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STUDIA MATHEMATICA, T. XVII. (1958)

Local characteristics of generalized stochastic processes

by
K. URBANIK (Wroclaw)

Let us consider generalized stochastic processes whose realizations
are distributions. Using the notion of the value of distributions at a fixed
point [3] it is easy to verify that almost all realizations of the derivative
of a homogeneous Brownian motion process have no values at a fixed
moment. Consequently, there is no probability distribution of this process
at a fixed moment. But from an intuitive point of view the derivative
of a Brownian motion process has at a fixed moment a ‘‘probability
distribution” uniform on the line. In connection with this fact at the
III-d All-Union Mathematical Congress in Moscow in June 1956 I. M. Gel-
fand raised the following problem:

To define the generalized probability distribution of - generalized
stochastic processes at a fized moment such that the generalized probability
distributions at all the fived moments of d*f{w, 1) /dt" (k > 1), where f(w, t)
i8 a process with independent increments, give the probability characleristic
of the increments of f(w,t).

The aim of the present paper is to give a solution of Gelfand’s problem.
In this paper we introduce the notion of local characteristies, which can
be regarded as a generalization of the notion of probability distributions
with finite moments.

We remark that the definition of loecal characteristics for determi-
nistic generalized processes?!) can be reduced to the definition of values
at a fixed point of distributions. Therefore there exist generalized pro-
cesses having no local characteristies.

The subject of Section I is the definition of the local characteristic
at a fixed moment and the investigation of elementary properties of local
characteristics. In Section II we shall analyse some local properties
of homogeneous stochastic processes with independent increments.
Section ITI contains some theorems concerning infinitely divisible dis-
tributions. Section IV contains a complete discussion of local character-

1) We say that a generalized process ®(w, t) is deterministic if &(w,) = &(B),
where & (t) is a distribution.
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istics for derivatives of homogeneous processes with independent incre-
ments.

I wish to express my thanks to Professor I. M. Gelfand for his valuable
remarks, which I have utilized in the present paper.

I. We shall use the following notations:

Mflw, ) = flo, i+ h)—flo, 1),

¥.1) A 4 St
Ay dy . Ay Hoyt
Duyt oo ) = ===
where
k—j
L2) A=l k=R D 2y, (i=1,2,..,k=1).
8=1

The limit lim lim...lim we sh.ll Driefly denote by Lim.
hyplo 2ylo0 hg 40 Ry, e T 40
Let M be the class of measurable stochastic processes f(w,t) with
expectations E|f(w, )" (n =1, 2,...) (Lebesgue-integrable over every
finite interval) for which lim F|4,f(w, t)|" = 0. Since almost all sample
10

functions of processes belonging to M are Lebesgue integrable over every
finite interval (see Doob [1], p. 62), then M is a subeclass of the clags of
generalized stochastic processes (see Urbanik [6], § L.4).

In the sequel X, (n=0,1,...) denotes the Banach space of
functions ¢ continuous in — co < # < oo, having the following limits:

(13) 6t p) =1m ®2 g o) — im 20

o ! Zr—00 len ’

The norm in X, will be defined by the formula

- lple)l
ligll w1 el

Lemma L1, Let flow,t)eM and

¢
1
(L.4) (o, 1) = méf(t—-u)"lf(w, wydu.
If

(L.5) Lim

;.,h_‘_.;.“o'Dhl,hz,,..,h,g(w, to) = f(w’ to)
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oo
in probability, then for each integer k and for each ge | X, the equality

n=0
oo

Lim f @(x)dP (Dn,,h‘z,“,,hkﬂg(w, t) < a)
Bg1s o Pptsd® oo

[ ¢@)dP Dy, p,, . 1,1 (0, 1) < )
! -—00
holds.
Proof. Let

&

(L8) Hp(hyy.oey hryg; ®) =
—00
T

L7 Hu(hy, ..

i

oy s @)

Equalities (L.1) and (I.4) imply

Dh;.hg,...,hk+3g(w s T)

tot g1 Pt Ate Te-1tAk+s A
P

[ @ +1ul") AP (Diy by, ... 0, F 0y 1) <)

[ ()P (Da p, . 1y 9 (5 %) < ),

- Ao Ay flew, u)dudsm ... do,_;.
h ol
Kl o o0 ﬂ-k-{—s t P FY 1
Hence, in view of the convexity of the funection |z (n =1, 2,...),
?Dh,,n,,,,.,h,c_,,ag(w, )"
totAp1 Bitirre  Ts—1lAets n )
< 1 ?fil—i'—‘—fif(w, u)| dudw, ... dwg_y.
/11,.,_1...}%_1_3 P 4 %.,_1 | Zl... 7 |
'Thus the following inequality is satisfied:
Hpy(byy o ovy hifgs 00) = 1+E1Dh1,h,,...,hk+,g(wa o)
to+ap 41 T1tAgbe g1 -8 n
X j f f Ebwﬂw,u) dud, ... A, -

Ao A

) 51 Tg-1

Since f(w, t)eIM, the lagt inequality implies

Limsup Hy(hyy oevy Baps; 00) < LB Dy ny, ... @0y )"
Moty Rptg 40
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Consequently, according to (I.7),

(L8)  Timsup Hy(ln, ..., hyysi 00) < Hilhy, -y I, 00) < oo.
Bpeds ool 540

From the agsumption (L5) we obtain

(I,Q) hk+1.-{l,i’f)?+s¢0l (Hn(hh Tty hk+s; wl)"‘Hn(hlz (R hk-;-s? ml))
= H:(hu vy b ﬁl)"H:(hu cony Py @)
at all continuity points ,s of the function HJ(h,, ..., hs;»). Thus

for each w;, s, the inequality

Lim inf Hyulhyy ..oy Iy o5 00) = -H:(hl; voey by 371)"‘H;(h17

cony By
[CRB TN PR » P )

holds. Consequently,

Liminf H * s
hk+1.‘..,ﬁk+aloﬂn(h1’  Puyss 00) > Ha(h,y .y by 5 00) .

Hence and from (I.8) it follows

(L.10) Lim  H,(h,,

vevy Bpg; 00) = HE(R,
vy Ykisy alllyy ..
Mot 1, Bpgg b0 (e

.,hk; OO)

Since Hy(h, ..., byyas —09) = 0 = Hi(hy, ..., hy; —o0), the o
. = e ) b squa-
lities (1.9) and (1.10) imply for each y:eXno R : :

(T.11)

00

hk+l,:-[-1-l.§fll¢+u¢0_"£w(w)dﬂn(h“ ey Bpyey @) = f p(@)dH,(hy, ..., Tnes @) .

Putting p(2) = ¢(2)/(1-+|2) for peX,(n = 0,1, ...), from formulas
(L.6), (I.7) and (L.11) we obtain the agsertion of Lemma.
) Let'ga,,, L.y ‘(n=0,1,...) denote a sequence where a, = a,(4)
i:nfugosltlnve function defined for A > 0 and L, is a continuous linear
ctional in X, satisfying the following conditions: I, =20forp>0
ey T (Lt ot a(p) = ¢ =
W(_a say that ﬁhe sequence <ay,, L,» is the local characteristic of the
generalized stochastic process (w, 1)) at the moment 1, if there exist an

' . .
) In this paper we consider the generalized stochastic processes defined in

the ane . . . a .
proofssle:a.rs [6] and [7], i.e. the generalized derivatives of continuous stochastic
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integer k, a system of pogitive functions A4;,(1),..
tinuous stochastic process f(w, t)eM such that

.y Apn(4) and a con-

k
wm@) =[[4n®) m=0,1,..),

7=1

dk
Wf(w’ 1) = D(w, t),

and for each peX, (n =0,1,...)

k ©
Lim [ Au(ty) [ ¢(@)dP (D, 5,1 (0,%) < 2) = Lu(p)-
Ry Bl 0 53 o

The author has been led to regard local characteristics (generalized
distribution functions) as sequences of functions and sequences of
functionals by the following intuitive reasoning. Distributions are reali-
zations of generalized stochastic processes. From an intuitive point
of view those realizations assume at a fixed point either numerical values
or “infinite values”. Infinite values may be of ‘“‘different orders”. E. g.
the infinity of the distribution ¢'(z) for # = 0 is stronger than the infinity
of the distribution &(z) for # = 0 because #d(x) = 0 and 28’ (z) = —(x).

Besides the infinities +oco, —oo we must also consider the infinity
accompanied by two signs 4-oo, which, for instance, is assumed by the
distribution ¢'(x) (dipole) for # = 0. This shows that the local characteri-
stics would describe not only the distribution of numerical values but also
the distribution of “infinite values” of various orders. Roughly speaking,
the functional L, describes the distribution of numerical values and the
functional L, (» = 1,2,...) describes the distribution of “infinite values”
of the same order as lima;'(4).

ilo

{
We say that a local characteristic (a,, L,y is equal to a local charac-
teristic (@, Ln> if L, = L, and
Gn (2
limgl(-) =1 for

n=0,1,...
240 0y (4) Y

Now we prove the following

TaROREM I.1. The local characteristic at a fized moment of a generalized
stochastic process is uniquely determined.

Proof. Let &{w, t) be a generalized stochastic process. Let us suppose
that there exist integers &, k,, systems of functions AQ(4), ..., 45.(4),
AR (A), ..., AP, (1) and continuous stochastic processes fi(w,t), falw, 1)
belonging to I and satisfying the following conditions:

L

aa i
(1.12) o frlent) = P(w,1) = =g fr(e, 1),
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for each pe X, the limits
ky

(113) IP(p) = Lim [[Af}(h) [¢@)dP(Da,, n, (k) < a),

By een gy 0 21

Ieg o
(L14) ZD(p) = Lim [ 4t [o@)dP(Dr,  m fh(w, ) < o)
1o Piep 4 0 421 —c0

exist, and
(L.15) IQ(A+0al") =1 = IP(A+ja") (0 =0,1,...).
Put
k1 kg
(1.16) (1) = [[4R), &0 =[]480.
j=1 I=1

To prove the theorem it is sufficient to prove that the equality

(1.17) <), LYY = (o, LDy
holds.

First let us assume that the equality %, = %, = % is true. Then from
the formula (I.12) it follows that

k-1
hlo,0) = flw, )+ ) alw)d
F=0
(see [6], § 1.4). Hence, in view of (L.1), Dy, a1 0, 1) = Dy, ..omy Talw, 1)
for every Ay, ..., h,. Consequently, according to (I.14),"
k o

(118) Z8(y) = Lim AR k) [ pla)dP Dy, . fr(w, ) < a)
Py 0 51 —co

for e X, (n = 0,1,...). The last equality and the formula (I.13) imply

7

k
)
[T453%) o

f=1 "
for I_,£f>(¢) #0 (peXy, n =0,1,...). Putting ¢(#) = 1+|a|* we obtain,
in view of (I.15) and (L16),
(%)
o agh(2)

(Henee, according to (1.13) and (I.18), we obtain the equality LY = L&
n=0,1,..).

=1 (n=0,1,..).
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The equality (I.17) is thus proved. .
Now let us agsume that %, 5 k,. We may suppose that &, = k,+s
and s > 1. Let

t
1
oo, = =gy, [ = o, .

Then equality (I.12) implies
kp—1
9(@,1) = filw, )+ D' & (o).
7=0
Hence for each hy, ..., h

(1.19)

1
Dhl,.,‘,hklg(wy ) = —Dhl ..... hklfl(w’ t).

Since fy(w, t) is a continuous process, we have

Lim Dhl,...,ha 9w, 1) = folw, 1)
Ry, .y Byl 0
with probability 1. Consequently the assumption (L5) of Lemma L1 is
satisfied. Therefore, in view of Lemma I.1 and the formula (1.19), the

equality

Lim f q)(w)dP{Dhl,,,_,hklfl(wy t) < (L'}
hk2+1""'hk1¢° —0

= [ o@)aP (D1, ol 1) <)

—oo

o .
holds for each pel J X,. Hence, according to (I.13), we obtain the conver-
N=0

gence
ky

(T20) A, = AL (hy)

Lim
Mgt 1o oo T 40 g1

(n=0,1,...),

and for peX, (n =0,1,...)

ok
Lim A [[4R(k) [ p@)dP (D, u,falw, k) < ).

By by 40 7Y —o0

I (g) =

Hence, in virtue of the first part of the proof and the formula (1.14), we
obtain the equalities

kg
4,11 AR(2)
o =L$,,z), Him—1=%_____ —1,

e dP(d)
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From this formula taking into account formula (I.20), we obtain
(A _
a0 ) (2)

Consequently the equality (L.17) is true. The theorem is thus proved.

