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STUDIA MATHEMATICA, T. XVIL (1958)

Ergodic projections for semi-groups of periodic operators
by
A.T. BHARUCHA-REID (Oregon, U.8.A))

1. Introduction. In 1938 K. Yosida [11] (cf. also [12]) proved the
following mean ergodic theorem:

TEEOREM 1. Let T be a bounded linear operaior on a Banach space XX
to itself; and let

n—1

S, =l \jTia', reXX.

N cemed
=0 -

If the iterates T" are equibounded, i.e. |T"| < M for n=1,2,...,
and all sequences {S,,Jc} are weakly compact, then S,x converges strongly
to Px, where P is a linear bounded operator on X to itself with |\P| < M,
and PT = TP = P, P* = P.

In this note we consider the mean ergodie theorem for semi-groups
of periodic operators; our main interest being in the representation of the
ergodic projection operator and the associated manifold of fixed points
of the semi-group. This study was suggested, in part, by our investigation
of the Kolmogorov differential equations with periodic coefficients and
the associated semi-groups of operators on the Banach space [ to itself [1].
In section 4 of this note we discuss the application of the mean ergodic
theorem for periodic operators to Markov chains and processes with
a denumerable state space.

DerINITIoN 1. In the diserete parameter case, a linear operator T
on a Banach space to itself is said to be periodic with period o (w finite)
it T° = I (the identity operator), and w is the smallest positive integer
with this property.

DrriNITION 2. In the continuous parameter case, a linear operator 7'

on a Banach space to itself is said to be periodic with period v if T(w) = I,
and o is the smallest positive real number with this property.

2. Discrete parameter case. Let ¢ = {T% n =0, 1, ...} be a semi-
-group of linear bounded periodic operators on a Banach space X to itself.


GUEST


190 A. I Bharuela-Reid

If the period of o is @ (w = 1,2, ...), we have from Definition 1 and the
semi-group property

ey = IV = T e = 1",

reX.

a semi-group of linedr
itself such that

THEOREM 2. Let o = {T" n =0,1,...} be
bounded periodic operators on a Banach space to

(i) Tu) — I, T7L~) ] i 11"/,

(ii) the dteraies are equibounded,

(ili) the sequences {Snw} are weakly compact;
then S,a converges strongly to P,x, where

—

“—

D

1 '
Pb=— T,

¢ ) sd
-0

with |P,)| < M, and P,T = 1P, =P,, P\, =P,.

Proof. The existence of a limiting operator which iz a projection
operator follows from Theorem 1. To see that the projection operator
has the above representation, and depends on w, we observe that as =
jincreages, for o fixed, the sequence )

[ Sie

K w—1
P

-1
1 ,
lim 8,2 = P o = — E T .
)

N—>00

agsumes the form

hence

=0

That P, is a projection operator with |P,|| < M is easily verified.

It is well-known that an ergodic projection P is a projection of &
onto the linear manifold M of the fixed points of the operator T,
and that the operator I—P projects X onto the linear manifold N of
those elements of X which are annihilated by 7. Hence, the operator P,
is a projection of & onto the linear manifold

M, = {weX|Te = o, T periodic with period w),
and the operator

w-1

1\,
=I—P, = 2 7
Q. 0=

i=1
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is a projection of X onto the linear manifold -
N, = {veX|Tw = 0, T periodiec with period w}.

For applications it would be of great interest to obtain limit theorems
for sequences of projection operators {Pw} analogous to those obtained
in the non-periodic case (ef. [10]). Since if we change the period o we are
dealing with an entirely different operator; it is not possible to establish
in the general case the monotonicity properties of the manifolds I,
w=1,2,..., and hence establish the monotonicity of the projection
operators P,. However, it has been pointed out by Professor Herman
Rubin that the following result obtains: ‘

Let

F, = {M: for some operator T with period w, M = {zeX: Tz = x}};

then F,C Fy,, k=1,2,...
A result which might be of interest in certain applications is the
following: ‘
THEOREM 3. For o fived, My = M,, where My and M, are the
manifolds of fized points of the operators T and P, respectively.
Proof. Consider weM,. Then

P, = i(I—{—T—{-.. AT N = .
o

Operating on the above with T, we have

TP,z = %(T+1’“+...—|—T“’)x 1 (T4+T+... 4T Yy = P,z = Tx.
)

@
Therefore P, =Ty =2 and Fyr =T,

3. Continuous parameter case. Let ¢ = {T(t),t> 0} be a semi-
-group of linear bounded periodic operators on a Banach space X to itself.
If the period of ¢ is w, w >0, we have from Definition 2 and the semi-
-group property

T'(t+o)r =TH) T (w)e = Tt) Iz = Tz, xeX.

