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STUDIA MATHEMATICA, T. XVIL (1958)

On bases and unconditional convergence of series
in Banach spaces

by
0. BESSAGA and A. PELCZYNSKI (Warszawa)

In the monograph of Banach [2] the following statement i given
without proof:

(B) Ewvery infinitely dimensional Banach spaée contains an infinite
dimensional subspace with a basis.

The main result of § 1 of our work is Theorem 3, the corollaries to
which are various generalizations and modifications of (B). §1 contains
alio several applications of the “theory of bases” to the study of projec-
tions in Banach spaces.

In § 2, using the obtained results concerning bases, we prove that
(Theorem 5) in every Banach space X weakly unconditional summability
is equivalent to unconditional summability if and only if no subspace
of the space X is isomorphic to the space ¢,. From thig fact we obtain
gimple proofs of some known theorems and other corollaries concerning
unconditional summability.

The last part of this work contains generalizations of the results
of previous paragraphs to the case of several clagses of linear metric
spaces.

Closely connected with this paper is the paper [6] concerning absolute
bages in Banach spaces. This concerns especially the problems given
at the end of [6].

- 4. Notation, definitions and basic properties®). X denotes
a Banach space (except section 7). X* denotes the space conjugate to X.
Flements of X will be denoted by «,w, ®,¥,2, ... Elements of X" —

by 1,9, b,y -
The symbol [#,] will denote the smallest closed linear set spanned

upon the elements (w,).

1) We intent to preserve the notation and terminology of 8. Banach [2].
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A sequence (1) is said to be a basic sequence (an absolute basic
sequence) if (,) is @ basis (an absolute basis) of the space [m,]2).

1.1. It is known that if (z,) is a basic sequence, then every u ini [2,] .
can Dbe represented in the form

o= fo(w)mi,

where (f,) C [2,]" is the sequence biorthogonal to (m).

In the sequel the symbol (f,) will be reserved for denoting the
biorthogonal sequence with respect to the basic sequence (z,).

Suppose that (@,) is a basic sequence. Let (p,) be an increasing
sequence of positive integers, (I,) — a sequence of real numbers.
A sequence (#,) which is of the form

Ppt1
Ry = Z timi!
=Py +1
will be called a block basis.
According to criterion 1.3 given below, (#,) is a basic sequence.

DEFINITION 1. The basic sequences (2,) and (y,,) are called equivalent i

Zw 0 (m=1,2,..)

{(tn) : S’ t,%; . converges} = {(tn) : j t:Y; converges}.
1=1 =1

It is well known that3)

1.2. If basic sequences (w,) and (y,) arve equivalent, then the spaces [2,]
and [y,] are isomorphic.

We know the following criteria for the sequence (m,) to be a basic
sequence or an absolute basic sequence:

1.3. (@) is @ basic sequence if and only if there is o constant K > 1
such that the inequality

(1) b @1+ ta@et .. A Lyl < K a0+ tay ... Flptpt .-t

is satisfied for arbitrary positive integers p, q with P < g and for arbitrary \
reals by, 1y, ..., 4. "

L.4. (my) is an absolute basic sequence if and only if there is a constant
Ka =1 such that the inequality

(2) SEP [Fnl ftr 21+ ta@a - ... bo @l < Ko By 2, + Dybamy -+ ... Dy by @y |

18 satisfied for arbitrary positive integer p and for arbitrary reals 4y, 1y, ...
ceeytpy Byy Bay oony By '

?) For the basic properties of absolute bases see [13].
?) This follows for instance from the consideration of [2], chap. VII, § 3.
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§1

2, TaeorEM 1. Let (%,) C X be a basic sequence. If the sequence (y,) C X
fulfills the condition

3) Dllan—valllfall = 6 < 1,

n=1
then (yn) 98 a basic sequence. (m,) and (y,) are equivalent?).
Proof. Since i

[tsl = fsl@t o+ hpmp)| < s+ -+ Haolllifdl (< 2;),

we obtain

gt oot pll < Myt o+ ol + D il s — w4
=1

< M@ttty [+ D sttty i s — el

g (1+ 6) ”tlm1+ . --+tpmp”
and

layat o taell < Wa@at o tamgll— D Mol oo — 94
=1

< (L= B[ty .o+t

for arbitrary positive integers p,q (p < gq) and for arbitrary reals
By bay eeey Bge
Hence

1-+6
g4 tayat -+ tpYpll < [tys Yot . - Tl K-]:—é

Thus, according to 1.4, (y,) is a basie sequence.