Examples. m) The derivatives of a Fomogeneous Brownian motion
process. Let f,(w,t) be a homogeneous Brownian motion process with
the variance a*[t| Evidently, f(w,t)eM. The derivative @,(w,?) =
= &*f,(w, t)/df* (k > 1) is a stationary generalized process with indepen-

dent values (see [6], theorems 8 and 18). The local characteristic at an
arbitrary moment of the process @, (e, t) is given by the following formulas:

a(d) =4, Lo= O +6G7),

() = Ve ABHE1 27 —n{ (”_;’l)}_l m=1,2,..),

L, = }(G3+60),
where the functionals Gy, G, are defined by the formula (I.3).

b) The derivative of a homogeneous Poisson process. Let fy(w,t) be
a homogeneous Poisson process with expectation a|f|. Then f(w,?)
i

= f falow, uw)dw is a continuous process belonging to M. Therefore the

denvamve Dy(w,t) = dfs(w, t)/dt = d“f(w t)/dt* has the following local
characteristic at an arbitrary moment:

ay(4) = %, Lo(tP) = %‘P(O)y

1
a1(1)=——1_|_a, 131(<P)=1+a 1+a

a,()) =1"Ya, L,=6f (n=2,3,..).

o(0)+—— (‘P)i

¢) Let f(w,?) be a continuous process belonging to M and D1, (@)
= P(f( w, 1) < w) The local characteristic at the moment £, of the process
f(w, ) is given by formulas

) =1+ [ |zl ap, @),
. . (n=0,1,...)
Lup) = {1+ [ loPap, @) [ (@) dp,(a).

We see that all the functionals L, are induced by the measure Piy ()
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d) Now we shall give an example of a continuous stochastic process
having a local characteristic whose funectionals are not induced by the
measure p; (2). Let v(w) be a mndom variable with the Cauchy distri-
bution

1
P(r(w) < @) = 3+ —arctgs.
JT
Now we define the continuous stochastic process
He,y 1) = »(w) log|v(w)||siny (w)

Put g(w, 1) = [loglr(w)||(1—cosy(w)t). It is easy to see that
g(w7t)‘m,

d
(r.21) 7&?9(‘”’ 1) = f(w, ¥
and

|10g |e}|™ (1 — cosat)”

7 dz .

(L.22) Elg(w, D"

The formula (1.21) and the continuity of f(w, t) imply the convergence

(1.23) 1’331 [ o@)aP(Dug(w,0) <) = [ @ dp@) for peX,

where p(z) = P(f(w, 0) < ). Since Dug(w,0) = g(w, h)/h, In view of
(1.22) we obtain

1 7 (1— cosa)™
(1.24) E|Dpg(w, O)' " = ;h“" |logh|"{ f(——wzl—dm—y-o(l)}.
Congequently
(1.25) }limElD,,g(w, =00 (n=1,2,...).
M

Let ¢eX, (n =1,2,...). For every ¢> 0 there exists a number
o > 0 such that

( )

»(p)| <

sup
x> I
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iom
We can find, in view of (I.25),
0<h<hy

a number A, > 0 such that for

Ty
[ 9@ P (Dg(@,0) <) | < 5 B Daglo, O
o
and

61 [ " aP(Daglo, 0) < ) < 5 B Dagle, O

Then, taking into account the positivity of the random variable Dyg(w, 0),
we obtain for 0 < b < h, the inequality
| [ p(@aP (Daglo, 0) < 5)—6 (9) B|Daglo, O)"|

—oo

< Pt arpate 0 <o+
Zy

Zo

+| [ p(@)aP(Daglw, 0) < &) |+ 163 ()] [ 2"dP (Dag(w, 0) < )

b
< eH|Drg(w, 0)".

Consequently, for each geX, (n =1,2,...) the equility

)

tim {21 Dag(, )"~ [ ¢@)dP(Dug(w, 0) <o) =

-0

(L.26) &5 (g)

holds. Equalities (1.23), (1.24) and (1.26) 1mp1y that the local character-
istic at the moment t, = 0 of the process f(w, t) is given by the following

formulag:
W) =1, Lip) =1 [e)dp(e) = }g(0),
an(A) -—m’l""lilogﬂ.l‘”{ f——gﬁ@fdm} n=1,2,...,

Ly, =G

From the definition of local characteristics of generalized stochastic
processes immediately follows
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THEOREM L.2. Let d(w,t) be a generalized stochastic process with
the local characteristic {a,,L,y. Then for every real number a the process
a®D(w,t) has the local characteristic {Gn, L.y, where, for a =0,

=3 Llp)=1p0), @B =1, In(@=p(0) (m=1,2,..);
for a # 0,
(%)
- ;& . ?
dn(A) la/" 4 (1= |a|™) Ly (1)
(n=0,1,...),
. Ln (pn)
Inle) = A A e L)

and @, (z) = p(ax).
Now we prove the following
Lemma 1.2. Let F(w,t) be a continuous stochastic process belonging

“to M and

K

&
(1.27) Iu_"F(”’t) =F(w,t).

Then for each geX, (n =0,1,...) the equality

le
RS TS —oo<y<eo1-r|?l

@(@-+y)dP (Dy,, . k_F(cu, 1) < @)—

~ [ p+)aP(F(o, ) <) =0

holds.

Proof. Let
(L.28) 80 (@ = [ @+l a(Dy, . nF (0, t) <u),
(1.29) 80(z) = [ (1+[u")dP (F(w,1) <u).

Then, in virtue of Lemma L1, for each peX, the equality

(L30) Lim f (@) A 1y, 1, (2)
Rppen Bl 0 oo

Studia Mathematica XVIL. L]

= [y@as"a),
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is true. Suppose that e X, (n = 0,1, ...). Then the family of functions

pl@+y)
14 Ja™

belonging to X, is compact for |y| < y, < oco. Hence, in view of (I.30),
we have

(L31) ' vy(@) =

L]m sup z)asy,) |
hzc\lﬂwl<uoj J pule

m(0)— fy;

Consequently, taking into account the notations (I.28), (1.29) and (1.31),
we have for each gpeX, (n =0,1,...)

) d8® () )| =0.

(1.32) L1m sup ] j 9@+ 9)dP (D 3, F(w,1) < @)—

WPl 0 <Yy ey
- f¢<w+y)dP(F(w,t) <4 =0.

Let ¢ be an arbitrary positive number. Then, in view of (I. 30), there
exist numbers z, such that for any gufficiently small hyyhgyoouy Iy,

(1.33) fdsg @ <e (n=0,1,...,
=] >y,
(1.34) [asP@) <s (m=0,1,..).
‘ 1] >,

It is easy to verify that for each pe X, (n = 0, 1,...) the inequality
lple+9) <lgll+lo+9™ (n=0,1,...)

1}:101(;,8 Then, in view of (I1.33) and (I.34), we obtain for sufficiently small
9 2y .

(1.35) ;m j V(@) a8 a, (@) | < elgl(2"+ "),
(1.36) | ] 5@as@)| < elgl @+ ).
lzl>==n

Let us choose positive numbers ¥n 80 large that for each |o| < o

p(z+y) .
1ts" —-G:(¢).<s ity >y,

p(z+y) - .
o —a, (‘P)! <e i y<—y,.

icm®
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Then

1 . . ‘
SUp ——— 2)d8M  , (x)— 2)d8™ () |
Iu|>£),. 1+ Jy™ Lwl -L”'/)ﬂ( ) hlw“]k( ) .J w(@) (w)

1zl<Zp
) “® (7} e
< E‘IK.L 1+| o™ d'shl ~~~~~ 7 (%) em jx l—wa o 2@
+ (@7 (9)+ 65 (9)) a8 (o) — L asa)|.
tmj 1+]1 Lo Bl 1=|<j 1+ o |

The last inequality and formulas (1.30), (1.35), (1.36), considering that &
can be chosen arbitrarily small, imply the convergence

,,,,,

Lim su ,,! i w,,(m)dssn (@) — f 1, (@) &8 (@) | =

Hence, taking into account the notations (I.28), (1.29), (1.81) and the
equality (I.32), we obtain the assertion of Lemma.

TeEoREM I1.3. Let @(w,t) be a generalized stochastic process with
the local characteristic {ay,Ly,> at the moment t,. Let F(w, t) be a continuous
process belonging to I with a distribution function py(z) = P(F(w,1) < ).
Suppose that the processes ®(w,t) and F(w,t) are independent®). Then
the process P{w,t)+F(w,t) has the local characteristic Gn(1) = an(2),
L.(p) = Ln((;) (n=0,1,...), where

o) = [ p@+y)dp,().

Proof. Let us suppose that there exist an integer %, a system of

function A;n(1), ..., 4m(4) and a continuous process f(w,?) belonging

to M such that
dk

k
—5 (@) = 9, 1), an() = [[4m(®) (n=0,1,...),

Ful

and for each peX, (n=0,1,...)

(L37)  Lim HAm(h.:) fsv(w)dP(Dnl g Fl, 1) < @) = Lalp).
peees P 0 71

3) The independence of generalized stochastic processes is defined in [6], § II.L.
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Put
'
1 g ol
=11 j (t«—u)'“'llf’(w,'u)du.

o

Flo,t) =

It is easy to prove that F(w,t) is a continuous process belonging
to M. Consequently, the continnous process

(L.38) glw, 1) = f(w, ) +F (o, 1)
belongs to M and

dk

e t) = P, )+ F(w,1).

The independence of the processes ®(w,t) and F(w,t) implies the
iPdependence of the random variables Dy, . flw, %) and Dy "
Flw, ) (see [6], § II.1). Consequently, in view of (I.38)

139) [ g@dP(Dy, g, t) <a)

= f f (p(m_{—y)dP(Dhlv----”ko(w’ tO) < w)dP(Dh;,...,hhf(w’ to) < y) -

Let
o) = [ pla+y)aP(F(o,t) <a).

—00

If peX,, then also @eX,(n =0,1....). Hence, in view of Lemma, 1.2
and the equalities (1.37), (1.39), we have for each peX, (n =0,1,...)

k o
hx,{‘i]’:‘?cloﬂAM(hi) -‘!o g(@)ap (Dhl’""“’fg(w’ t) < w) = Ln(é;) .

The theorem is thus proved.

I In this Section we ghall analyse some local properties of homo-
geneous stochastic processes with independent increments. Tn. the sequel &
flenotes the class of measurzble homogeneous stochastic processes with
mdeI_)e.ndent increments, whose almost all sample functions are Lebes-
gue integrable over every finite interval. Since we gh: Il congider deriva-

tivgs of processes belonging to 'R, we can assume without loss. of gene-
rality that '

(I1.1) Hey,0) =0 for flo,t)eR:
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By K, (s = 1,2, ...) we shall denote the class of derivatives of order
s of processes belonging te K. It is well known that processes helonging
to | K are stationary generalized processes with independent values

8=1

(see e. g. [6], theorem 8 and 18). It is also well known that the distribu-
tions of processes belonging to ® are infinitely divisible (see [1], p. 417).
Cousequently the logarithm of the characteristic function R;(2) of the
random variable f{w,?) (f(w ,8)e®, t >0} is uniquely determined by
the Lévy-Khintchine formula

e \ 1+w .
) .

o0
(IL.2) logB(#) = ipste+t f (e""”—1
—00
where §; is a real constant and @ is a monotone non-decreasing bounded
funection, continuous on the right and norm:lized by supposing
@;(—oco) = 0. The characteristic function R,(z) determines G4 and %
uniquely. From the Lévy-Khintchine expression it follows that

(IL.3) Re) = (R () (6= 0).

If the process f(w,t) belonging to ® has a finite variance, then the
logarithm of the characteristic funetion E;(2) may be represented in the
Kolmogorov form,

o 1
(T.4) log Ry(2) = iyste+t f (6% —1—iue) =3 a6y (),

where Gy is monotone, non-decreasing, continuous on the right and
bounded, with G;(—occ) = 0, and y; is a constant. It is easy to see that
in this case

(IL5) ‘ v=v+ [ udGu),
(11.6) Gilo) = [ Q4w dby(u).

Now we shall prove the following very simple
THEEOREM IL.1. Let f(w, t)eR. Then f(w, t) N if and only if for every
integer n the inequality

(IL7) f [u|"d6(u) < oo

holds.
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In virtue of formula (I1.6) condition (IL.7) is equivalent to the
following one: .

[ lurdGu) <o (m=12,...).

Proof. From condition (IL.1) it follows that the process f(w,1?)
belonging to & belongs also to MM if and only if the expectations Bf(w, t)|*
(n=1,2,...) are continuous. In virtue of well known properties of
characteristic functions the expectations E[f(w,?)™ (n =1,2,...) are
continuous if and only if the characteristic function R,(z) is infinitely
differentiable in 2 and its derivatives at z = 0 are continuous in ¢. Since,
in view of equality (IL.3), the derivatives at # = 0 of R;(z) are polynomials
in ¢, we have f(w,t)eOM if and only if R,(z) is infinitely differentiable
in 2z The last condition, in view of the Lévy-Khintchine formula, is equi-
valent to condition (II.7), which was to be proved.

Lemma I1.1. Let (o, t)eR. Then the characteristic function By, .1, (2)
of the difference 4y A4, ... 4;,f(w, t) where J; are determined by formula (1.2)
is given by the formula ’

Bay . m(®) = R () (B =2,3,...).

Proof. From the homogeneity of the process f(w,t) if follows that
the random variables

(11.8) A,:...A‘kf(m,t+al),ah...Azkf(w,t) (k=2,3,...)

are equidistributed. Siuce, in view of formula- (1.2) Ay = X+ 4+,
the random variables (IL8) are mutually independent. Hence, taking
into account the equality

Ay By o Ay f(0,0) = dyy o Ay floo, 1 Ry) =y . Ay P00, ),

we have the following formula:
Bry, (@) = By, n (22 (B =2,3,...).