We assume T'(t) to be continuous in the strong operator topology,
and that the semi-group o is of class C,, that is

Im||T(t)z—a2) = 0
tio

for each reX.
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TrmorEM 4. Lel o = [T(8), > 0} be a semi-group of linear bounded
periodic operators on A to dtself, with T(w) = I, T{t+w) = T(t), where
w >0 is fized. Let
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z f‘T(t)mﬂt, >0,
A (T)‘T = T S
2, v=0, xeX,
denote the average on the interval [0, ©] of the semi-group o which is assumed
to be strongly integrable on every finite interval., Assume also that

T(t . N

- (1) lim—-—(—)—m =0, ze:\,
)

(i) |A(x) < M, v =0,

(iii) for each weS, where § is a fundamental sel in X, the set
Ad@)e, > 0} is weakly sequentially compact.

Then the averages A (r) converge strongly to the integral operator

w

1 .
Plw)s = f T(tyedt,
(3] E)

with |P(w) < M, and P()T (1) = T(#)P(w) =P(w), P (w) = P(w).

Proof. We omit the proof since Theorem 4 can be reduced to the
discrete parameter cage by applying Theorem 2 to the operator T'(1)
on the space A (L)X (cf. [2], [3], [6]).

4. Periodic Markov chains and processes?). Let 7' = (ty), 1,]
=0,1,..., be the matrix of transition probabilities associated with
a temporally homogeneous Markov chain with a denumerable state space.
The probability of a transition from the state ¢ to the state j in n steps
(or time =) is given by the element, ¢, in the i-th row and j-th column
of T". Hence the specification of 7' completely determines the system.
A problem of great interest in hoth theoretical investigations and
applications is the study of the limiting behaviour of the iterates T"
a§ % — oo, It is well-known, for example, that the Cesaro limits

n
1 e
y=lim = >
Py e K

*) The notation used in this section follows that of the provious sections, and
is not the usual notation employed in the theory of Markov chains and processes.
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always exist, and satisfy the relations
oo
2
pi =0, __}Jpw'él
i=0

Let P = (p;;) denote the matrix of limit elements Pi;. The problem
of interest can now be stated as follows: Determine the limit matrix P
when the matrix of transition probabilities 7' is given.

The structure of the limit matrix P can be described by classifying
a state j as positive when p;; > 0 and dissipative when p;; = 0. The set
of all positive states, if not empty, can be divided into disjoint subsets,
with states ¢ and j being in the same class if and only if Dy > 0. Let §
be a positive state; then we can write p; = p;;, and the limit elements Dy
can be expressed in terms of the p; and a set of numbers a(i, C), defined
for each state ¢ and each positive class C, where 0 < a(i, C) < 1. The
a(i, 0) give the probability that the system starting at state ¢ will ultim-
ately enter the set of states C, and remain in €. The positive states are
those states of the chain which arve recurrent with finite mean recurrence
time u;, given by u; = 1/p;; and the dissipative states are those states
which are either recurrent with infinite mean reeurrence time, or non-
-recurrent. The properties of the p;;, p; and «(i, C) can be summarised
as follows (cf. [9]):

(i) py = 0 for all 4, if j is dissipative.

(i) py = pja(i, C) for all 4, if jeC.

(ili) ¥ p; = 1 for each positive class C.

jeC
. 1, deC,
a(t, 0) —10’ ieC,

where ¢ is a positive state and C is a positive class.

(v) If ¢ is dissipative and {(”:y =1,2,...] are positive classes,
then >a(i, 07) < 1.
Y

(iv)

(vi) if ¢ is a positive class, then

' Ps,
§pt~——_{
& Yk§ 0’

keC

7.505
je 0,
and
Dltia(k, €) = a(i, €)  for all i.

k=0
00 oo (=2 R .
(vii) 3 pupr =k2 Pinly :LZo tiDr; = Pis, for all 4 and j.
k=0 t=0 o

The problem of determining the limit matrix P has been considered
by many investigators using different methods (cf. [57, [12]). In a recent
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paper D. G. Kendall and G. E. H. Reuter [9] have utilised the theory
of semi-groups of operators to caleulate the ergodic projection operator.
In the semi-group theory of Markov chains with a denumerable state
space, the Banach space % involved is the sequence space I whose elements
are sequences & = (%, @, ...) With norm

o
el = el < oo
=0

In this cage 7' and P determine bounded linear operators on ! to itself
as follows:

(=] 00
_Z wlyy (P = 2 Ly Pies -
k=0 k=0

The operators T and P satisfy the following conditions:
(a) Tz > 0, [[T2]| = |le|l, z = 0;
(b) Px > 0, |IPo] < |ol, @ >0, PT = TP = P, P* =

Hence T is a transition operator and P i3 an idempotent contraction
operator. We also have that for each positive class € we can define
a vector y’el by

Py, Je0,
) =
) {0, jec.