The equivalence of (z,) and (y,) is an immediate consequence of the
condition (3).

THEOREM 2. Let (1,) and (x,) be basic sequences in a space X. If there
exists a projection U of X onto [z,] and the condilion

() 1T0 3 Falllz—@nll < 1

N=1

is fulfilled, then [z,] is complemented in X 5).

4) Results of a character similar to ours are given in [17]. Since that paper
was not available we could not compare them.

5) A linear mapping U of the space X into itself is called a projection if U2 = TU.
A subspace Y is said to be complemented in X if there is a projection of X onto ¥.
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Proof. The formula A(x)=2—Ulx -|—Zf¢(U ))@; defines an

isomorphic mapping of X onto itself.
Indeed, this follows from the fact that by (4)

II—A| = up lo—4 @)l = sup o — (0—T () + Zy‘i(U(w))w.,’;)
= sup I[ V £:(U (@) (we— )| < NTN D) Wil flow— il < 1.
el <1 i=1

It is easily seen that A ([x,]) = [2,]; then the mapping AUA™(x)
is a projection of X onto [a,].

THEOREM 3. Let (m,) be a basis of a space X. If a sequence (y,) C X
satisfies the conditions

(8) inf|ly,) = ¢ >0,

(6) fi(Yn) = 0
then there emists a subsequence (Y, ) which is a basic sequence. This basic
sequence is equivalent to a block basis (with respect to (x,)).

Proof. According to 1.3, we may assume that the inequality (1)
is satisfied. Let us choose increasing sequences (p,) and (g,) of positive
integers in such a way that

l y fil 1/1’414

qn+1

(i =1,2,..),

4K

(M

Tn

8) 1K

Jf’n+1 1

(This is possible by ( ).
Set
I+
y Fi(W 1) i
I=gp 1

By =
By (8), (7) and (8),
(9) fleull = e/2  (n=1,2,...),

(10) Z 4K o

n=1

1
?/z’l.,b” < ’é .

Let (h,) C [2,]" be a sequence biorthogonal to (2,). Using the 1nequa1-
ity (1) we find from (9) that |k, < 2K [3e = 4K)e (n=1,2,...).
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Therefore by (10) and Theorem 1, (Yn,) 18 & basis sequence which is equi-
valent to the block basis (z,).

3. THEOREM 4. If the conjugate space X" contains o subspace isomorphic
to ¢y, then there exists a projection of X onto a space Y which is isomorphic
to 1; therefore X* contains a subspace which is isomorphic to the space m
(i. e. all three conditions are equivalent).

Proof. Suppose that X* contains a subspace which is isomorphic
to ¢,. We ghall prove that a subspace isomorphic to I is complemented
in X. (This is the only non-trivial implication).

Let (f,) C X* be a basic sequence equivalent to the wmit-vector-
-basis®) of ¢,. We may suppose that

1y =l =... =1, |hH+. . tlafall < Cflgﬂhl (€ =1).-
Let us note that h
(12) 2 Ifu(#)| < 400, fulz)—>0- for every weX,

because for every Fe [f,]", Z [P (fi)] < +oco (this is an obvious property

of the unit vectors in ¢,).

According to (11) and (12) we can choose a subsequence () of (f2)
and a sequence (y,,)C X with |ly, =1 (n = 1,2,...) in such a way that
for every =

(13) Il =11 27507 fra(y) <
The set of the numbers 7, (y:) is evidently bounded. Using the diagonal

method we can choose a subsequence (r,) of indices such that if f, = j}zn,
Yn ==\y,'.2n (n =1,2,...) then for every i

2-"=5.0-1 (i < m).

(14) oY) —Fn(Yry )l < 27775071 (0 <i—1).
It follows from (13) thabt
(18)  fulyn) =1 <27°C7 (g <27"70071 (i <n).

