i. e. for each i=1,2,...n, and for each $X \in M$, the inequality $\mu_i(X) > 0$ implies the existence of a $Y \subset X$ such that $\mu_i(X) > \mu_i(Y) > 0$.
- (ii) They are non-proportional, i. e. there exists at least one pair of indices i and j and a set $X \in \mathcal{M}$, such that $\mu_i(X)/\mu_i(E) \neq \mu_j(X)/\mu_i(E)$.
- 2. Then, utilising a theorem of Urbanik [2], it is easy to prove (1), provided that the μ_i are non-negative:

THEOREM 1. The assumptions (i) and (ii) imply the existence of a partition $E = E_1 \cup E_2 \cup ... \cup E_n$ such that $\mu_i(E_1) \geqslant \mu_i(E)/n$ for each i = 1, 2, ..., n, with strict inequality holding for at least one i.

Remark. Unless (ii) is satisfied, normalisation of the measures to make $\mu_i(E)=1$ for each i, will make each measure identical. The most that can then be stated is that a partition exists such that $\mu_i(E_i)=\mu_i(E)/n$ for each i.

- 3. Urbanik [2] actually proved the stronger result, that given (i), (ii) and
- (iii) The family of sets of measure zero is the same for each μ_i , then we have

THEOREM 2. The assumptions (i)-(iii) imply the existence of a partition $E = E_1 \cup E_2 \cup ... \cup E_n$ such that $\mu_i(E_i) > \mu_i(E)/n$ for each i = 1, 2, ..., n.

This result has application to the quasi-economic problem of fair division, proposed by Steinhaus [1].

⁽¹⁾ The use of the Radon-Nikodym theorem does not require condition (iii), provided that the measures are non-negative.

- **4.** The assumption that the functions μ_i are measures is extremely restrictive from an economic point of view, since their additivity property is very special. On economic grounds, it is desirable to replace the measures μ_i by more general sub-additive finite set functions v_i , which are assumed to posses a property analogous to (i), and the following additional properties:
 - (iv) $v_i(X) \ge 0$ for any $X \in M$, and for each i = 1, 2, ..., n.
 - (v). For any two subsets X and Y in M such that $X \subset Y$, then

$$v_i(X) \leqslant v_i(Y)$$
 for each $i = 1, 2, ..., n$,

with strict inequality if $v_i(Y-X) > 0$.

(vi) For any two subsets X and Y in M

$$v_i(X \cup Y) \leqslant v_i(X) + v_i(Y)$$
 for each $i = 1, 2, ..., n$

with strict inequality if either $v_i(X)$ or $v_i(Y)$ is non-zero.

5. It is impossible to prove Theorem 1 for the new functions v_i using Urbanik's method, since this makes essential use, v_ia the Radon-Nikodym theorem, of the additivity property of the measures. It is possible to give a simple constructive proof of Theorem 1, however, for the new conditions. We utilise Steinhaus's picturesque but accurate description of the problem as that of dividing a cake among n persons. The "cake" represents the space E and the set functions v_i are the valuations which the persons place upon the cake, i. e. $v_i(X)$ is the value to the ith person of the portion X of the cake. The cake is then divided among the n persons by a step by step process as follows:

The first person cuts from the cake a "slice" which he values at $v_{i}(E)/n$ (assuming (i)) and passes the slice to the second person. If the v_2 value of the slice is not greater than $v_2(E)/n$, he passes it on untouched to the third person. If such is not the case, he diminishes the slice to a smaller slice of v_2 value equal to $v_2(E)/n$ (restoring the "crumbs" so removed to the original cake), and then passes it on to the third person. A similar process is adopted for the 3rd, 4th, ..., nth person. After the slice has been passed around to each of the n persons, it is awarded to the last person who has diminished it; if there is no such person, it is awarded to the person who originally cut the slice. The process then recommences with the remainder of the cake and (n-1) persons, treating it as an entirely new cake; and so on for (n-2), (n-3), ... When there are only two persons left, say i and j, person i cuts off a piece equal to one half the v_i value of the remaining cake, and i selects that one of the two pieces which he values more highly, leaving i to take the remaining piece. We shall show that such a process leads to a partition of the desired type.

6. THEOREM 3. The assumptions (i), (iv)-(vi) imply the existence of a partition $E = E_1 \cup E_2 \cup ... \cup E_n$ such that

$$v_i(E_i) \geqslant v_i(E)/n$$
 for each $i = 1, 2, ..., n$

with strict inequality holding for at least one i.

Proof. Without loss of generality, we may normalise the v_i so that $v_i(E) = 1$ for each i. If assumption (ii) is false, then this normalisation will make each v_i identical to a common valuation, say v. We may then by (i), divide the cake into n pieces $E_1, E_2, ..., E_n$, such that $v(E_1) = v(E_2) = ... = v(E_n)$ and $v(E_i) > 1/n$, by (vi). Thus Theorem 3 is true in this case. If (ii) is true, then we proceed by an inductive proof, first proving it true for n = 2.

Since v_1 is non-atomic, person 1 may select a set X such that

$$v_1(X) = \frac{1}{2}$$
.

From (vi)

$$v_1(E-X) > v_1(X) > \frac{1}{2}$$
.

Suppose now that

(a)

$$v_2(X)\leqslant \frac{1}{2}$$
.

From (vi)

$$v_2(E-X) > \frac{1}{2}$$
.

Alternatively suppose that

(b)
$$v_2(X) > \frac{1}{2}$$
.

In either (a) or (b) the partition $E = X \cup (E - X)$ is a partition satisfying Theorem 3.