Hence p” > 0, |jp?|| = 1, since Y p; = 1, and the positive class C”-
jeC

is the support of the vector p”. From property (vii) we see that Tp" = p”,
so. that p” is a fixed point of the transition operator 7, and is therefore,
an element of the linear manifold M.

In order to caleculate the ergodic projection operator for periodic
Markov chaing?) it is first necessary to replace Definition 1 for general
periodic operators, and consider the following

DEFINITION 3. A Markov chain characterised by a matrix of transition
probabilities 7 is said to be periodic with period o (w > 0) if T"+* =T"
and o is the smallest positive integer with this property.

That Definition 1 is too strong for Markov chains follows from the
fact that the global condition 7% = I requires that the system be
deterministic. Definition 3 does not require that 7% = I, it simply states
that the matrix transition operator T is such tha.t its 1temtes satisfy the
product law T+ = T,

#) For some examples of periodic chains we refer to [5], p.329-331.
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In view of the above, the representation of the ergodic projection
operator for general periodic operators

w—1
1
P, == N
@ @)J
must be replaced by
1\
P, = "/—i’ T

in the case of Markov chains. Hence we see that for periodic Markov
chains the associated ergodic projection operators can be easily obtained
from the simple representation above. As in the case of aperiodic chains,
the states of the periodic chain can be classified depending on whether
the diagonal elements of P, are positive or zero; and for positive states j
the mean recurrence times u; are given by p; = 1/p;. We close this discus-
sion of periodic Markov chains by remarking that the method given by
Kendall and Reuter for the calculation of the absorption probabilities
a(?, C) when ¢ is a dissipative state and ¢ a positive class can be carried
out for periodic chains.

We now consider periodic Markov processes with denumerable state
space3). Let 7'(s) = ( 5(8)) (i, =0,1,...), s >0, denote the matrix
of transition probabilities defining a temporally homogeneous Markov
process with a denumerable state space. If the continuity condition

limt;(s) = 0y

slo
holds, then it is well-known that the limits

pi; = lim #;;(s)

8-—»00

exist. Let P = (p;) denote the matrix of limit elements p;;. Before
proceeding we state a few of the properties of the semi-groups of operators
agsociated with Markov processes with denumerable state spaces.

We define a semi-group of transition operators o = {T(s),’s =X}
on the Banach space ! to itself by putting

= Zwktkj(s)
im0

3y A periodic process of the birth-and-death type is discussed in [8].
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for each rel, where & = (2, &y, ...). The semi-group o has the following
properties:
(@) T(s-+1t) = T()T(8),s,t =0, T(0) = I. ‘
(b) T'(s)x = 0 and [7'(s)xf = |z, £ =2 0, zel.
(¢) Iim|(T(s)—1I)m|| = 0, for each z.
s}0

The problem of determining the ergodic projection operator for
Markov processes can be stated in the following ways: (1) Determine the
limit matrix P when the matrix of transition probabilities 7'(s) is given, or
(2) Determine the limit matrix P when the infinitesimal generatort) © of
the semi-group is given. The second method has been employed by Kendall
and Reuter. However, in the case of periodic processes the infinitesimal
generator is a periodic function of time, and as pointed out in [ 1] a periodie
infinitesimal generator will not in general generate a semi-group with
the same period. Hence in this study we assume that a semi-group of
periodic operators has been gencrated by some operator £(s), and base
otir calculations on the matrix of transition probabilities.

As in the case of Markov chains, Definition 2 is too strong for Markov
processes. Hence we have

DrriniTioN 4. A Markov process characterised by a matrix of
transition probabilities 7'(s) is said to be periodic with period o (w > 0)
it T'(s+ w) = T'(s), and w is the smallest positive real number with this
property 8).

For periodic Markov processes the representation of the ergodic
projection operator given in Theorem 4 can be used to obtain the limit
matrix of probabilities. Hence, for periodic Markov processes

w

l ”~
Plw) = TJJ T(s)ds, t
]

the limit matrix depending on the period w. The classification of states
can be obtained as in the case of Markov chains.
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