STUDIA MATHEMATICA, T. XVII. (1958)

References

- [1] J.L. Doob, Stochastic processes, New York-London 1953.
- [2] Б. В. Гнеденко и К. Н. Колмогоров, Предельные распределения для сумм независимых случайных величин, Москва-Ленинград 1949.
- [3] S. Lojasiewicz, Sur la valeur et la limite d'une distribution en un point, Studia Math. 16 (1957), p. 1-36.
- [4] C. Ryll-Nardzewski, On the non-homogeneous Poisson process, Coll. Math. 3 (1955), p. 192-195.
- [5] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. de Toulouse 8 (1894), p. 1-122.
- [6] K. Urbanik, Generalized stochastic processes, Studia Math. 16 (1957). p. 268-334.
- [7] Случайные процессы, реализации которых являются обобщенными функциями, Теория вероятностей и её применения I (1) (1956), р. 146-149.

Recu par la Rédaction le 4. 9. 1957

The conditional expectations and the ergodic theorem for strictly stationary generalized stochastic processes

K. URBANIK (Wrocław)

I. Introduction. In the present note we shall consider generalized stochastic processes defined in [2]. We say that a generalized stochastic process $\Phi(\omega, t)$ is strictly stationary if there exists a sequence $\{f_n(\omega, t)\}$ of strictly stationary continuous stochastic processes such that $\Phi(\omega, t)$ $= [f_n(\omega, t)]$. Let $F(\omega, t)$ be a continuous stochastic process and set $\Delta_h F(\omega,t) = F(\omega,t+h) - F(\omega,t)$. Then it is easy to prove the following assertion:

The generalized process $d^k F(\omega, t)/dt^k$ $(k \ge 1)$ is strictly stationary if and only if for each h_1, h_2, \ldots, h_k the process $\Delta_{h_1} \Delta_{h_2} \ldots \Delta_{h_k} F(\omega, t)$ is strictly stationary (in the usual sense).

By $\Xi(t_1, t_2, ..., t_k)$ we shall denote the space of all generalized stochastic processes depending on variables t_1, t_2, \ldots, t_k . Suppose that λ_{ij} (i, j = 1, 2, ..., k) are real constants and $\det |\lambda_{ij}| \neq 0$. Let $\Phi(\omega, t_1, t_2, ..., t_k) = [f_n(\omega, t_1, t_2, ..., t_k)].$ Then the generalized stochastic process $\Phi(\omega, \sum \lambda_{ij}t_j, \ldots, \sum \lambda_{kj}t_j)$ is defined by the formula

$$\Phi\left(\omega,\sum_{j=1}^k\lambda_{1j}t_j,\ldots,\sum_{j=1}^k\lambda_{kj}t_j
ight)=\left[\dot{f_n}\left(\omega,\sum_{j=1}^k\lambda_{1j}t_j,\ldots,\sum_{j=1}^k\lambda_{kj}t_j
ight)
ight].$$

It is easy to verify that the convergence $\Phi_T(\omega, t_1, \ldots, t_k) \rightarrow$ $\Phi(\omega, t_1, \ldots, t_k)$ when $T \to \infty$ implies the convergence

$$\Phi_T\left(\omega,\sum_{j=1}^k\lambda_{1j}t_j,\ldots,\sum_{j=1}^k\lambda_{kj}t_j\right) o \Phi\left(\omega,\sum_{j=1}^k\lambda_{1j}t_j,\ldots,\sum_{j=1}^k\lambda_{kj}t_j\right).$$

(The convergence of generalized stochastic processes is defined in [2]). Hence in particular we obtain the following

LEMMA 1. Let $\Phi_T(\omega, t) \in \Xi(t)$. Then $\Phi_T(\omega, t_1 + \ldots + t_k) \in \Xi(t_1, \ldots, t_k)$ and the convergence of $\Phi_T(\omega, t_1 + \ldots + t_k)$ when $T \to \infty$ implies the convergence of $\Phi_T(\omega, t_1)$ (in $(\Xi t_1, \ldots, t_k)$).

II. Conditional expectations of generalized stochastic processes. In this paper we assume that the probability measure is complete. Let $\mathcal F$ be a σ -field of measurable ω sets containing all ω sets of probability 0. We say that a generalized stochastic process $\Phi(\omega,t)$ is measurable with respect to $\mathcal F$ if there exist an integer k and a continuous stochastic process $F(\omega,t)$ such that $d^kF(\omega,t)/dt^k=\Phi(\omega,t)$ and for any fixed t_0 the random variable $F(\omega,t_0)$ is measurable with respect to $\mathcal F$.