From this formula we immediately obtain the assertion of the Lemma.
L:sz:MA IT1.2. Let f(w, t)e@. If there exists a continuous process g(w, t)
belonging to M and satisfying for some integers k, s the equality
@ e
:u_af(wy 1) = akTag(w’ Y,
then f(w, t)eM.
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Proof. The assumption of the Lemma implies the equality

twk—l zy k-+8—1 .
[ ] [ Ho, wande, ... az,._, =D a()f+g(0,).
0 0 [ F=0

Suppose that the numbers 4;, 4, ..
(L.2). The last equality implies

All Al-_» A Alk_i.,g(m) t)
t+lgyy Tp_1+2542
=yt |
i

.y x4s are given by formula

Ty +agta

{f(m; U+ 2g)—f{w, ’M)} dudz,... dz_,.
Tp—1 z
From this formula we obtain by simple reasoning the following equality:
(—1)’_1Ah Azz b AI;H.‘g(wy O)

Aory oes Apys
= f("% Ae)—f{w, 28-;-1—1---".' Ak+s)+z(w) H

the random wvariable Z(w) is defined by the formula

Z1+ig 48

{feo, 4+ 1) —F(@, A5+

(IL.9)

1 As41 Tp—1+2s+3
Z(w) = ———
RN 2
+He, dgpa+- oot Fpps)—flo, u)} dudz, ... dze_y+
Myt dptligyy Tp—1tig42  Ttips
{1y ey > Myt F iy Tp_y z)
{f(wa U+ 1) —flw, u)} dudaw, ... dwg_,

where the indices 4, 4, ..., i, run over all systems of integers 1, 2, ..., 8—1
and Ay . 4 are constants. The random variable Z(w) is the limit in pro-
bability of a sequence of the form

kn
(I1.10) Z,(w) = ZBin{f(a‘: Ujn) — F (@, tjn)} s

f=1
where By, (=1,2,...,k; n=1,2,...) are constants and numbers
Upm, U satisty the inequality

(TL.11) A = min {4, min X (ipten -+ 20} St <t
[ PRAALS

or the inequality

(H'lz) tjn < Uin < }*34-1 +..e +1k+s .

Since the process f(w,?) has independent increments, it follows
from inequalities (IL11), (I1.12) and from equality (IL.9) that for
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fixed » the random variables Z,(w) and f(o, 4;)—f(w, Aspr et Agys)
are mubually independent. Consequently the random variables Z(w)
and f(w, 4s)—f(w, Aop1+- .+ Ays) are mutually independent. Moreover,
the random variables Z,(w) are infinitely divisible, which implies the
infinite divisibility of Z(w).

By @& we shall denote the Lévy-Khintchine function for the process
f(w, %) and by Gz the Lévy-Khintchine function for the random variable
Z(w). Suppose that As—2sy;—...— s = 1. Then, in view of (IL.9),
the Lévy-Khintchine function for the random variable

(=17, dy ... Ay, ,9(0, 0
}'8—{-1-- )‘k-q.n

(IL13)

is given by the formula
(I1.14) G(®) = Gy(2)+Gz ().

Since g(w, ¢)eM, the characteristic function of the random
anable (I1.13) is infinitely differentiable. Hence for all mtegers n

f [u["dG (u) < co. Consequently, in view of (IL.14), j [u]" @G (u) < oo.

From this fact and from Theorem I1.1 our assertion follows immediately.

Levua TL3. Let f(w,?)eR. Suppose that the derivative d*f(w, 1)/d
(k > 1) has the local characteristic <an, L,y at the moment t,. Thus there
exist a sysiem of fumctions Bm(}.) .y Bin(d) such that

=an(A) (n=0,1,...)
=1
and for mch <peX (n=0,1,...)
N Lu’gcJ Hs,n(h,) fq) (@)dP (Dry, _ mf(w, t) < ) = Ln(e) .

Proof. From the assumptions of the Lemma it follows that there
exist an integer-s, a continuous Drocess F(w, t) belonging to M, and a sy-

stem of positive functions 4,,(2), . 3 Agian(A) satistying the condmons
dk+3
(H15) (u],; f(m t dtk+s (CO, t) ?
k+s
(IL.16) an(A) = HA,,,,(,U (n=0,1,..),
(H.17) irs .
8 T4 [ o010 Dy, (0,1 <3) = Tt
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for each geX, (n =0,1,...). Equality (IL.15), in view of Lemma I1.2,
implies f(w, £)e M. Put

i
1 o
9w, 1) =mnf(t—u) Y(w, u)du .

From (I1.15) it follows that for each hy, ..., Byoss

(I1.18) Dy o, 1) = Dy, Fl0,1).

l.m.hk-i-sg( gts

It is easy to verify that the assumptions of Lemma 1.1 are fulfilled
by the processes f({w,t) and g(w,?). Setting

k+s

Buld) = A [ Amf" G =1,2,.... 8

r=k41

in view of Lemma I.1 and equalities (IL.16), (IT.17), (IL.18) we obtain
the assertion of the Lemma.

LEMMA I1.4. Let f(w,)e RAM. If there exists a system of functions
A1 () ooy Apn(A) such that

Lufg) = Lim HAm(hf) f 9(2)dP Dy, nflo, &) <
1o eees

5 @ continuous non-negative linear functwnal on X, with I,(1+|2|") = 1
(n=0,1,...), then the derivative d* o, i)/dt’c has the local ohamcterwtzc
{n, n>’ where

an(d) = HA,“U.) m=0,1,..).

I=1

i
Proof. Put g{w, 1) =ff(cu, wu)du. The process g(w,?) is continuous
: 0

and belongs ot M. In virtue of Lemma L1 it is easy to verify that the in-
teger %k+1, the system of functions A;,(2),..., d(d), dxpan(d) =1
and the process g(w,?) satisfy the definition of the local characteristie
at the moment ¢, for the derivative d*f(w, t)/di*. Moreover, as the local
characteristic we obtain the sequence <a,, L,>. The lemma, is thus proved.
An immediate consequence of Lemmas IL.2, I1.3 and IL.4 is the
following
TeEEOREM IT.2. Lét f(w, t)eR. Then the derivative d*f(w, t)jdi* (k > 1

has the local characteristic {ay,, L,y at the moment t, if and only if
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Flew, 1) €D and if there ewists a system of functions Ain(A), ..., A (4) such
that

k
w®) = [[4m()  (n=0,1,..0,

f=1
k ]

Lim ] 45k [ ¢@)dP(Dy,. nfl@, %) <2) = La(p)
TN X i oo

for each peX, (n=0,1,...).
ML In this Scction we shall give some elementary properties of
characteristic functions of infinitely divisible distributions.

By L we shall denote the space of functions that are Lebesgue-in-
tegrable over —oo < z < co. In the sequel R(z) denotes the characteristic
function of an infinitely divisible distribution. with o finite variance. The
logarithm of this characteristic function is given by Kolmogorov’s formula

(1) logR(2) = iye+ f (e“‘“——l——iuz)%d@(u).

For brevity let us introduce the notation

2 1

(T11.2) Qnl2) = {R(I)} .
- LEMmA ITL1, If ‘

G(2)—G(—2)

limsup

’
2,0 E2

then there ie a sequence by, by, ... (hy § 0) such that for every we L the equality

lim [ Q (2)p(2)de = 0
holds.

Proof. Let peL. Then for arbitrarily small positive s we choose
a positive number 4 such that

(IT1.3) | @l <ef2.

lg|>d4

From the assumption of Lemma it follows that for a gequence
hiyhay oo (B 0) the inequality

G4 h,)—Q(—A41
(IL4) ( Mh,,( A h,,)>n (n=0,1,..)

icm®
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holds. Thus there exists a positive integer =, such that for # > n, the
inequality

A 2
2
(TIL.3) [ Ip(e)exp ( — Mn) de <~
4 49 2
is true. Since
cosuz—1 P ) .
- 5 < —— for |Jul<A™hZl< 4
: 7 ’

in view of (IIL.1), (II1.2) and (TIL.4), we obtain for [#] < 4 and = = n,
the following inequality:

(TIL6) (@ (2)] = exp{;jf f (coszu—1) Elz—dG(h,,u)}

L

)
1 2 GA k)G (-4
< exp{i f (coszu-—l)—zd(}(hnu)} < exp {— ZHATh)—G(—4 l‘—)}
hy L W 7 by
ra
< exp {— @—} .
7T

Consequently, in view of inequalities (IIT.3), (ITL.5) and (II1.6), we have
for n > n, the following inequality:

[

E"’r‘

== §.

| [ @n@p@d] < fA @n, (@)lp()dz+ [ lp(@)de <
—o0 |2} <. Z) >4

Y

Lemma is thus proved.
Lemwa IIL.2. If
GR)—G(—2)

limgup —-" —
slo <

< oo,
then

limint @y (2)| = e,
Ry0

where a 18 a non-negative constant.
Proof. The assumption of the Lemma implies the inequality

M_—_squ_._(z);G_(:_z_)<oo.

>0 2
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Y

It is easy to prove that the inequalities

f _iﬂ’ﬂ aG () < M,
h
1 1_‘00“1’(161( ifld{(}(hu)——@(«hu)}
T 0w By oW
LS
L, G(— f @ (hu) —G(—hu) .dﬁ < AM
=2 +4 hu u?

are true. Hence

1 [ 1—cosu , _
—log|@n(1)] = W f T dG(hu) < BM .

Consequently -

(II1.7) | = e 0.

liminf |@y, (1)
r}o

Introducing the notation
(I11.8) ~% = liminf|Q(1)
o
we have, in view of (ILL.7) and the inequality [@u(2)l <1, 0 < a < co.
Formula (IIL.2) immediately implies for z > 0:

1@ne) = (@1
Then, according to (I11.8),

liminf|Qy(2)] = ¢~* for 2> 0.
nlo

Hence, in view of the equality |Q5(2)| = |@1(—2)|, We obtain the assertion
of Lemma.
By X; we shall denote the space of all functions ® contlnuous in
—oo < & < oo, With lim ¢(z) = lim ¢(x) = 0.
T->00 X—>—00

Lemua TIL3. Let g, (n = 0,1, ..

) be a sequence of monolone non-
-decreasing bounded functions and .

Onle) = [ ™dga(@) (n=0,1,...).
1f -

0 0

lim f«p(m)dqn(w) = fqa(m)dq.)(m)

00 'y, %

icm
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for each pe Xy, then

Lm [ Que)y()de = [ Qule)p(e)de

for each wpel.
Proof. Let yel. It is well known that

is continuous in — oo < # < oo and, in view of the Riemann-Lebesgue
theorem,

lim ¢ (z) = lim p(z) = 0.
L0 T —00

Consequently $« X;. The assertion of the Lemma is a direct consequence
of following equality:

[@@v@a = [ p@du@  @=o0,.,..).
Lemma TIL4. If
]imS\lp g_(z’_):G_(._f_) < o0,
2)0 2

then every sequence hy,hy, ...
such that the sequence |Qy, ()|
finite interval.

Proof. Let g,(x) be the distribution function determined by the cha-
racteristic function |@y(2)|. The sequence kY, k3, ..., according to Helly’s
theorem, contains a subsequence hy, hy, ... such that

(hm 4 0) contains « subsequence hy, by, ...
s [@ny () ... comwerges uniformly in every

(IIL.9) limgy, (#) = ¢(x) (—o0 < @< 00)

N—00

at all continuity points of the limit function g(z). To prove the Lemma
it suffices to show that q(co)— g(—oo) = 1. Contrary to this statement

let’ us suppose that the inequality

(TIL.10) g(oo0)—g(—o0) < 1
is true. Let )
Q) = [ e ag(a).
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Further, from (IIL.9) we obtain the convergence
o0

i [ p(#)dgn (@) = [ o(e)dg(a)

N0 oo —00
for each geXs. Then, in view of Lemma IIL3, for each ye L the equality

©

im [ i, @le(eds = [ Q@Ip(Ede

N0 oo

holds. Hence, according to Lemma ITL.2 and Fatou’s Lemms, for every
non-negative function yeL we obtain the inequality

0 o0

[ Q@)@ > [ limint|Qs, @ v de = [ e yp()ds,

—o o Mmoo “o
where @ is a non-negative constant. Let p be u non-negative function
belonging to L. Then also functions y,(2) = y(nz) are non-negative and
belong to L. Then the last inequality implies

[R@)pm)de = [ e *y(ne)de,

for every integer n. Hence
3 z
JloC)

n

—co
Further, the last inequality implies for = - oo

w(z)dz}fexp{~ %ﬂ} pE)de (n=1,2,..)).

o« 5]
Q) [y()dz > [ p(e)de
-0 —00
for every non-negative function ye L. Consequently g¢(oc)—g(—o0) =
= @(0) > 1, which contradicts inequality (IIL.10). The Lemma is thus
proved.

Lemva 1114, If

limsup S A= (=4)

00,
z}0 z

then there are a sequence hy, hy,y ... and a sequence Ay, A,, ... such that
the sequence Im{{othn(z)}—Anz (m =1,2,...) converges wuniformly in
every finile interval.

Proof. The assumption of the Lemrha implies the inequality

M ZSUPM::-)<OO

>0

icm
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Henee for each % > 0 and % > 0 we obtain

ha) — G ( —
0<EN=OCh)

(ITL.11)

Thus according to Helly’s theorem, there are a sequence hyy by ...
(hx40) and a monotone non-decreasing function H(u) such that

iy (%) — 6 (— Ry

(III.12) - = H(u)

(0<’u.<oo)
T—s00 Ny,

at all continuity points of H(x). Obviously, in view of (TIT.11),
(II1.13) Huw) < Mu  (430).