Let us seb 2, = yn—yr, , (# =1,2,3,...). By (14), (13') and (11),

(15) Un(zn)“—ll < Ifn(yn)‘—ll“f“lfn(y;gn_l)l < 2_4'0_15
(16) ()] < 074+ Y2t <2707
=1
(n=1,2,..).

@amn llenll <2

&) The unit-vector-basis is composed of the elements (1,0,...), (0,1,0,...), ...
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Let &, = sgnf, (). By (15), (16), (17) and (11) we obtain

(18) |ityzi+ ... Fl2dl = (erfr+.et 5'qfa) (Gt tRllefi 4 “|‘1":,qu|"1

1—27%¢* 1
> () = 5 ()
and
(19) iz - Fhpapll < 2(10 4 10

Thus 1° (z,) is & basic sequence (according to 1.3), 2° (#,) is equivalent
to the unit-vector-basis of 1.
According to 2° and (12) the formula

U) = D ful@)z
n=1
defines a linear mapping of X into [z,].

Let # = Y 1,2, be an arbitrary element of [2,]. According to (15)-(19),
f==1 .

lo—T @)l = | X tizi— Dtafulenn— Dk }j fa#)2n
=1 =1 =1 ixn=l
< Dl -sup (1= fuleall+ D) 1ful20)l) - sup o]
=1 i Tn=1 n

<200l (274 ¢~ 4274-07) 2 < 4ol

To complete the proof it is enough to apply the following

LeMuMA 1. If U is a linear mapping of the space X into its subspace Y
and

(20) 1Ty—yll<d<1 for

then Y is complemented in X.

. Pr09f. Let A(y) = Ul(y) for y eY. It follows from (20) that 4 is an
isomorphic mapping of ¥ onto itself. Thus the formula V() = A=Y U (x))
defines a projection of X onto Y.

ve¥, |yl <1,

4. Corollaries. We have

C. 1. If the sequemce (yn)C X comverges weakly to 0 and inf[y,| >0
t’hen a subsequence (Y,) is @ basic sequence. Moreover if X cam be imbedded
in & Banach space with an absolute basis then (y, ) can be chosen in such
a way that it is an absolute basic sequence. "

The first part of this corollary is an immediate consequence of
Theorem 3 and the fact that the universal Banach space ¢ has a basis
(see [2], Chap. XT, Théoréme 10, and [24]).

icm
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It is obvious that a block basis with respect to an absolute basis is an
absolute basic sequence, which implies the second part of C. 1.

0. 2. If the space Y of an infinite dimension is o subspace of a space X
with & basis (), then there is in Y a basic sequence (y,,) which is equivalent
to a block basis with respect to ().

To prove this it is sufficient to note that in the infinitely dimensional
gpace ¥ there exists a sequence (y,) such that [yl =1, fi(ya) =0 for
i<n, n=1,2,... and to apply Theorem 3.

C. 3. Bach infinitely dimensional Banach space X contains an infinitely
dimensional subspace with a basis.

For the proof it is enough to imbed an arbitrary separable subspace
of X in the space ¢ and to apply C.2.

C. 4. Bach infinitely dimensional Banach space which is a subspace
of @ Banach space with an absolute basis contains an infinitely dimensional
subspace with an absolute basis. )

(This follows from the remark which has been made during the
proof of C. 1.)

DEFINITION 2. The basis (#,) is called a perfectly homogeneous basis
if | =1 (n=1,2,...) and each block basis (2,) with [z,] =1
(n =1,2,...) is equivalent to the basis (x.).

. C. 5. If the space X has a perfectly homogeneous basis then all the
infinitely dimensional subspaces of X are of the same linear dimension.
In particular, if X =¢, or X =17 (p >1) and Y is an infinitely
dimensional subspace of X, then the linear dimensions of the spaces X
and Y are equal ([2], Chap. XII, Théoréme 1).

C. 6. Let X be o separable Banach space. If there exists a subspace Y
which s isomorphic 1o c,, then ¥ comtains a subspace Yy, isomorphic to ¢,y
which is complemented in X 7).