Let $f(\omega,t)$ be a continuous stochastic process. By $\mathcal{C}(f(\omega,t)|\mathcal{F})$ we shall denote that version of the conditional expectation of $f(\omega,t)$ relative to \mathcal{F} which is a continuous process, provided that the above-mentioned version exists.

We say that the generalized process $\Psi(\omega,t)$ is the conditional expectation of $\Phi(\omega,t)$ relative to $\mathcal F$ if there are an integer k and a continuous process $F(\omega,t)$ such that the expectation $\mathcal E(F(\omega,t)||\mathcal F)$ exists, the expectation $\mathcal E(F(\omega,t)||\mathcal F)$ is integrable over every finite interval and

$$\frac{d^k}{dt^k} F(\omega, t) = \Phi(\omega, t), \quad \frac{d^k}{dt^k} \mathcal{C}(F(\omega, t) | \mathcal{F}) = \Psi(\omega, t).$$

From the definition of the equality of generalized stochastic processes (cf. [2], § 1) it immediately follows that $\Psi(\omega, t)$ does not depend upon the choice of a continuous version of the conditional expectation of $F(\omega, t)$ relative to \mathcal{F} .

Now we shall prove that $\psi(\omega,t)$ does not depend upon the choice of an integer k and a continuous process $F(\omega,t)$. In fact, assume that $F_1(\omega,t), F_2(\omega,t)$ are continuous processes, the conditional expectations $\mathcal{E}(F_1(\omega,t)|\mathcal{F}), \quad \mathcal{E}(F_2(\omega,t)|\mathcal{F})$ exist, the expectations $\mathcal{E}(F_1(\omega,t)|\mathcal{F}), \quad \mathcal{E}(F_2(\omega,t)|\mathcal{F})$ exist, the expectations $\mathcal{E}(F_1(\omega,t)|\mathcal{F}), \quad \mathcal{E}(F_2(\omega,t)|\mathcal{F})$ are integrable over every finite interval and for some $k_2 \geqslant k_1$

$$\frac{d^{k_1}}{dt^{k_1}}F_1(\omega, t) = \Phi(\omega, t), \qquad \frac{d^{k_2}}{dt^{k_2}}F_2(\omega, t) = \Phi(\omega, t).$$

The last equalities imply

$$(1) \quad F_2(\omega,t) = \begin{cases} \frac{1}{(k_2 - k_1 - 1)!} \int_0^t (t - u)^{k_2 - k_1 - 1} F_1(\omega, u) du + \\ + \sum_{j=0}^{k_2 - 1} a_j(\omega) t^j & \text{if } k_2 > k_1 \end{cases}$$

$$F_1(\omega,t) + \sum_{j=0}^{k_2 - 1} a_j(\omega) t^j & \text{if } k_2 = k_1,$$

where $a_{j}(\omega)$ $(j=0,1,\ldots,k_{2}-1)$ are random variables. Put $A_{t}=\left\{\omega\colon\!\mathcal{E}\left(F_{1}(\omega,t)|\mathcal{F}\right)\geqslant0\right\},\quad B_{t}=\left\{\omega\colon\!\mathcal{E}\left(F_{1}(\omega,t)|\mathcal{F}\right)<0\right\}.$ Obviously,

$$(2) \qquad \int\limits_{\Omega}\left|\mathcal{E}\big(F_{1}(\omega\,,\,t)|\mathcal{F}\big)\right|\,d\omega\,=\,\int\limits_{A_{t}}\mathcal{E}\left(F_{1}(\omega\,,\,t)\,|\mathcal{F}\right)d\omega\,-\,\int\limits_{B_{t}}\mathcal{E}\left(F_{1}(\omega\,,\,t)|\mathcal{F}\right)d\omega.$$

where Ω denotes the space of points ω . Since $A_t, B_t \in \mathcal{F}$, we have

$$\begin{split} &\int\limits_{\mathcal{A}_t} \mathcal{E}\big(F_1(\omega,t)|\mathcal{F}\big)d\omega = \int\limits_{\mathcal{A}_t} F_1(\omega,t)d\omega \leqslant \mathcal{E}\left|F_1(\omega,t)\right|, \\ &-\int\limits_{\mathcal{B}_t} \mathcal{E}\big(F_1(\omega,t)|\mathcal{F}\big)d\omega = -\int\limits_{\mathcal{B}_t} F_1(\omega,t)d\omega \leqslant \mathcal{E}|F_1(\omega,t)|. \end{split}$$