Let ¢ be an arbitrarily small positive number and %, = 9M [e. Then,
in view of (IIT.11), :

: 171
(IT1.14) Tiu—zd{G(ku)——G(—hu)}

[

w|m

uh hu u? < u, +24

g

_ G(—hu)—G (hu,) +2f°°G(hu)——G(——hu) du M f"
) us ¢ e
In the sam~ way we obtain the inequality

0

(II1.15) f

U

dH (u) €
u? < EN

Hence, in particular, it follows for every z that

'fSi;lfudE(u)l < co.
J |

Let 2z, be an arbitrary positive number. Then, in view of (III.12),
there is an integer n, such that for »n >, and |2| < #, the inequality
' 1

(ITL16) hl 1l iu—lfgz—__f’_’f {6 (hu)—G(—hyu)) +
1 i
i | T At —6(—hw) -

Us

1
1, .
wfiniﬁ‘:_zﬂ dH(u)_f ed dH(u)| <—;«
o 1

W u?
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is true. Introducing the notation
171
4, = ,,__f S A |E ) =G (—haw)]  (n=1,2,...)
h"l U

and taking into account formulas (IIL.1), (IIL.14), (IIL.15) and (IIL.16)
we obtain for |2| < 25, # =0, the tollowmg mequa,hty

1
sinzu — Z/M

L sinzu
[Im {log Qn, ()} — A4z — | ——5— e f ——5— QH (1)
0
1 ginzu—2u
= 2 {6 (h, Iy
< of 26 () —6 ()] +

aH (u) —f

1 1 , F 1
+ﬁ;uf (0w —6(—hw) + [ ZpdH (@) <e

Uus

dﬂ(u)}

us 1
f81nzud{G(hnu)_G(~hnu)} _f.smzu

Consequently, the sequence Im{log@Q; (2)) —4.z (n =1,2,...) con-
verges uniformly in every finite interval, g.e. d.

TueorEM IIL1. If, for every yeL, the limit
Aly) = lim [ @nte)w (2)de

exists and A =0, then there are real constants a and b (a = 0) such that
thh(z) = e—u|z|+ibz
R0

uniformly in every finite interval.
Proof. From the assumptions of the theorem, in view of Lemm(n II1.3,
follows the inequality

’ ﬁmsupwﬂ < oo
zL0, ®
Hence, in view of Lemma TIL.4, there are a sequence hy,hg, ..
(a4 0) and a sequence Ahl,Ahz, ... such that the sequence
Im {log Qs (2)} — 4472 (n = 1,2, ...) converges uniformly in every finite
interval. Fu.‘rther, aecordmg to Lemma TIL3, the sequence hy, ks, ...

icm
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contains a subsequence hy, iy, ... such that the sequence 1@, (21,
(@1, (2)], ... converges uniformly in every finite interval. Consequently

the gequence -

(n=1,2,..)

Qn,(2)exp {—id, 2} = |y, (2)lexp {iIm (log @y, (2)) — i4,, 2}

converges to_a function r(2) uniformly in every finite interval. Moreover,
(IIL.17) Ir(2)] =’}im!an(z)¥ <1

and

(T11.18) iim]Q,,n(z)*'r(z)exp(izA,,n)! =0

uniformly in every finite interval.

‘We shall prove that the sequence Apy Ang, - .. 18 bounded. Contrary
to this statement let us suppose that the sequence h,, hy, ... contains
a subsequence Ry, hy,, ... such that ’

(I11.19) lim A,,k =00 Or

M- 00
The assumption of the theorem and equalities (II1.17) and (II1.18)
imply for each pelL

— 00,

(I11.20) lim f exp (idy, 2)7(2)p(2)dz = A(y).

N—r00 o

Further, for every weL, in view of (IIL.17), the function 7(z)yp(2)
is integrable in —oo < 2 < co. Then equalities (II1.19) and (II1.20)
imply 4 = 0, which would contradicts the assumption of the theorem.
Thus the sequence Ay , 4y, ... is bounded. Thus there is a subsequence
such that the lm:ut 4 = hmAhk exists. Consequently, in

N— 00
(IT1.18), the sequence of characteristic functions

converges to a characteristic function @(z) uniformly

ey Pyy - e
view of formula
Qhkl (z)7 Qhkz (z)y e
in every finite interval. Hence and from the assumption of the theorem
we obtain the equality

= [QE)y(2)de
Since ¢(0) = 1, the last formula and the assumption of the theorem
imply lim @y (2) = @ (#) uniformly in every finite interval. To prove this,
hlo

the same reasoning process must be applied as has been used in the proof
of Lemma IIIL.3. Taking into account equality (IIL.2), we have for 2 > 0

Q(2) = lim @u(2) = lim {@ns(1)}* = {Q(D)}".
a0 nlo

Studia Mathomatica XVII. 15
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Introducing the notation ¢~ —= (1), where ¢ and b are real
constants (a > 0), we have, for 2> 0, Q(2) = ¢~%+1% Hence, in view
of the equality @(2) = @(—=), we obtain the assertion of the theorem.

For brevity let us introduce the notation

2 e
Qg () = {R (T‘HZ)} ’

where 4; (j =1,2,..., k) are given by formula (I.2).
TeEoREM IIL2. Let &k = 2. If for every weL the limit

(1I1.21)

A(y) = le fQ;,l L (2w (2)
exists and A == 0, then
Luu Qn,,...m,(2) =1
i lo

uniformly in every finite interval.

Proof. Equalities (IIT.2) and (I1I.21) imply

..,hk Qhk ( /’Lk-:—)

Hence, in view of the agsumption of the theorem, for every yeL
the limif

(II1.92) Q..

loly) =lim [ @u(2)p(e)de
R0, oo

exists and /s, = 0. Consequently, according to theorem TII.1, there are
constants & and b such that

thh( — P—a]z|+ibz
nio

umformlv in every finite interval. Then, in view of equality (TIL.22),

A(p) = Lim f
(v) Ay, o hglo mth‘“"h"(z)w(z)d

r —a 2|4 ibz )
iex]’{ PR W } () de.

icm
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The limit on the right side of the last equality exists if and only if
the equality @ = b = 0 holds. Consequently
Lim  @n,. p(2) =1
Ry, R L0
uniformly in every finite interval, q.e.d.

LeMmA IX1.6. Let Xy, (h > 0) be a family of infinitely divisible random
variables with characteristic functions {R(z/h)}". Suppose that B| X" < oo
(n=1,2,...). Then h -
for n=1,

Y
I111.23 ma* ' B(Xp) = l @
( ) hio (&z) f 2" 2dG(z) for

where the constant y and the function G are determined by the Kolmogorov
expression of logR(z) (see (IIL.1)).

o0
Moreover, if f #"dG (z) = O for some integer n = 2, then the lmit

(I11.24) lim A"~ B (X7)
hlo

exists. If

(I11.25) P(X, #0)> 0,

then

(I11.26) liminf | X3} > 0.

h}o

Prooi By simple calculations, in view of equality (II1.1), we obtain

Sl

where a, are constants. Thus assertions (II1.23) and (II1.24) are a direct
consequence of the well known equality

)

n=1,9

v for
P ‘ p=r i { [ m"—zda(w)+a,,h+o(h)} for =2,

2=0

Now we shall prove inequality (I11.26). Contrary to this inequality
let us suppose that there is a sequence by, hy, ... (A4 0) for which the
equality

(TIL.27) LM B X, | = 0
N—r00
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is true. By 4,(®) we shall denote the distribution function of the random
variable hX5. Then the characteristic function of g, () iy equal to R(z)".
Put’
(I11.28) iy = [1/ha] .

Let us consider the independent random variables £, &y vy &, , 7
with the common distribution function ¢, (). From the elementary
inequalities

ey,

o L do 0 < 2|,

€

bn| [ wdgy (@) < Kok B,

%] <e
kef [ oda,@—( [ i, @)} <ke [ [21d0, @) < TuhoeB X, |
[o|<s 1| <e [@[<s

and from (IT1.27) and (IIX.28) it follows for every positive number e that

limk, [ dgs,(2) = 0,

N0 i)

limk, [ wdg, (@) =0,

N0 g

. ' . - 9

hmk,,{ [ o, (@)— ( J mdqhn(m)> } =0.
"o a<e |e{<e

Consequently, in view of a well known theorem (see [2], § 27), the sequence

of the sums

= bt Stk fk",'n,

converges to 0 in probability as % — co. Since the characteristic function
of the sum 7, is equal to {R(z)}*"*s, then
lim {R(z)}"*n =1,
- N—>00
Taking into account equality (ITL.28) we obtain R(e) = 1, which contra-
diets inequality (ITL.25). The Lemma is thus proved.
LemmA IIL7. Let f(a, t)eR~M and

0

(IIL.29) f aPdGy(2) > 0.

Buppose that @f(w, 1)/dt* (k > 1) has the local characteristic {an; Ly

at the moment . Let Ay,(4), ..., Azn(A) be a system of function satisfying
the assertion of theorem II.2. Then

(ITL.30) limay(4) = 3,
10
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. L 2
hI!l/ll Jm(Ln(Z.) — i(in )
20 Wy,

(I11.31)

for n > 2, m, # 0, where

fom =2 A6 () Tofor k=1,
(II.32) m, ={""
| gr- fm"—zd{a,(m)—af(—ae)} for k=2,
and o
(TT1.33)

orm=1, k=2,3,...

<

for n=2,3,...

Lim f[ A (hy) =

by, hgd 050y

Proof. According to theorem IL2 the system A4;,(4),
satisfies the conditions

cery A (R)

k

(ITL.34) @) = [[4n) (@ =0,1,..),
. F=1
and

k

(TL35) Lulg) = Lim [ [ dyalhs) [ p@)aP (D, _n,f(@, t0) <ol
1o g d 077 ~o0

for each peX, (n =0,1,...). Formula (II1.30) is an immediate conse-
quence of the equalities

k
Lim  []4ull) = L(1), Lo +1of) = Lo(2) = 1.

LT PN I s

Further, in view of (III.35) and Lemma I1.1, we have

k
Ly@") = Lim [[Awi)B(Dy,  f(o,t)"

(I11.36)
Ry Py d 052
k—1 k
= Lim []#"[]4mr)B(X3),
RTINS RN i j=1

where Y3 is a random variable with the characteristic funetion {E,(z/h)}"
in the case & =1 and |R;(¢/h)[z*"™» in the case k 3> 2. Hence and from
Lemma IIL7 it follows that

(I11.37) Lim B B(TY) = my (1 > 2),
ko
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where the numbers m, are given by formula (II1.32). Let m, 7 0. Then
from equalities (I11.36) and (IIL.37) we obtain the formula
k
my Lim g [ ] {5 A ()} = Ln(@") -
)3 h

Lo P d0 51

(IT1.38)

For %k = 1, according to (IX1.34), formula (TI1.31) is an immediate
consequence of the last equality. If & > 2, then, according to (IIL.32),
m, = 0 for odd indices n. From assumption (111.29) it follows that my, 4 0
for s =1, 2,... Taking into account equality (XI1.38), we obtain

1= Lza(l‘l'-’”zs) = Lzs(l)‘!"Lzs(ww)

k 13
- i B A, 5 (R Lim [ Aty
Ll,xhl:wm"h"”‘ 7 Aan )} +h1,....hmg s

hlx'“ F=1
The last equality implies the convergence

Bm A ™ 4;,05(2) = Crg,
a0
]im}._zaAk,zy(l) =0

a0

(j =172$"'7]G""1)f

where
23)

k
I—[c _ 1 Ly (
jui i Mag Mgg
This, in view of equality (IIL.34), implies formuls (TIT.81) for & > 2.
Assertion (IIL1.31) is thus proved. Moreover, we obtain equality (IIL.33)
for even indices » (n > 2). Further, formulas (IIL.31), (IIL.35) and (X11.37)
imply

k-1 k
Loga (@) = Lim [ [ Asaea () B (Tip)
By, Gkl 03 j=1

k
= my Lim h,c]—[ (B2 Ajaen(hy)) (8 =1,2,...).

Byl 5o
This formula implies equality (TIL.33) for odd indices » (n > 3). In an

analogous way, using Lemma IIL.6, we obtair for & > 2

k k~1
Lim [T 4y (k{142 1%y, [T 17}
fa1

[T TR B

L(1+1al) =

k~1

k
> Lim [] Am(h,){l—}-c I1 h;‘},
=1

By, Bl o7y

where ¢ i3 a positive constant. This inequality implies formula (II1.33)
for ¥ > 2, # = 1. The Lemma is thus proved.
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IV. This Chapter contains a complete discussion of the loeal cha-

racteristics of processes belonging to | 8;. It is easy to see that if a statio-
8=1

nary process has a local characteristic at a fixed moment £,, then it also
bas local characteristics at other moments. Therefore, for the sake of
brevity, the words “at the moment ¢, will be omitted.