Proof. It may be supposed that X has a basis (z,) (because X can
be imbedded in the universal space ¢ having a basis). Assume that the
bagis (y,) of the space Y ig equivalent to the unit-vector-basis of the
space ¢, and |ya =1 (n =1,2,...). Since the unit-vector-basis in ¢
fulfily the hypothesis of C.1, there is a basic sequence (Y»,,) which is
equivalent to a block basis (#,):

In+1
1%
Ty +1

(n=1,2,..).

2y =

) This is a particular case of Sobezyk's theorem ([256], Theorem 5).
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Moreover, we may suppose (see the proof of Theorem 3) that

3K2“hn“”zn_:‘/n” <1, ”zn” =1 (n= 1’ 27 . ")a
n=1
where (;) C [#,]" is the sequence biorthogonal to (z,), K being a constant
satisfying (1).
Let Z, = [#g,11; g,425 -++s Pg,+1]. The linear functionals (h,) can
be extended to linear functionals (k,) defined in the whole space X in
such a way that

(21)

sup ||kl < 3K,

Iaz) =0  for every weZ,, m .

Thus Ay (z) — 0 for every z in X. Therefore the formula

Ule) = D ¥i(z)e;

defines a projection operation of X onto [z,] such that ||U| < 3K.

Thus, by (21) and Theorem 2, [¥s,] I8 a projection of X.

C. 7. Suppose that X can be imbedded in a Banach space with an absolute
basis. If a subspace Y of X is equivalent to the space I, then Y contains
a subspace Y, isomorphic to 1, which is complemented in X.

To prove this corollary it is enough to reproduce a fragment of
James’s proof ([15], Theorem 2) and to apply our Theorem 2.

Remark. The inclusion ¥, C ¥ cannot be replaced by the equality:

There is a space X with an absolute basis, o subspace Y of which is
isomorphic to 1, bul there is no projection of X onto Y.

§II

o
5. DEFINITION 3. The series ' @, is w. u. ¢. (weakly unconditionally
n=1 o

convergent) if for every permutation (k,) of indices the series > ¥y, CONVer-
Wl
ges weakly (may be that the limit-element does not exist).
The series J'm, is w. e (unconditionally convergent) if for every

=1 o0
permutation (%,) the series Zw,ﬂn converges.
Foo==1

We shall need several properties of w. u. c. series 8),
*) w.u. ¢. and w. ¢. series are considered in [20], (8], and [11]. Lemma 2 and

further properties (IV-VI) of w. u. ¢. series can easily be deduced from the results
given in those papers.

icm
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LEMMA 2. The following conditions are equivalent:
@ D, is w. u. c.,
n=1

(IT) there is a constant O such that for every bounded real sequence (1)

the inequality
s 3t
A=

< Osup i
holds,

(IIT) for every real sequence (t,) tending to O the series D b, converges.
H=1

Proof. 1° (I) implies (II). Let
Ze={feX: Yifw) <H (6 =1,2,..).
=1

The sets Zy are closed and Z,4-Z,+... = X" (because ) z, is w.u.c.).
o Nn=1

Using Baire’s theorem we find that }'|f(2,)| < C for some ¢ >0 and for
every f with [|f| < 1. w=l
Thus

= sup | f( Z toa )| < sup glmwm SUpta] < Csup i

HES

(n=1,2,...).
2° (IT) implies (III). According to (II), if ¢,— 0, then'

¢ .
| Ytawn| <O sup >0 for p,g->too (<)

Fyac PNy

0
i. e. the series } 4,, fulfils the Cauchy condition.
n=1

3° (III) implies (I). According to (II} and the well-known property
of numerical series, we have

00

D@l < +oo,

o= 1
q.e. d.
00
Every w. u. c. series D', has also the following properties (which
=1

n=
can easily be reduced to the properties of numerical series):

) 3w,

n=1

is w.u.c. for an arbitrary permutation (%,) of indices,
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(V) if (g,) is an a.1b1trary increasing sequence of indices and y,

In+1
Y z;, then the series Zun is w. u.c.
=y +1 n=1

x . .
(VI) 3=, is w.u. c. for every subsequence (r,) of indices.
n

n=1
THEOREM 5. The following conditions are equivalent:
(a) there exists in the space X & w. u.c. series which is not u. ¢.;
(B) there ewists in the space X a w. . c. series 27‘" such that mf lfwalf > 05
==

(v) X contains a subspace which is isomorphic to .
For the proof we shall need the following

LemmA 3°9). If a basie saquénce () fulfils the conditions
(22) int|w,) > 0,
n
&
(23 Ly 18 W. U, Gy
’ 2

then the basic sequence (1) is equivalent to the unit-vector-basis of the
space cy; therefore the space [x,] is isomorphic to ¢,.
Proof of the lemma. It follows from (12) that if the series } i,x,
N1
is convergént, then #,— 0. From (III) follows the converse implication.
Thus the proposition 1.2 implies the statement of the lemma.