Hence and from (2) it follows that $\int_{\Omega} |\mathcal{E}(F_1(\omega,t)|\mathcal{F})| d\omega$ is integrable over every finite interval. Since the value of an absolutely convergent iterated integral is independent of the order of integration, we obtain for $k_2 > k_1$

$$\begin{split} \mathcal{E} \bigg(\frac{1}{(k_2 - k_1 - 1)!} \int_0^t (t - u)^{k_2 - k_1 - 1} F_1(\omega, u) du | \mathcal{F} \bigg) \\ &= \frac{1}{(k_2 - k_1 - 1)!} \int_0^t (t - u)^{k_2 - k_1 - 1} \mathcal{E} \big(F_1(\omega, u) | \mathcal{F} \big) du \,. \end{split}$$

Hence and from (1) we infer that

$$\mathcal{E}\left(\sum_{t=0}^{k_2-1}a_j(\omega)t^j|\mathcal{F}\right)$$

exists. Consequently $\mathcal{E}(a_j(\omega)|\mathcal{F})$ $(j=0,1,\ldots,k_2-1)$ exist, and the following equality holds:

$$\mathcal{E}(F_2(\omega,t)|\mathcal{F}) = \begin{cases} \frac{1}{(k_2-k_1-1)!} \int\limits_0^t (t-u)^{k_2-k_1-1} \mathcal{E}(F_1(\omega,u)|\mathcal{F}) du + \\ + \sum\limits_{j=1}^{k_2-1} \mathcal{E}(a_j(\omega)|\mathcal{F}) t^j & \text{if} \quad k_2 > k_1, \\ \mathcal{E}(F_1(\omega,t)|\mathcal{F}) + \sum\limits_{j=0}^{k_2-1} \mathcal{E}(a_j(\omega)|\mathcal{F}) t^j & \text{if} \quad k_2 = k_1. \end{cases}$$

Thus

$$\frac{d^{k_1}}{dt^{k_1}}\,\mathcal{E}\big(F_1(\omega,t)|\mathcal{F}\big)=\frac{d^{k_2}}{dt^{k_2}}\,\mathcal{E}\big(F_2(\omega\,,\,t)|\mathcal{F}\big),$$
q. e. d.

The conditional expectation of $\Phi(\omega, t)$ relative to \mathcal{F} we shall denote by $E[\Phi(\omega, t)|\mathcal{F}]$.

The following statements are direct consequences of the definition of conditional expectations of generalized processes:

- (a) $E(\Phi(\omega, t)|\mathcal{F})$ is measurable with respect to \mathcal{F} .
- (b) If $E(\Phi_j(\omega,t)|\mathcal{F})$ $(j=1,2,\ldots,m)$ exist and $\lambda_1,\lambda_2,\ldots,\lambda_m$ are constants, then $E(\sum_{j=1}^m \lambda_j \Phi_j(\omega,t)|\mathcal{F})$ exists and

$$E\left(\sum_{j=1}^{m} \lambda_{j} \Phi_{j}(\omega, t) | \mathcal{F}\right) = \sum_{j=1}^{m} \lambda_{j} E\left(\Phi_{j}(\omega, t) | \mathcal{F}\right).$$

(c) If
$$E(\Phi(\omega, t)|\overline{\mathcal{F}})$$
 exists, then $E\left(\frac{d}{dt}\Phi(\omega, t)|\mathcal{F}\right)$ exists and
$$E\left(\frac{d}{dt}\Phi(\omega, t)|\mathcal{F}\right) = \frac{d}{dt}E(\Phi(\omega, t)|\mathcal{F}).$$

(d) $E(E(\Phi(\omega,t)|\mathcal{F})) = E(\Phi(\omega,t))$.

(The expectation of generalized stochastic processes is defined in [2], § I.)