Let us introduce the following definitions: A local characteristic
{ay, Ly is called

1) a singulary local characteristic it

where @ is a constant;
2) o Poissonian local characieristic if

Ly(p) = 3p(a), Li(p) = cpla)+a, 65 (9)+ 5,67 (9),
Ly = 0,0 +0,65 (0 =2,3,..),

where a, ¢, a,,b, are constants and ¢ > 0;
3) a quasipoissonian local characteristic if

Ly(p) = }p(a),

where @, a, and b, are constants;
4) & Cauchy local characteristic if

Lﬁ"’:auG;'*‘bnGn_ (""=1727'“)

a [ p(x)dz

L) = 5~ FE@—tp’

o (n=1,2,..),
—00

L, = antf-%— b G

where a, b, a,, b, are constants and a > 0;

B) a uniform local characteristic if the functionals L, (n = 0,1,...)
are invariant under translations, i. e., for each a, L,(p) = L.(p.)
(n=20,1,...), where @,(z) = p(z+a). ' _

It is easy to prove that the necessary and sufficient condition of the
uniformity of the local characteristic {ay,, L,y is the equality L, = a,GF +
Fb,Gy (n=0,1,...)

TEEOREM IV.1. The local characteristics of generalized stochastic

_processes belonging to R, are uniform, Poissonian, quasipoissonian, singular

or of the Cauchy type. ) :
The local characteristics of generalizaed stochastic processes belonging

00
to U K, are uniform, singular or quasipoissonian.
8=2
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Proof. Suppose that the generalized process @(w, () belonging

to GS?B has the local characteristic {a,, L,>. Thus, in view of theorem
§=1

1I.2, there ave a process f(w, t) belonging to RAM, an integer & and a system

of funetions A;,(4), ..., 4 (A) such that

at k
e, = 0,0, () =[].4m(z) (n=0,1,...)
. H
and for each qpexn (n=0,1,...)
v ngai H Ap(hy) [ @(@)dP (Day, .0, T (@, 1) < @) = Ln(g).
15 -ees %40 =1 —o0

If f(w, t) is a Drownian motion process, then @(w,?) has a uniform
local characteristic (see example a, Chapter I). If f(w, ?) is a deterministic
process, then, in view of example ¢ (Chapter I), @(w,?) has a gingular
local characteristic. It is well known that f(w,?) is a Brownian motion
process or a deterministic process if and only if the equality

Gy(00) — Gy(+0)+-G( — 0)— Gy (--00) = 0

is true. Consequently in the sequel we may suppose that the inequality

[ lold6y(@) = 0

~00

(IV.2)

holds.

It is easy to see that the space X, (n = 0,1, ...) is isomorphic with
the space C of all functions continuous in 0 < 2 < 1. An isomorphism
of X, cnto O is given by the formula

: g (peXn, pe0),
where
p(x)
L mm—— f 2 =
rmon 1L ] o %
- | _oltglme—mn/2) L
() = T+ ftg (i 2)[ for 0<ez<l,
o)
—_r f " -
v e or 2z 1
Hence the continuous linear functionals L, (n = 0, 1, ...) may be written
in the form ’

SIV'3) Ly (p) = E’%dﬂn(m)‘l‘%ﬁlx @)+l (@) (m=0,1,...),
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where a,, b, are constants and u, are functions of bounded variation
on —oo < & < co, normalized by supposing p,(—oo) = 0. Moreover,
the non-negativity of functionals L, implies that a,, b, are non-negative
constants and u, are monotone non-decreasing bounded functions.

Let

le nAm By) =0.

By, el L0 51
Then from the equality
k
L,(1) = Lim A (B
= mll n(hy)
and from (IV.3) it follows that

- dpn () _
A 14 |z
Consequently
ik
(1V.4) =0 it Lim As(hy)=0.

LT R Y s y
Hence, in view of Lemma ITI.7, and the inequality (IV.2),
(IV.5) L,

= a,G;F + 0,0, for n =2,3,... and for =1, k=2,3, ...

Now we shall examine the functional L,. From Lemma IIL.7 and

from formulas (IV.1), (IV.3) it follows that for each ge Xy the equality

Lizo f (@) AP Dy, mflw,t) <o) =2 [ p(@)du (@)
Ry Bl 0 oo ~oa

(IV.6)

holds. Let Ry, .

,(2) denote the characteristic function of the distribu-
tion function P (D,

neJ (@5 1) < ). Let

©

Q2) =2 [ = (@)

—o0

(IV.7)
Then, in view of Lemma IIL.3 for each ype L

(17.8) Lim f Ry 1 () (2)de =

M, .ubpte “eo

[ e@v()de.
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Equalities (L.1), (IL.3) and Lemma IL1 imply the formula
(R, (2/hy))™ it k=1,

2 2B=lpy,
{’(/11...1,,)} it k>2,

where J; (j = 1,2,..., k) are given by formula (I.2).

(W.g) R},,l, ...,ﬂk (z) =

Let k> 2, i.e. ®(w,1)e U2 R,. It py = 0, thon, in view of formulas
P

(IV.3) and (IV.5), ®(w, ¢) has a upiform loeal characteristic. If o= 0
then Q(z) == 0..Hence and from equalities (IV.8), (IV.9), using theorem’
II1.2, we obtain Q(z) = 1. Consequently, according to (IV.7)

’

3 for

>0
fo(Z) = 0 ’

~for  2<0.

. Hence, in view of (IV.3), 1 = Ly(1+ |z|°) = Ly(2) = 14 2a,-+2b
Since ay > 0 and b, >0, then the last equality implies a =g = 6
Thus Ly(p) = $¢(0). Hence and from equality (IV.5) we infer t;mt (bﬂ (; ti
has a quasipoissonian local characteristic. ’

Let O(w,t)eRy. If p,= 0, then, in view of (IV.3)

Ly = a,Gf 4+ 5,6y .

Suppose that u,== 0. Consequently Q(z)s=0. Hence, in view of
equalities (IV.8), (IV.9) ‘and theorem IIL.1, we obtain the formula

Q(2) = ™+ Ghere a,b are
¢
according to (I’V 7 ’ onstants and « > 0. Consequently,

3 for x>0b
w={t :
o (%) 0 for w<b if a=0,
a [ du
mo) == [ 2
0 2”_,_,0 alz_l_(u_ﬁb)z f a>0.

Smc;Hch;’ Oin view of (IV.3), 1 = Lo(1+ [2[°) = Ly(2) = 1+ 2a,+ 2b,.
0 >0 and b, >0, the last equality implies a, = b, = 0. C
sequently we have the following formulas: ’ T

~ (IV.10) L(p) = 4o(b),
av.i1 a a
) Lo =5 | ;{%m
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Now we shall examine the functionals L, for (o, ?)eR,. If
limey (1) = 0, then, in view of (IV.4), I, = &,Gf +b,G7 . Consequently,
10
according to (IV.5), (IV.9), (IV.10) snd (IV.11), the local characteristic

of ®(w,t) is uniform, quasipoissonian or of the Cauchy type. Further
we may suppose that lime, () > 0. Hence, taking into account formula
240

(IV.1) for n = 0 and » = 1, we obtain L, (p) = ¢Ly(p) for gpeX,, where ¢
is a constant. This equality implies, in view of (IV.3),

oo
¢(z) *
4 — for X, -
J 15 w1 (@) c_[o p(@)du () for geX,
Consequently

(@) = o [ (14 ful)dpo () -

-0

(Iv.12)

Henece in the case (IV.9) we obtain x; =0. Consequently, in virtue
of (IV.3), (IV.5) and (IV.9), the local characteristic of @(w, t) is uniform.
In the case (IV.10) it follows from (IV.12) that

{ e(1413]) for

x) =

fa 0 for
Then, in view of formulas (Tv.3), (IV.5), in this case the local

characteristic of @(w,t) is Poissonian (if ¢ 7 0) or quasipoissonian

(if ¢ =0).
In the case {IV.11) we have the equality

x>Db,
r<b.

° (L fu)d
[ = 5= | SR =

Since u, () is bounded, it follows from (IV.12) that ¢ = 0. Hence
= 0. Consequently, according to (IV.3), (IV.5), in this case D(w, 1)
has a Cauchy local characteristic. The Theorem is thus proved.

Now we shall prove three Lemmas and then give examples of all the
local characteristics described by the preceding theorem.

TemmA IV. 1. Let Yy, (b > 0) be a family of infinitely divisible random
variables with characteristic functions {R(z)}”‘ Suppose that B|Yu|" < oo
(n=1,2,...) and for some &

Zo

f-l-da(m = oo,

(IV.13) -

0
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iom
where G (u) s a function determined by the Kolmogorov expression of log R (z)

(see (IIL.1)). Let qy(w) denote the distribution function of the random variable
Y. Then

hw hﬂ'[ldq,, ‘ (n=1,2,...).
Proof. Integrating by .parts we obtain the following inequality :

Ty ‘o

ff A6 u){la'_a—‘ ~—d(" (u +{ 6 (u)

%o 2y £
e\ 1 e\l . 11
. 1—— I ( > ERER R e - 4
;{( u) u A () qf (1 u) u 6 (w) = Q?J u G {u),

where 0 < le] < jz,] and sgnesgnz, = 1. Hence, if & - 0, it follows that -

£ Cl:o Ty

ff — 4G (u)dz > f % G(u) .

0

Consequently, in view of the assumption of the Lemma,

%y mol
(IV.14 f A6 (u) d —
) J ugd(r(u)fm 0.
Put
(1V.15) by = [1/h].

Let E1ns Eony oo ,f,% » be independent random variables with

4 common distribution function n(#). Since the characteristic function
of the sum

b=t bopt by

Is equal to {R(z)|"", then the distribution functions of the sums &, con-

verges to gy(x) if 240.at all continuity point —00

¢ (). Let YRR @ (e S <o)
1
f;fz-dG(u) for @<,

(IV.16) M) =]

00

1
“J FdG(ﬂ') for 2> 0.
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Then, according to a theorem of Gnedenko ([2], §25, theorem 4),

kp,

lim » P&, ==
hJ,OZ (&0 < @)

M(z) for &< 0,

1;11012? Eaza)=—Mw) tor »>0

at all continuity points of M (z). Consequently, in view of (IV.15),

lim - f Ay, (w) r #0,

Rio Roonzeo

= M(x) for

at all continuity points of M (z).
‘Without loss of generality we can assume that x, ix & continuity
point of M (x). Then the last equality implies

tim ;,f dgn(w) = M () — M ()

for all continuity points of M () satisfying the conditions 0 <C |#| < |@,ls
sgnaesgnz, = 1. Hence, in view of definition (IV.16), we obtain

2o 2o

1 1
1i =
m— 5 dqy, (1) f poe
@, x

16 (u) .

nlo

Consequently, according to Fatou’s Lemma,

z x‘,

f f AG(wydx it

ff%dG(u)da' i w< 0.
0

liminf —

f f dgn(u
hlo

hl,ﬂfﬁ h%f f dgn(w)d

Hence, in view of equality (IV.14), we obtain

Ly > U,

o Ly
f f dagy () de
ILLO

Integrating by parts we obtain from the last equality

Zo
1
(IV.17) lim — of zdq(®) = oo.

h%D
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Aceording to the convexity of the function |#* (n = 1,2, ...), we have
the inequality

%y %o
|[ 2ia@) [ <|[ "ign@)] n=1,2,.).
0 0

Hence and from (IV.17) it follows that

17
Lim— fw"’dq,,(w)’ = no,
nyo K71

The Lemma is thus proved.

LemmMa IV.2. Let flw, 1) e RN and let & be an integer. Suppose that
for some z,

Df = a6 () = oo i
(IV.18) .

f%d{G,(u)—G,(-—u)} —oo i k=2,
0

and the limits

Y

f w"dP(Dhl,,,_;hkf(w7 1) <a)

(IV.19) ¢, ='3jn% . i (n=1,2,...),
B30 [ 10l aP Dy, mf(w, 1) <o)
(IV.20) Alp) = Lii.rl:L [ 9@dP (D, f(w, ) < a)
1reers —00 .

emst for each peX,. Then the derivative @*f( @, t)/dt* has the local characior-
stie {on, L.y, where
Lo =34, Ly=06,Gf+(1—e)G (n=1,2,..).

Proof. Leff R(?) be the characteristic function of the random. variable
f('(o, 1). Then, in view of Lemma IL1, the characteristic function of the
glﬁerenefkfll A,g -y feyt) is equal to R(z)™ if & =1 and is equal

0 [R(z)]" "t if & > 2. Let Yy (h > 0) be a family of random variables
with the characteristic function R(z)" if % — 1 and |R(2)|2* % if & > 2.

icm

Local characteristics of generalized stochastic processes 239

From (IV.18) it follows that the assumption (IV.13) of Lemma IV.1
is fulfilled. Put

(Ivel)  qu(@) =P(Xa<a) =P(dy ... 47, hflo,t) < ).