Proof of Theorem 5. 1° (a) implies (). Indeed, if the w.u.e.

3 . .
series '@, is not wu.c., then for some permutation (k,) of indices the
n=1 .

series g‘mkn is not convergent. It follows that there is an increasing se-

guence of indices (g,) such that
n+1

inf Z T, |

L A |

> 0.

o0 41
Hence according to (IV) and (V) the series 'y, , where g, = X B
fom=1

bl 1

satisfies the condition (ﬂ).

2° (B) implies (y). Let Zm,,be a°W. 1. ¢. series such that 1nf [2)| = 8 >0.

=1

) Results similar to this lemma are given in [1].

icm
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From the Definition 3 it follows that (x,) weakly converges to 0. Hence,
by C.1, the sequence (2p,) fulfils all conditions of Lemma 1; therefore
the space [#p,] 18 1s0m01'phlc to Gy

3° (v) 1mphes (a). In the space ¢, the series composed of unit vectors
is w. u. .- Without being u. c. Since the weak unconditional convergence
of the series Zw” iy invariant under isomorphic mappings, the last implica-

ne=1

tion is proved, g. e. d.

6. Consequences of Theorem 5. We have

C. 8. THEOREM OF ORLICz ([20], Satz 2). If the space X is weakly
complete, then every w. u.c. series in X is u. ¢.

This immediately follows from the fact that every subspace of
a weakly complete space is weakly complete but the space ¢, is not weakly
complete.

. C.9. If for every subsequmce of indices (p,) the series Zmp conver-

ges weakly to an element, then an is . ¢.19),
n=1

According to Theorem 35, it is enough to establish this fact for the
space ¢,. We omit the easy proof.

C.10. In separable conjugate spaces every w.u.c. series is w. c.

This is an immediate consequence of Theorems 4 and 5.

Since X C X**, C. 10 implies

C.11. If the second conjugate space X**
space X every w. u.c. series is u. c.

Let us note that if the space X has the “extension property’’1t),
then no projection of X is isomorphic to the space I, because in the
opposite case the space I would be a projection of the space ¢, which is
not true by [3]. Thus, by Theorems 4 and 5,

C.12. If X has the “extension property”, then in the conjugate space
X* every w. u. c. series is u. c.

Since there are Banach spaces which are not weakly complete but
have separable second conjugate spaces, C. 11 implies

C. 18. The converse of Orlicz’s theorem C. 8 is not valid (cf. [6], Theo-
rem 2).

is separable, them in the

10) This result of Orliez can be deduced, for instance, from the proof of
<Satz 2° in [20].

1) For the properties of the spaces having ‘“‘extension property” see [12].
According to Theorem 3.2 of this paper, if X is complemented in a space with “‘exten-
sion property”, then it is complemented in evory space in which it can be imbedded.

Studia Mathematica XVII, 11
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Remark. It is proved in [21] that in every space which has the
property (B) the functional [z cannot be uniformly approximated by
polynomials in any sphere. In view of Theorem 5 this problem reduces
to the case of the space ¢, (see [7]).

Suppose that

U(X) = {leny C X: Y om is me},

n=1

B(X) = {(m,,,) CX: §rn is w.u. e,

Ti=1

o0
By (X) = {(xn)eB(X): Yy, weakly converges to an el(mmm.}.

=1

o0
Bg(X) = {(zn)eB(X): Xy i8 convergent},

n=1
@
IS(X) = {(an)eBs(X): it for some permutation (kn) of indices 3wy, con-
0 o N=1
verges, then 3 ap, = 3 @n}.
: n=1 n=1
In [19] the following inclusions are proved:
(24) U(X) C Bg(X) = IS (X) ~ B(X) C By(X) C B(X).