- (e) If \mathcal{F} is the σ -field of all sets [haviny 'probability 0 or 1, then $E(\Phi(\omega,t)|\mathcal{F}) = E(\Phi(\omega,t))$.
 - (f) If $\mathcal{F}_1 \in \mathcal{F}_2$, then

$$E(E(\Phi(\omega, t)|\mathcal{F}_2)|\mathcal{F}_1) = E(\Phi(\omega, t)|\mathcal{F}_1).$$

Now we shall prove the following assertion:

(g) If $\Phi(\omega, t)$ is measurable with respect to \mathcal{F} and if $E(\Phi(\omega, t))$ exists, then $E(\Phi(\omega, t)|\mathcal{F}) = \Phi(\omega, t)$.

Proof. From the assumption it follows that there are continuous processes $f(\omega, t), g(\omega, t)$ and an integer k such that

(3)
$$\frac{d^k}{dt^k}f(\omega,t) = \Phi(\omega,t) = \frac{d^k}{dt^k}g(\omega,t),$$

the expectation $\mathcal{E}[g(\omega,t)]$ is bounded in every finite interval and $f(\omega,t)$ is measurable with respect to \mathcal{F} . Put

$$h(\omega, t) = f(\omega, t) - \sum_{j=1}^{k} f(\omega, x_j) \frac{(t-x_1) \dots (t-x_{j-1}) \dots (t-x_{j+1}) \dots (t-x_k)}{(x_j - x_1) \dots (x_j - x_{j-1}) \dots (x_j - x_{j+1}) \dots (x_j - x_k)}$$

where $x_1, x_2, ..., x_k$ are constants and $x_j \neq x_j$ for $i \neq j$. Evidently $h(\omega, t)$ is measurable with respect to \mathcal{F} ,

(4)
$$h(\omega, x_i) = 0 \quad (i = 1, 2, ..., k)$$

and

(5)
$$\frac{d^k}{dt^k}h(\omega,t) = \Phi(\omega,t).$$

Hence, according to (3), we obtain the equality

(6)
$$h(\omega,t) = g(\omega,t) + \sum_{s=0}^{k-1} a_s(\omega)t^s,$$

where $a_s(\omega)$ (s = 0, 1, ..., k-1) are random variables. From the last equality and from (4) it follows that

$$\sum_{s=0}^{k-1} a_s(\omega) x_j^s = -g(\omega, x_j) \quad (j = 1, 2, ..., k).$$

Since $\mathcal{E}|g(\omega,t)|<\infty$, the last equalities imply $\mathcal{E}|a_s(\omega)|<\infty$ $(s=0,1,\ldots,k-1)$ and consequently, in view of (6), $\mathcal{E}|h(\omega,t)|$ is bounded in every finite interval. Therefore $h(\omega,t)$ is a continuous version of the conditional expectation of $h(\omega,t)$ relative to $\mathcal{F}\colon h(\omega,t)=\mathcal{E}(h(\omega,t)|\mathcal{F})$. Hence, taking into account equality (5), we obtain $\Phi(\omega,t)=E(\Phi(\omega,t)|\mathcal{F})$. Assertion (g) is thus proved.

From the assertions (a), (f) and (g) it follows that

(h) If $\mathcal{F}_1 \subset \mathcal{F}_2$ and if $E(\Phi(\omega, t)|\underline{\mathcal{F}}_2)$ is measurable with respect to \mathcal{F}_1 , then

$$E(\Phi(\omega,t)|\mathcal{F}_1) = E(\Phi(\omega,t)|\mathcal{F}_2).$$

THEOREM 1. If the expectation $E(\Phi(\omega, t))$ exists, then also the conditional expectation $E(\Phi(\omega, t)|\mathcal{F})$ exists.

Proof. From the assumption it follows that there are a continuous process $F(\omega,t)$ and an integer k such that $\mathcal{E}|F(\omega,t)|$ is integrable over every finite interval and

(7)
$$\frac{d^k}{dt^k}F(\omega,t) = \Phi(\omega,t), \quad \frac{d^k}{dt^k}\mathcal{E}(F(\omega,t)) = E(\Phi(\omega,t)).$$

Let I_n denote the interval $n \leq t < n+1$ $(n=0,\pm 1,\ldots)$. By \mathfrak{B}_n we shall denote the σ -field of Lebesgue measurable subset of I_n , and by \mathfrak{B} the σ -field of Lebesgue measurable subset of the line. Since $\mathcal{E}[F(\omega,t)]$ is integrable over I_n $(n=0,\pm 1,\ldots)$, $|F(\omega,t)|$ is integrable over $\Omega \times I_n$ $(n=0,\pm 1,\ldots)$. Consequently, according to the Radon-Nikodym theo-

rem, there is a function $a_n(\omega,t)$ measurable with respect to $\mathcal{F} \times \mathcal{B}_n$ such that for each $\Lambda \in \mathcal{F} \times \mathcal{B}_n$