Then, in view of Lemma IV.1, for some z,

%o

1
IV.22 im — " = .
(IV.22) %mi”%ﬂ oo

We introduce the following notation:

(IV.23) Bu(h) =—;—]i———— (n=1,2,..)
[ Ialdan(a)

From (IV.22) it follows that

(IV.24) mp,(h) =0 (n=1,2,..).
ryo0

Since f(w,?) belongs to M, we have

Vi = f |w]dgn(z) =0 for hlO.
The inequality

w={ [ wawe] < [ erae 0=1,2,.)

implies
k4
[ ol dan(@) " b
B <y [ leldga@) = [Rldga(ar)  (n=1,2,...).
J lel" dgn (@) 0 -1

Consequently, in view of (IV.25),

Yh "
J o™ dgu (=)
Lim =¥

L0 =0 (n=1,2,..).
MO ol dga (@)
—00

(IV.26)

Let gpeX, (n =1,2,...). Then we have the inequalities [p ()]
< llpll 1+ 121™), 163 (@)l < liglly 163 (@) < llgll, where || || denotes the norm
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in X,. Hence, using the formula (IV.23), we obtain the following in-

equality:
(1) t fﬁv( )d{(h GaT(QD)f (7) dgn(@)— f( ) day (x
—co a - 00

<ﬁn(h>7)h"! ro —et (5] a+

p(z/h)

W —Gy (9)

() +

*n
+60) |

7Y N "n n
+60) [ pr(%)‘dq,,(w>+/fn<h>lax<qo>a [ (5) i+

)

-+ B (h) G { | dgy (%) < sup (,of ) —G (fp)‘ +
A ' h w;m/h x
[ o aguo
+ sllph' , | G—(w)wﬁn(mnwwaﬂ——m
<—~pp/ flwl d!h(m)

Sinee yafh = 1/ (k) — co when h 0, in view of (IV. 24) and (IV 26),
the lagt inequality implies

. 4 © v x\"
@wvan i) [ o(7) w6t [ (5 e
«D.;w)i —;‘ dqh<m)!=0 (n=1,2,..)

for each peX,. From definitions (Iv.21) and (IV.23) it follows that

[P (D, af(0, 1) < o)

it [ (2 i) ~ 2 ,
° 0l AP D, s, 4w, <)

0
_.L 1w!"dP(Dhl, "k-—l Ilj w, t < m)

Ll d-P(-Dnl el ) <)

—| dgn(@) =
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Consequently, the assumption (IV,19) and the equality (IV.27) imply
for each ¢eX, (n =1,2,...)

e i) [ o) e = atio)+0-a05 ).

Putting 4;,() =1 (j =1,2,..., k—1), 4z.(4) = Bn(4), we have, accor-
ding to (IV.21),

ﬂAm(h» f PP (D 1(0) <) = but) [ q:(ﬁ——-z)dan(m.

I=1

Hence, in virtue of (IV.28),

k
[ [4m (k) f 9(@)AP(Dh,,... 1, (0,1) < @) = en6f (@) + (1~ 6,)G5 ()

"1‘ ."ki“y

for each pe X, (n =1,2,...). Taking into account assumption (IV.20),
we find in virtue of theorem II.2 that the derivative d" fle, 1) /dt" has
the local characteristic <a, L), where L, = 34, L, = ¢,G; +(1-o,, Gy
(n=1,2,..).

The Lemma, is thus proved.

COROLLARY. Let f(w,1)eRnM and let & be an integer. Suppose that
in the case k =1 for some x, the equality
[ — () = oo

[

8 true and the increments Anf(w,1) are symmetrically distributed, . e.
the characteristic function of Anf(w,t) is real. Further, suppose that in the
case k = 2 the equality

Zg

1
[ =a{ey(w)—G(~u)} = oo
g u
holds. If for each peX, the limit

A(p) = le\L f @(@)dP (D, .1, Ho, 1) < @)
1,

.....

exists, then the derivative cl"f(w, 1)/dt* has the local characteristic {any Ly,
where Ly = }A, L, = 3G +3G, (n =1,2,...).

Studia Mathematica XVII. 16
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In fact, from Lemma IL2 it follows that Dy, »,f(w,?) for k > 2
are symmetrically distributed. Hence, for every integer %,

[ adP (D, . 1, (0, 1) < @)
0
Oy = —& = 4,
[ 1a"aP Dy, 1 f(w, 1) < @)
—~00
and our assertion is a direct consequence of Lemma IV.2.
We shall use the following theorem of Gnedenko ([2], § 19, theorem 1):
Let qy(), q1(2), ... be a sequence of infinitely divisible distribution
functions. Then

Lim ¢, (z

N~y 00

) = ¢ (@)

at all continuily points @ (—oo < & < o0) of go(®) if and only if

]im Gn(m = GO("D ’

at all continuity points o (—oo Lo < o0) of Qy(z) and

lim y, = 3,,

N0
where.the functions G, (w) and the constants p, (n = 0,1, ...) are determined
by the Lévy-Khinichine empression of the logarithm of the characteristic
functions of distributions functions g,(x) (n = 0,1,...).
From this theorem, using theorem IIL1, Lemmas IT.1 and IIL5
and equalities (I1.3), (IL.5) and (11.6), we obtain the following
Leuma IV.3. Let f(w, t)eRAM. Then the limat

Alp) = Lim f (@)dP (Dyy, .1, Hw, 8) < @)

0 oy
exists for each peX, and A(p) =0 for pe X2 if and only if
(a) in the case k = 1 the limits

- wdG;(u) 1

f * a6y (uh)
WFad)(1+ab),’

hw 1442

B0 —h-_

exist at all continuity points x (—oo < @ < 00) of the Uimit Junction;
(b) in the case k& > 2 the limii

h;ohf

exigts at all continuity points & (—oco L@

.

1—|—u

< oo) of the limit function.
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Let G(u) be an arbitrary monotone non-decreasing bounded func-
tion continuous on the right, normalized by supposing G(— o) = 0 and
having the finite moments

(IV.29) [lalra¢@) < o (n=1,2,...).
Put - .
(IV.30) R(2) =exp{ J (e”“——L—izu)%dG(u)}.

From the well known theorem of Kolmogorov concerning the exten-
sion of meagures in product spaces it follows that there is a stochastic
process f*(w,?) with independent increments, defined on the w-space
of all real-vzlued funections, such that {R(z)}’L is the characteristic function
of the increment f*(w, -+ h)—f*(w,1). We may suppose that f*(w, 0) = 0.
Since lll'm {R(2)}* =1, then the increments f*(w,t+h)—f*(w,?) con-

0
verge tj) 0 in probability, when h10. Consequently, in view of a the-
orem of Doob ([1], II, theorem 2.6) there is a process f(w, ), defined
on the same w-space, which is measurable and P(f*(w,?) = f(w,?) =1
for each 7. From formulzs (IV.29) and (IV.30) it follows that E( w, t))*
is integrable over every finite interval. Then, in view of the inequality
b

B[ |fw, Hidt =

a

fEi;f w, O] dt < f(1+E(f(w, t)) dt,
almost all sample functions of the process f(w,?) are integrable over
every finite interval. Consequently, f(w,?) belongs to & and, in view
of (IV.29)and theorem I1.1, belongs also to DN. Thus we have the following
agsertion:

For every monotone non-decreasing bounded function G(x), continuous
on the right, with finite moments and normalized by supposing G(—oc) = 0,
there exists a stochastic process f(w,t) belonging to K ~M such that
Gy(z) = G ().

In virtue of this assertion, in the examples of processes belonging
to KAM we shall define the Kolmogorov function G(x) only.

Examples. (a) We shall give an example of a process f(w, t belongmg
to R~M such that the local characteristics of all derivatives d*f(w, t)/di*
(k =1,2,...) are quasipoissonian.

Let

e~ M du

f 14 fog ul]
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Since
o
[lolatya) < oo (n=1,2,...),
—00

flo, 1)eRAM. In view of Lemma IL1, the characteristic functions
Ry,,..,(2) of increments 4, ... 4y f(w, t) arve given by the formula

e ™ du }

R;,L””,,k(z) = eXp {Zk—lhk f(coszuml) u—zﬁ—:l:ll—dng”) .

Then the characteristic functions Qn, ...,
by the formula

,(2) of Dy n f(w,1) are given

Q (2) = ex {2" f (cos il —1) o }
bt (7)) = €XD ; P w* (14 [logh, u| |
Hence
Lim  Qn,. . n(2) =1,
By g d 0

uniformly in every finite interval. Consequently for each peX,

L1m f 2)dP (D, a0, 1) < @) = @(0) .
Bverhi b0 o
Since Rp,,.. a,(¢) is real and

= f a16(u)— @y(—u))

f a6, (u

then in view of the Corollary to Lemma IV.2 the derivatives d*f(w, t)/dt*
(¢ =1,2,...) have the quasipoissonian local characteristic <a"" L(,’,"),
where L(’ﬂup) = 1p(0), IY = 16} 367 (n=1,2,...).

(b) Now we shall give some example of a process f (w, t) belonging
to R~M such that the derivative df(w, f) /dt hag a Oa.uchy local cha-
racteristic.

Put

f e du
== 00,
u(1+ |logu|

z) =} fe"'“‘du.

Since

[ lalrag @) < oo (n=1,2,..),

icm
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we have f(w, 1) eR~IM. Further, the characteristic function Ry (z) of the
random variable Dyf(w,?) i3 given by the formula

12

~ 2% e~ du »
= i Z ) = — —
By (2) exp{ Lof (cos A 1) " } exp{ ‘_f exp ( o ) du} .

Hence we obtain lim Rj(2) = ¢~ uniformly in every finite interval.
hyo

Consequently, for each geX,,

1 glo)ds
n ) 14+’

lim [ p@)dP(Dyf(0, ) < o) =
nyo J

Since Rp(2) is real and
1

1
e " du
— d = — =
a{ Gf 2 Dj‘ o0,

\

then in view of the Corollary to Lemma IV.2 we infer that df(w, f)/dt
has the Cauchy local characteristic <oy, L,>, where

~ pla)de

Lo(‘P) = 2—:2'6~°° 1_'_”2 ’

1 1
Ln:?Gx-!—'é—G; (71/:1,2,»..)-

(e) In Chapter I we have seen that all the derivatives of a Brownian
motion process have the uniform local characteristics. It is eagy to prove
that if a process g(w, 1) belonging to & contains a Gaussian component,
i. 6. ¢ = Gy(+0)—G4(—0) > 0, and the derivative d*g(w, t)/dt* has a local
characteristic, then this local characteristic is uniform. In fect, if the local
characteristic is not uniform, then L,(p) 5= 0 for ye L, where

Hence, in view of theorems III.1 and III.2, the characteristic functions
Ruy,.. () of Dy n.9(w, 1) converge to ¢~ 2 (4 > 0). But

2

Fa
By, . n,(2) = exp {*‘ %h;‘} @y, ... 10 (2) 5
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where Qu, . 5,(?) is a characteristic function. Hence

Lim R"’l

Jm(®) =0 for
By gl 0

z2#0,

which is impossible. Consequently, the local characteristic is uniform.
Now we shall give an example of a process f(w,[), belonging to
RAM and having no Gaussian component, such that the derivative
df(w, t)/dt has a uniform local characteristic.
Put
e ™y
iz

Gl = [ =

ful,
Obviously, o = G4(+0)—G(—0) = 0. Since

f]w[”dG,(w) <oo (n=1,2,...),
we have f(w,?)eRA~AM. Let @n(z) be the characteristic function of
Anf(w, t)/h*®. Then

oo

e M dy
Qu(z) = exp{h f(eimh”/3—~1-zzuhl"2/3) e }
[o]
1—cosu wh??
— —9|p32 - —_ dug .
x| a1 [ 2 e 2L o

[}
Consequently

hio J "

uniformly in every finite interval. Since the limit characteristic function

is integrable over —oo < @ << oo, there is a density function (») such that
for every «

(Mo, ;
av.31) Eﬁp(l’%‘j—km): f () du

—0a

Moreover, since the characteristic function of »(z) is real,

(IV.32) fr(u)du = fwfr(u)du = 4.

icm
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We have the following inequality for peX,:

o0 1 !
| [p@ar(Dije, 0 < a)— > 6 -5 o)

<ﬂ¢(%ﬂ‘i‘) ~Ga*(¢>idp(£yh(;;_,z_> <w) N

(1 4 , 4 s
105 5 —2(2 e+ f o[5) -6 >|d1>(——-—"f <o)+
1 Aef(o, YRICR
i3 -2 (G < —o)+ i (25 <.

Hence, in view of (IV.31) and (IV.32), we obtain for each g e X, and
each positive ¢

. ® 1,001
timsup| [ p(@)dP(Daf(w,1) < o) = 56 (p)— 565 ()
2 L] &
<165 (@) [r(w) du+167 ()] [ r(w)dutpl [rw)du.
[ o e
Consequently, when ¢ — 0, we obtain for each pe X,
(IV.33)

o 1 1.
im [ ¢@dP(Dif(w, ) <o) =36 o)+ 365 (0).

Since the increments Dpf(w,t) are symmetrically distributed and

1 1

1 e du
f"ddef(u)=f 32 - == 00,
0 0

in view of (IV.33) and the Corollary to Lemma IV.2, we infer that
df(w, t)/dt hag a uniform local characteristic.

(d) As an example of a process belonging to K~M for which no
derivative has a local characteristic let us consider the following. Let

f (2 —sin (log|ul)) e~ dac .