7. Now consider the case of general n. Let person 1 cut a piece X of v_1 value 1/n. Let this be reduced — if possible — to v_2 value 1/n and so on. Let the kth person receive the slice, and then renumber the persons involved so that he becomes person number 1. Then

$$v_1(X) = 1/n$$

and

$$v_i(X) \leqslant 1/n$$
 for $i = 2, 3, ..., n$.

From (vi)

(1)
$$v_i(E-X) > (n-1)/n, \quad i=2,3,...,n.$$

Now define $F \equiv E - X$, $M_1 \equiv M \cap F$, and w_i by

(2)
$$w_i(Y) \equiv v_i(Y)/v_i(E-X), \quad i=2,3,...,n.$$

Then each w_i satisfies our assumptions, and may be normalised. By the inductive hypothesis, there exists a partition $F = Y_2 \cup Y_3 \cup ... \cup Y_n$ such that

(3)
$$w_i(Y_i) \ge 1/(n-1), \quad i=2,3,...,n$$

with strict inequality holding for least one i. From (2),

$$v_i(Y_i) = w_i(Y_i)v_i(E-X), \quad i = 2, 3, ..., n.$$

From (1) and (3),

$$v_i(Y_i) \geqslant \frac{1}{n-1} \cdot \frac{n-1}{n} = \frac{1}{n}, \quad i = 2, 3, ..., n.$$

Therefore the partition $E = X \cup Y_2 \cup Y_3 \cup ... \cup Y_n$ is a partition satisfying Theorem 3. Since the theorem is true for n = 2, it is proved.

8. By adding an assumption corresponding to (iii), viz.

(iii)' For each set
$$X \in M$$
 such that $v_i(X) = 0$ for one i , then $v_j(X) = 0$, for $j = 1, 2, ..., n$ $(i \neq j)$

we obtain

THEOREM 4. The assumptions (i), (iii)', (iv)-(vi) imply the existence of a partition $E = E_1 \cup E_2 \cup ... \cup E_n$ such that

$$v_i(E_i) > v_i(E)/n$$
 for each $i = 1, 2, ..., n$.

Proof. From Theorem 3; (a) if (ii) is false we have Theorem 4 directly, or (b) if (ii) is true, there will exist at least one k such that $v_k(E_k) > 1/n$. From (i) we may find a set $F_k \subset E_k$ such that $v_k(F_k) = 1/n$. Let $v_k(E_k - F_k) = v_k(G_k) = \delta > 0$. By (i) again, we may find an n-fold partition G_{kj} of G_k such that $v_k(G_{kj}) = \delta/n > 0$.

By (iii)' none of these sets G_{kj} can be of zero value to any of the other "persons". Hence, by (v), the partition

$$E = (E_1 \cup G_{k1}) \cup (E_2 \cup G_{k2}) \cup \ldots \cup (F_k \cup G_{kk}) \cup \ldots \cup (E_n \cup G_{kn})$$

is a partition satisfying Theorem 4.

- 9. It may be possible to weaken (vi) by dropping the requirement of *strict* subadditivity, and adding (ii), but a constructive proof does not appear to be available.
- 10. Acknowledgements. The author, an economist, wishes to thank D. A. Edwards and R. C. Read for their advice.

References

- [1] H. Steinhaus, Sur la division pragmatique (abstract), Econometrica 17, Supp., (1949), p. 315-19.
- [2] K. Urbanik, Quelques théorèmes sur les mesures, Fund. Math. 41 (1954), p. 150-162.

UNIVERSITY COLLEGE OF THE WEST INDIES

Reçu par la Rédaction le 23, 4, 1958

Sur la vitesse de la croissance des suites infinies d'entiers positifs I

(Echelle des vitesses)

na

J. Poprużenko (Łódź)

1. Soit \mathcal{H} l'espace composé de toutes les suites infinies d'entiers positifs convergentes au sens large, c'est-à-dire des suites qui soit tendent vers l'infini, soit deviennent stationnaires à partir d'un certain terme.

 $s=(n_1,\,n_2,\,\ldots,\,n_i,\,\ldots)$ et $t=(m_1,\,m_2,\,\ldots,\,m_i,\,\ldots)$ étant deux éléments de \mathcal{M} , nous écrirons

(1.1)

Iorsque

$$\lim_{i \to \infty} \frac{n_i}{m_i} = \infty \,,$$

et dans ce cas seulement. Nous dirons alors que la vitesse de la croissance de la suite s dépasse celle de t.

Deux suites s et $s' = (n'_1, n'_2, ..., n'_i, ...)$ seront dites équivalentes lorsque

$$0 < \underline{\lim}_{i \to \infty} \frac{n_i}{n'_i} \leqslant \overline{\lim}_{i \to \infty} \frac{n_i}{n'_i} < \infty$$
.

On voit que la relation (1.1) subsiste lorsqu'on y remplace s ou t, ou s et t simultanément, par des suites équivalentes (1); de même, on aperçoit que toutes les suites stationnaires sont équivalentes et que la formule (1.2), donc aussi (1.1), est remplie par toute suite s tendant vers l'infini, lorsque t est stationnaire. (Comparer [2], p. 309—310.)

La relation (1.1), transitive et non-refléxive, établit dans \mathcal{M} un ordre partiel; démontrons qu'elle jouit de la propriété suivante:

(a) M étant un ensemble au plus dénombrable $\subset \mathcal{M}$, soit t un élément de \mathcal{M} tel que $M \gg t$ (²). Alors il existe un s* ϵ \mathcal{M} satisfaisant à la condition

$$(1.3) M \gg s^* \gg t.$$

(2) C'est-à-dire que $p \gg t$ pour tout $p \in M$.

⁽¹⁾ E. Marczewski a aperçu que l'implication inverse est aussi vraie: lorsque $y\gg s$ entraîne $y\gg s'$ et réciproquement, les suites s et s' remplissent l'inégalité du texte.