C. 14. AUl the inclusion (24) are proper if the space X contains a subspace which
ig isomorphic to cy. Otherwise all these inclusions may be replaced by equalities.
This follows from Theorem 5 and the corresponding properties of the space cys

?. Generalizations. Let us denote:

by R the class of all spaces of type F in which there exists a bounded
neighbourhood (see [23]),

by O the class of all spaces of type B, which possess a continuous
homogeneous norm (see [4] and [5]).

7.1. The Theorems 1, 2 and 3 may be generalized as follows:

TaROREM 1'. Let (x,) be a basic sequence in a space X which belongs
o the class M or R. Then there exists a sequence (&,) of positive numbers
such that every sequence (y,) C Y which fulfils the inequalities o (2, Yn) < &n
(n =1,2,...) is a basic sequence equivalent to (x,) (@ denotes the melric
of X).

THEOREM 2. Let (2,) be o basic sequence in @ space X which belongs
to the class M or R. Suppose that [x,] is complemented in X. Then there
ewists a sequence (&,) of positive numbers such that the condition o (wy,, oy) < ‘a.,b
(n=1,2,...) implies that [x,] is complemented in X.

Remark. Tt is enough to assume that X is a By-space and [x,]¢MN.
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TrEorEM 3'. Let (1) be a basis of the space X which either belongs
to the class RN or is a By-space. If a sequence (y,) C X satisfies the condition

inf@(y‘mo)>0; fi('yn)“’o (i=172’7"')7

then there exists a subsequence (Yn,) which is a basic sequence. (Yp,) s
equivalent to a block basis.

7.2. The corollaries C. 1.-C. 6 may be extended to the case of arbi-
trary B,-spaces, C.2, C. 4, C.5 — to the case of the class R.

Remark. It follows from the generalization of C.5 that if X =17
(0 < p < oo) (for the definition see [18], 1.621) and Y is an infinitely
dimensional subspace of X, then the linear dimensions of the spaces X
and Y are equal.

7.3. Theorem 5 and Lemma 3 hold true for B,-spaces. We must only
replace condition (IT) by the condition

(ID)" [ty +1a@at ..+ Taals < CsUDILI,
ign

where |-|; denotes the k-th pseudonorm of the space X.

Added in proof. During the print of this paper we have obtained
some new corollaries to theorems 4 and 5. They have been published
in the paper Some remarks on conjugate spaces containing subspaces
isomorphic to the space ¢,, Bull. Acad. Pol. Sei. 6 (1958), p. 249-250.
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A generalization of results of R. C. James concerning
absolute bases in Banach spaces

by
(. BESSAGA and A. PEECZYNSKI (Warszawa)

The main results obtained by R.C. James in his paper [14]') can
be presented as follows:

Let X be a Banach space with an absolute basis.

(a) X is weakly complete if and only if no subspace of X is isomorphie
to ¢,.

(b) Every bounded set in X is weakly conditionally compact?®) if
and only if no subspace of X is isomorphic to I

The purpose of this paper is to show that the propositions (a) and (b)
hold true also in the case where the space X can be 1mbedded in a space
with an absolute basis.

The last part of this paper contains several questions which are
connected with the present paper and with the one entitled On bases
and unconditional convergence of series in Banach spaces (this fasec.,
p. 151-164) which is subsequently denoted by [0].

Terminology and notation used in this paper are the same as in {0].

1. In the following we shall need several lemmas.

1.1. In order that an absolute basic sequence (i) with sup ||z, << + oo

be equivalent to the unit-vector-basis of the space 1 it is necessary and suffi-
cient that there exist a linear fumctional f such that inf|f(w,)| > 0.
n

Sufficiency. 1° I Y|f,| < +oo, then }i,, is convergent.
=1 =1

1) The numbers in brackets [ ] refer to the ““References’” of the paper
On bases and unconditional eonvergence of series in Bamach spaces; in this fasc.,
p.163.

5) A set ZC ¥ is said to be weakly conditionally compact if every boun-
ded sequence composed of elements of Z contains a weakly convergent sub-
sequence.
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