-0

(IV.34) & (@) =
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Si.nce'}o |#"dGy(x) < oo (n =1, 2,...), then f(w, t)e RAIMN. The character-

istic function Ry, a,(¢) of Dy .,
is given by the formula

wf(w, %), in view of Lemma IIL1,

. & ~ U i—u o
(IV.35) thm,hk(z)zexp{2 T of (cos T e e sin log up)du.
Let us suppose that for some & the derivative d*f(w, #)/dt® has a local
characteristic. Then, in view of theorem II.2 and the equality
limay(4) = %, the limit
a0

(AV.36)  Any, . my,(p) = ;3?% _ZW(m)dP(-th,,,,hkf(a), t) < al
exists for each @e¢X,. Let pe L and
P(@) =_f°° ¢y (z)de.
Then peX; and )
, (Iv.37) _fi'(w)dP(Dh,,...,hkf(w,t) <) = _foew(z)er,,,.,,hk(z)dz-

Tt is easy to verify, in view of (IV.35), that

]

Iv.38) logR — gkt ( _*
(IV.38)  logRy, () of O

© —hgu

—2%sin(loghy) f (eos o -1) go8 (1°g§‘)” du
3 A vee My w

. h 2u sin (log u ) e~"“day

—2*¥cos(loghy,) f ,cos( : -—1)' " :

p Ay oos Xy w
Putting
(IV.39) B = exp (15“2’—"'3 71:) m=1,2,..

icm®
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we have, in view of (IV.36), (Tv.37) and (IV.38),

rg ey (P) = lim f V) Bay,. a0 (2) d2

—00

= f‘l’(z)exp{.‘zk'”f (cos———ﬁ———
J S\ T

1) cos(logu) du}
o1 '

Lok f (cos i
' d U A A u?

du
“1) raa

Consequently Ay,
IV.3, the limit:

#,(#) 7= 0 for peX;. Hence, according to Lemma

.....

.1 7 a6 (ub)
lim = f =
npo b Jo 144 £ k=1,
H{z) =
hm f a{G,(uh)—Gy( (—uh)} ¢ k2,
hw h 14 ?

exists at all continuity points of H(x). From (IV.34) it follows that

—hju|

cos(loglul)e
IVv. = e g -
(IV.40) H(n) =2 fl m {sm (logh) f T U
sin (log [u|) e~
+ cos(logh) . £ e du} )
Since
cos loglu]) 2_[ cost N 7
1 + o -+ 6—15 = o i 2

we get for arbitrarily small ¢ > 0

f cos(loglm) i

(IV.41) 1o

—00

Assume that —e is a continuity point of H(x). From equalities

' (IV.39) and (IV.40) it follows that for the sequence A{Y (n =1,2,...)

_ ]" cos (log «]) i

(IV.42) T

o
H—o)=2 [ 5
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Further, putting
4n+3

h‘"’::exp(w n) (n=1,2,...)

we have

. 7 du 7 cos(log |ul)
H("“E) == 2—‘10 1-|—712 —_*Df; 1+u21

Hence and from equality (IV.42) it follows that

f_sgos(log]un

1o du = 0,

which contradicts inequality (IV.41). Consequently none of the derivatives
@ f(w, t)/dt* have local characteristics.

(e) Now we shall give an examgle of a process f(w,?) belonging to
RAM such that the derivative df (w, £)/dt does not have a local charac-
terigtic but the derivatives df(w, t)/dt* (k > 2) have local characteristics.

Let
(IV.43) &(z) = f (2—sgnu-sin(loglu|))e™"™ du .
Since

[ lol"a6y(z) < oo

—00

(n=1,2,...,

then f(w,?)eR~M. Assume that df(w,t)/d has a local characteristic.
Then, in view of theorem IL.2 and the equality limey(4) = 4, the limit
ajo

‘oo

Alp) =1m [ ¢(@)dP(Dyf(w, ) <]

—00

(IV.44)
exists for each peX,. Let peL and

P@) = [ ™y(2)de.

Then peX; and

fﬂp(w (Daf(w,9) < 2) = fqu(z{()} :

(IV.45)

icm
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where

82— (L i
EB(2) = exp f(e“”” 1—iuz) ( sgnw sm og[ul )e du

P
It is easy to verify that
! A\ ¢
(IV.46) log{R(—ﬁ-)[ —4 f (osuz—1) *—— du—
K
‘ o
—2igin (logh) f —s-l—lM ¢~ cos (logu) du —
F sinu;z uz
—2icos(logh) f PR g~gin (logu)du. .
[]

Let k™ be defined by formula (IV.39). Then, in view of (IV.44),
(IV.45) and (IV.46), for each

A(p) = lim fzp(z) {2 (%)}Mdz

= f'(l)(z)exp ——_-{—4]z|+2if sz:fz_-ﬂ-z-cos(logu)du}dz.
—00 [}

Consequently A(p)s£0 for peX,.
the limit

Hence, according to Lemmsa IV.3,

dG, (h'u,)

) = lim
H (x) J 1w

Bio h

exists at all continuity points of H (x). From definition (IV.43) we obtain

x T
a6, (hw) oMl f sgnu- cos (log Juf) e~
il = — ;
W J Tt 2—00 1T a 5 du— sin(logh) 1142
N sgnu-gin (log [u|) e~ e

— cos(logh) —f 1ra
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In the same way as in the preceding example we obtain for arbitrarily
gmall ¢ > 0 the equality
f cos(log|2u|)du —o0,
14w

which contradicts inequality (IV.41). Consequently, the derivative
df(w, t)/dt does not have a local characteristie.k .
Now we shall prove that the derivatives d'f(w,t)/dt" (k > 2) have
Jocal characteristics. According to (IV.43), the equality
1 a6 ) —G(—hw)} f o
" f I S T

holds. Hence, for each z,

14+’

ik (G —(—h)  Fdw

no F_[o 1+ o

Consequently, in view of Lemma IV.3, for each pe X, and % > 2 the
limit

Lim [ ¢(@)dP(Dy,, . f(0,1) < a)

LG T N
exigts. Since
1

1 o :
l)f;d[G,(u)——G,(——u)} - 2J7du = oo,

then, in view of the Corollary to Lemma IV.2, the local characteristics
of d*f(w,?)/dt" exist for &k =2,3,..., q.e.d.

A measurable homogeneous stochastic process f(w, t) with independent
inerements is called a composed Poisson process if the characteristic fune-
tion Ru(z) of increments f(w, +h)—f(w, f) has the form
(IV.47) Ra(e) = exp{ihyfeth [ (e"—1)dpy(w)} ,

w%0

where y} is a real constant and 4y 18 a o-finite measure such that

(IV.48) 0< f TJI%Q duyl(2) < oo

icm
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It is easy to verify that the composed Poisson process f(w, t) belongs
to M if and only if

(IV.49) Jleldue) < 0 (n=1,2,...).

Moreover, the equalities

(IV.50) =i+ [udg(), @) = [ dpy(w)

00

hold. Consequently, according to (IV.48) and (IV.50), a process f(w,t)
belonging to R~M is a composed Poisson process if and only if

;1
0< _£ o G0r) < oo

Now we shall prove the following

LemwA IV.4. Let g(w,t) be a composed Poisson process belonging

to M and y; = 0. Then for each & > 0
(IV.h1) I;'mP([D,,g(w, B >e =0,
o .

and for n =1,2,...

(IV.52) %mh"—1 [2"aP(Dig(w, ) < o) = [ wap(u),
40 0 0
0 (]
(IV.53) lim ™! f le[" AP (Dag(w, ) < a) = [ (u]dpy(u).
rio e %

Proof. We shall use the following notations:

(IV.54) (o) = explh [ (" —1)duy(w},

(IV.55) f(e) = exp{h [ (" —1)dy(w)},
0

(IV.56) QP (2) = exp{h J @ P —1)duy(w)} .
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tion of the random variable
usl 2) is the characteristic fune
ObV;O Le}i:’ qQ ’;Em) denote the distribution function generated by the

Drg(o, ¢ (f=1,2). It is easy to prove that

characteristic function @ (z
(IV.57) (@) = 0 for <0, ¢ (x) = 0 for &> 0.
From inequality (IV.49) it follows that

i = 1m QY (2) = Lim QP (2) =1,
]’f?folQh(z) MOQ;» i
uniformly in every finite interval, which implies equality (IV.51) and

—p(0) (1=1,2

(IV.58) lim [ o(@)ag (@)
0 o

for each peX,. _ o
Sineeqpthe0 proof of equality (IV.53) is analogous tq the proot.oi’
equality (IV.52), we shall prove equality (IV.52) only. Putting for brevity

M = fm”‘dP(Dhg(w,t) <z (n=1,2,..) -
0

we obtain, in view of (IV.54), (IV.58), (IV.36) and (IV.57),

M = f 24 f P (e— v)dg (@ f
()f

) and (IV.57) imply

(IV.59) (2+9)"dg) (y) dgh (@)

1]
)
3 foy" *dg (y) dgf (@) -

k=0 &

Further, equalities (IV.55

(LV.60) [ @) =it o)

—~00

f o agP (@) =

Zrn )
o0

- hl""f Wdugu)  (B=1,2,...).

0

Let ¢ be an arbitrary positive number. Then for each x > 0 the
inequality

[
| frrad o) < f o)+ f g (y) < & f ag(y)

icm®
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holds. Hence, in view of (IV.60), we obtain for &k < n
Sl 0

Limsuph™| [ @ [ y"~*ag (y)do (w)|
1] - !

By0

hyo

%) — ©
< & Mlimsup*™ [ oFdgf @)+ [ dgf () limsup " [ o" g ()
0 —c0 hio H

< [ ag®w) [ ut apg(u).
-00 0

Consequently, according to (IV.58),
(IV.61)

lim "~ f o f y" " agd () def (z) = 0

for
hio

k=0,1,...,2—1.

From equality (IV.57) it follows that

[@ [ w)ag) @) = [ " agd @)~ [a* [ agdw)aafd (o)
0 - [ 0 —0o
Hence
W fa [ dafd (y)dg (@) — [ o dgfd ()|
0 -z 0
= f a" f g (y) agf) () < W f o gl @)+ 1" f agh (9) f a" dgf(@)

Thus, according to (IV.58) and (IV.60),

lim A" f f dgf? (y)dg (@) =

fu”dp,,(u) n=1,2,..).
hyo J

Hence and from (IV.59) and (IV.61) we obtain

lim hn_l.Ms,”) =
hyo

[wdpw) (n=1,2,..).

The Lemma is thus proved.

2865


GUEST


256 K. Urbanik

TreorEM IV.2. A generalized stochastic process D(w,1t) belonging

to C}QS has a Poissonian local characteristic if and only if
8=1

d
%f(m,t),

D(w,t) =
where f(w,1) is a composed Poisson process belonging to M.
Moreover, the local characteristic {on, Lny of P(w,1t) i given by the
following formulas:

'

1 p ity
W) =1 @) =— () = e —,
1+ I (] gty () Ll ()
v) = 3o},
P () T wdpy(u) S i du(w)
Lijg) = — G (p) —G7 (),

Lt [ fldgu) 1+ [ [l day(u) 1+ [ luldu ()

L] 0
[ w"dp(u) )™ dpy ()
“f [uf™dp, () J lul" g ()

(n=2,8,..).

Proof. First we shall prove the sufficiency of the condition. Let
flw,1) be a composed Poisson process belonging to ON. Put

d : d
¢(wyt)=_d?f(w7t)- g(w,t)=f(w,t)—y}’t, P(w, 1) =7d'i'g(w7t)-

Evidently, g(w, ?) is a composed Poisson process belonging to MM with

(Iv.e2) Yo=0, =4y
Moreover, the equality

(IV.63) O(w,1) = P(a, t)—y;

is true.

icm®
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Let us first prove that the process ¥(w, ) has a Poissonian local
characteristic. Suppose that pe X, (n = 1,2, ...). Then for every: positive
number 4 we have the following inequality:

o0

;h"—‘ f (@) dP(Dyg (@, 1) < 3)—h""p(0) -G (p) f ' dppg () —
| 0

-0

0 4 ,
—63 (p) f]u[ndya(u) < f(,,(m)dp(p,,g(w,t)<m)-<p(0)'+

T lf, ~&x ( 9”) 2" dP(Dyg(w, 1) < o)+

+h t%ﬂf—) —Gy (¢)1 [z|"dP(Dag(w, t) < o)+
‘*‘[G’I(‘P)] jAce! {m‘"dP(_Dhg‘(m, 1) < m)__f “”d,”a(%)l +
.:i 0 i

s —4 0
+16: @[ 1 [ ol aP(Dag(@, i) <a)— [luldpg(w)

< hn—l[ fq;(w)dP(Dhg(w; ) < a:)-——(p(o) ; +

+h"‘1sup — —G+( ) f AP(Dpg(w, 1) < @)+
24| 5

w1t sup | 29 gz )| f (0" AP (Dag (@, §) < @)+
AN 1

+167 (@]

-t of

+ 165 ()] [ 7 farapivigto,n < - f P dy ()] +

P(Dyg(, ) < o) — [0 dug()| +
o

A
+167 @) [ 2P Daglo, 1) < a)+165 (¢)] f la"aP(Dag (@, 1) < .

Studis Mathematica XVII 17
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Hence, in view of Lemma IV.4, equality (IV.62) and the arbitrariness
of the number A, we obtain for each peX, (n =1,2,...)

h“h”"l{fqn ©)dP{Dyg(w, t)<a') (0)}

0
=61 (%) f udpy () +6 () [l duy(u).
0 0o
From Lemma I1V.4 it follows also that
lim [ ¢(®)dP(Dag(w,t) < a) = ¢(0)
"o e

for each peX,. Consequently, according to theorem II.2, the process
¥(w, ) has the local characteristic <%,Ln/, where

W) = 4 Lolp) = 1p(0),

G = g,

o

1 "f‘_f (6] Qpey (w0

o 0
; »(0) 0f wdpy(w) J 1ulduy(w)
L) = g b e G () A = G ()
1+ f]u{cly,(1m) L=k [ el dges () T [ ) dipas (%)
An—l
y(h) = g
[l gy ()
= " ' ;
N of’“ dy (w) | |'M'i”(’/uf(u)
Lnl@) == G () = Gy (o= 2.3,..0).
'L;ui”‘du,«(u) flul"d,u,( u)

Henece and from equality (IV 63) and theorem 1.3 it follows that the
process D(w, t) has the Poissonian local characteristic Yty Ly, which
Is given by the following formulas:

W) =Gl (n=0,100 Lalg) = Lale®),

where ¢* () = p(e+yf). The sufficiency of the condition iy thus proved.
Now we shall prove the neceasm of the condition. Suppose that

a process ®(a, 1) belonging to Usﬁ has the Poissonian local characteristic
8=1
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{tyy Lyy. In view of Theorem IV.1 there exists a process f(w, t) belonging
to RAM such that

. da
Do, 1) = ’[Ef(wst)-

Further. in view of theorem II.2, the limits

m [ p(@)dP(Ds fo. 1) < a) = 2Lolp)
for pe X, and

f m"dP(D;,]‘(cu t) < -'-17)
. = lim S (m =1.2,...)
hio f ]m]“dP(D;.f(w 1) < )

exist. Since
Ly(9) = ep(a)+ o, Gf () + 1,67 (),

where ¢ >- 0, it follows from Lemma IV.2 that
0 < f 4G4 (u) < ~o.

Consequently. f(w,?) is 2 composed Poisson process. The Theorem
is thus proved.

COROLLARY. The derivative of a homogeneous process f(w,t) with
independent increments almost all sample functions of which are of bounded
variation has a Poissonian local characteristic if amd only if f(w, ) eM.

By a theorem of Ryll-Nardzewski [3] a process with independent
increments almost all sample functions of which are of bounded variation
is a composed Poisson process. Consequently our statement is a direct
consequence of theorem IV.2.

Now we ghall investigate the relation between the local characteristic
of d*f(w, t)/dt* and the moments of the increments of f{w, t). First we shall
prove the following

Levmma IV.5. Let flo, 1) eRAM and

A

(IV.64) [ leldGy@) > 0.

—00
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Suppose that df{w,t)/dt has the local characteristic {an, Ln). Then
for n > 2 the equality L,(z™) =0 is equivalent to the equality

My = [ w6 (u) = 0.

-

Proof. Since for even indices n, in virtue of (IV.64), m, > 0 and, in
virtue of theorem IV.1, L,(2") = L,(14|#[®) = 1, then in the sequel
we ghall consider only odd indices n.

From theorem I1.2 it follows that

limen(h) [ 1o dP(Daf(0,0) < o] = Lo (07" B 43 (@, 01" == Ly([of").

Hence, in view of theorem IV.1,

(IV.65) ],i?zan(h)h”"’lf]ldhf(w, D" = Ly(1+ o) = 1

for n > 2.
It is eagy to prove the inequality

By o, )+ < Bldpf(w, ) +B] df (0, 2.

Consequently, in view of Lemma IIL6,
B4y flo, )P < h{ [ w2 a6y (u)+ f_u?ﬂda,(u)+o(1)} s =1,2,..)

Hence, according to (IV.65),
(IV.66) uxzniniaml(h)h-“ >0 (s=1,2,...).
}0
Further, we obtain in the same way

Aoy (B s T+ 0 (1) = Laya (@) (5 =1, 2,...).

Consequently, in view of (IV.66), Lgyr (@) == 0 implies myge, = 0
(8=1,2,...).

From theorem II.2 it follows that
(IV.67) Eﬁtazm(h)E{an(w, DY = Ly (@™4)
and, according to theorem Iv.i,

(Iv.68) Eflmazm(h)E{D,,f(w, W) = Loy () = 0.
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Contrary to the statement of the Lemma let us suppose that #g,,, = 0
and
(IV.69) Lggyy (@) 0

for gome & > 1. Then, in view of Lemma ITL6,

(IV.70) lim A= BD,f (0. O = | u~dy(u)
hio: —o0
and the limit
(IV.71) Hm A== B {Dyf(w,
»lo

exists. From (IV.67), (IV.69) and (IV.71) it follows that

liminf B~ gy (h) > 0.
(37

Hence, in view of (IV.68),

Qagy () B {th(m@}u

lim = Hmi* ' B{Dpf (@, )}* = 0.
) azs—l(h)hl—zs nie { hf( 3 )}
Then, according to (IV.70),
f WA (u) =0,

which contradicts inequality (IV.64). Consequently the equality mse,, = 0
implies Ly, (#*+Y) = 0 (s =1, 2, ...). The Lemma is thus proved.
THEOREM IV.3. Let & (w, 1) be a generalized stochastic process belonging

to | R, with the local characteristic {an, Ly). Then the limil

8=l
. = logas(A)
® T hpe loga
exisis.
Put
};‘Z
8 i tmme 2@ o
, o a(d)
y =
.s'r!—l] Lo Ra(d)
e Iy liminf >0
[ 2 f e )
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. If ky = 0, then ®(w, t) 18 a constant process. If k, = 1, then there is
a process f(w, 1) belonging to KAM such that

o

d—t"?f(w’ t) = O(w, t)7!

and the local characieristic o, L) determines all the moments of the

increments Ap Ap,f(w,1) (hy, by > 0). Moreover, if ky =1, then the local

characteristic {an, Lu) determines all the moments of Apf(w,t)—E{dsf(w, 1)}
Proof. In virtue of theorem IL2 there exist an integer & and

a process f(w,t) belonging to R~M such that

k

(Iv.72) -%,,—f(w, ) = ®(w,1).

Suppose that f(w,?) is o deterministic process, i.e. f(w,1) =l .

where ¢ is a constant. Consequently ®(w,?) is a constant process and
lli‘n;xa,.().) >0 (n=0,1,...) (see Section I, example (c¢)). Thug
o Had)

0 and
a0 ay(d)

8 =0, g = 0.

Now we shall prove that in other cases

(IV.73) ko =k,

which implies %k, > 1.
First we assume that f(w,?) i3 a Brownian motion process. In
Section I (example (a)) we have seen that in this case

Y
Lim =1 n=1,2,..).

" gy ()2 “"f'(—wl)
2

(IV.74)

Hence we obtain

2
8 =k, ﬁmi—a—z(—l—) =
1o 0g(4)

?

and consequently %, = k. Now we may suppose that

(AV.75) [ lolagy(@) > 0.

icm

Local characteristics of generalized stochastic processes 263

From theorem IV.1 it follows that Ly (2%) = L,(1+4%) =1
(8 =1,2,...). Then, in view of Lemma IIL7,

. 1
(IV.76) HmA g (1) =——o " (s =1,2,...),
aleo ok—1 f a:zs_szf(m)
which implies
2
50 = 2k—1, me @ o
apo ag(d)

and consequently %, = k. Equality (IV.73) is thus proved.
Further, the characteristic function of the increments Ap An,f(w, )
(hyy by > 0) is given, in view of Lemma IL1, by the formula '

Ry (2) = exp{2min(hy, hy) [ (coszu—1)dG,(w)} .

Consequently E{4y 4p,f(w,)}" = 0 for » =1,3,... and

E{Ahldhzf(w: t)}n ('n=0, 2,)

are determined by the moments

o0
fu”de,(u) (s =0,1,...).
—o0
Thus to prove that {a,, L,> determines the moments of Ay, 4s,f(w, ?)
it suffices to show that the moments

fu”dG,(u) (s =0,1,...)
are determined by the local characteristic <o, Ly).
From equalities (IV.74) and (IV.76) we obtain for s = 0,1, ...

*(s4+1)k—1 P ay(2
; f»h(s_-li‘ ko #  liminf o (4) >0,
- 140 279 aye gy (4) ajo ag(d)

28 _ 1 Aag(l
PRECR lim — it s = 0andlimint 22 _ o,
- 240 as(d) a,(4)

' 0 in other cases.

Thus the local characteristic (a,, L,» determines the moments

[w*agm) (s =0,1,...)

—co

and consequently determines the moments of Aj 4y, f(w, 1) (hy, by > 0).
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Anajogously, to prove that <o, L,) determines the moments of
dpfle, ) —B{dsf(w, 1)} in the case &, =1, it suffices to show that the
moments

foo
[ udy(w)  (n=0,1,...)

are determined by {an, In).
Hitherto we have proved that the condition

2
timint 222
ado ay(d)

is equivalent to condition (IV.75). Consequently, in view of Lemmas ITL.7
and IV.5, in the case of

Pay(2)
iminf ——— > 0
2o ay(d)
we obtain
. n41
® Lo (2773 im if Ly (6™ > 0
funde(u) — n+2( )”0 an+2(l) n+2( ) - Pl
e 0 if Ly (a2 =0,
and in the case of
2
limint 223 _
a0 oy(d)
according to (IV.74),
o o hae(d)
n lim for =
J e = [ Mo Ba,) "=
o 0 for n=1,2,

The Theorem is thus proved.

. Finally we give a simple example of processes fy(w, t), fa(w, t) belon-
ging t0 KAM vivhose derivatives df,(w, 1)/dt, df,(w, t)/dt have the same
local characteristic, but the distribution function. of Apfy(w,t)—
—B{dnfr(@, 1)} is not equal to the distribution function of Apfy(w, )
—EB{dfs(w, 1)}.

Example. Let us consider the functions
8(@) =27 (3>0),

8(@) = Tog%(3 4 8in(2zlogw))
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for which the moment problem is indeterminate, i. e.

(Iv.77) [ a*si(w)da = [ a"s(2)de  (n =0,1,...).
0 o

(This example is due to Stieltjes [3]). Let us consider the composed Poisson
processes f;(w, t), fa(w, t) belonging to M for which

£’3

[ s () de for w0,
vh =0, uplu)= J
0 for w<0,

u
5y () doe for uz=0,
V}; =0, .”'fz('“‘) == l ﬁ}

0 for u<0.

Evidently ‘the distribution function of Axfy(w,t)—B{dsfi(w, )}
is not equal to the distribution function of Ahfg((l),t)—E{Ahfz(w,t)}.
Further, from theorem IV.2 it follows that the derivatives df,(w, t)/dt
and df,(w, t)/dt have the local characteristics <o, Z{> and (o, LY.
where

() = aP() =3, IPp) = IP(p) = 1p(0),

o 1
o) (2) = —— 1,""* o ) =
14+ [ usy(u)du 1+ [ usy (u) du
—00 [
0 Jusy(wydu ‘
/e p— L Gt o),
1+ [ usy (u)du 1+ fus (u)du
0 0
0 Jnsy(uydu
I g) =- wq)( I + -~ -G (p),
1+ [ usy (u)du 14 [ usy (u)du
0 0
zﬂ—l An-l
@)=, SW=g—,
J s (w)du [ u"sy (u)du
[ ¢ °
Lg)ng):G;:— ("71:2’3_;-“)'

Consequently, in view of (IV.77), <af, LY> = (@, I, q. e. d.
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The conditional expectations and the ergodic theorem for strictly
stationary generalized stochastic processes

by
K. URBANIK (Wroctaw)

L Introduction. In the present note we shall consider generalized
stochastic processes defined in [2]. We say that a generalized stochastic
process @ (w, t) is strictly stationary if there exists a sequence {fn(w , t)}
of strictly stationary continuous stochastic processes such that &(w, t)
= [fa{w,?)]. Let F(w,t) be a continuous stochastic process and set
4 F(w,t) = F(o,t+h)—F(w,t). Then it is easy to prove the following
assertion:

The generalized process d°F(w,t)|dt" (b >1) is strictly stationary
if and only if for each hy, ks, ..., hy the process Ay, A, o dpy, Fle, 1)
is strictly stationary (in the usual sense).

By Z(t,1, ..., %) we shall denote the space of all generalized sto-
chastic processes depending on variables ¢, 1%,...,%. Suppose that
A (3, =1,2,...,k) are real constants and det|i;] % 0. Let
D(w,ty, 1y, ...,ktk) = [f,,(w;it,, s ..., t)]. Then the generalized stochastic

process P{w, > Ayly, ..., ) Ayt) is defined by the formula
=1 =1

k

;’zﬁtj)} .

k E
.72/1kjtj-) = [f,,(w, Zlﬁtj, ey
j=1 =

7=1

k

(D((U,Z}qjtf, ..
j=1

It is easy to verify that the convergence Op(w,t,,...
D(w, by, ..., 1) when T'— co implies the convergence

k
o D) gty
F=1

(The convergence of generalized stochastic processes is defined in [27]).
Hence in particular we obtain the following

Levma 1. Let Pplw,t)eZ(t). Then Pplw,ti+...+t)ed(ly, ..., t)
and the convergence of @r(w, t,+...+1;) when T — oc implies the conver-
gence of Prlw, t;) (in (8t, ..., &%)).

) te)

k k k
@T(w,Zlet,-, ...,Zlkjtj) — @(0),211,-f5, ..
= =1

=1
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