(8)
$$\int_A a_n(\omega, u) d\omega du = \int_A F(\omega, u) d\omega du.$$

Moreover.

$$\int_{\Omega\times I_n} |a_n(\omega, u)| d\omega du \leqslant \int_{I_n} \mathcal{E}|F(\omega, u)| du.$$

Since, according to Fubini's theorem, for almost all ω , $a_n(\omega, t)$ is Lebesgue measurable, the last inequality implies that, for almost all ω , $a_n(\omega, t)$ is Lebesgue integrable over I_n . Put

(9)
$$a(\omega, t) = a_n(\omega, t)$$
 if $t \in I_n \ (n = 0, \pm 1, \ldots)$.

Then, for almost all ω , $\alpha(\omega,t)$ is Lebesgue integrable over every finite interval. Moreover, $\alpha(\omega,t)$ is measurable with respect to $\mathcal{F} \times \mathcal{P}$. Consequently, the function

$$\beta(\omega,t) = \int_0^t \alpha(\omega,u) du$$

is measurable with respect to $\mathcal{T} \times \mathcal{B}$. Hence, in view of Fubini's theorem, for almost all t the ω -function $\beta(\omega,t)$ is measurable with respect to \mathcal{T} . Taking into account the continuity of the process $\beta(\omega,t)$, we infer that for all t the ω -function $\beta(\omega,t)$ is measurable with respect to \mathcal{T} . Further, from (8) and (9) it follows for every $A \in \mathcal{T}$ that

$$\int_{A} \beta(\omega, t) d\omega = \int_{A} \int_{0}^{t} F(\omega, u) du d\omega.$$

Consequently,

$$eta(\omega,t)=\mathcal{E}ig(\int\limits_0^t F(\omega,u)du|\mathcal{F}ig)$$
 .

Since the expectation $\mathcal{E} | \int_0^t F(\omega, u) du |$ is integrable over every finite interval and, according to (7)

$$\frac{d^{k+1}}{dt^{k+1}}\int\limits_0^t F(\omega,u)du = \varPhi(\omega,t),$$

the conditional expectation of $\Phi(\omega, t)$ relative to $\mathcal F$ exists. The theorem is thus proved.

Examples. 1. Let $v(\omega)$ be a random variable and let $P(v(\omega) < t | \mathcal{F})$ be a version, measurable with respect to (ω, t) , of conditional probability distribution of $v(\omega)$ relative to \mathcal{F} . Put

$$F(\omega, t) = \max(0, t - \nu(\omega)) + \min(0, \nu(\omega))$$

Obviously, $F(\omega, t)$ is a continuous process, $d^2F(\omega, t)/dt^2 = \delta(t - \nu(\omega))$ and $|F(\omega, t)| \leq |t|$. From the last inequality we infer that $\mathcal{E}[F(\omega, t)]$ is integrable over every finite interval. Moreover, it is easy to verify that

$$\mathcal{E}(F(\omega,t)|\mathcal{F}) = \int_0^t P(\nu(\omega) < u|\mathcal{F}) du$$
.

Consequently,

$$E(\delta(t-\nu(\omega))|\mathcal{F}) = \frac{d}{dt}P(\nu(\omega) < t|\mathcal{F}).$$

2. Let $\xi(\omega)$ be a random variable with a continuous and positive density function g(x). Put

$$H(\omega,t) = rac{\cos \xi(\omega)t}{2\pi g\{\xi(\omega)\}}\,, \quad F(\omega,t) = rac{1-\cos \xi(\omega)t}{2\pi \xi^2(\omega)g(\xi(\omega))}\,.$$

Obviously, $H(\omega, t)$ and $F(\omega, t)$ are continuous processes and $d^2F(\omega, t)/dt^2 = H(\omega, t)$. Moreover, $\mathcal{E}|F(\omega, t)| = \frac{1}{2}|t|$.

Let $A = \{\omega : \xi(\omega) > 0\}$ and let \mathcal{F} be the smallest σ -field containing A. Then it is easy to verify that

$$\mathcal{E}(F(\omega,t)|\mathcal{F}) = \frac{1}{2}|t|\alpha(\omega),$$

where

$$a(\omega) = \begin{cases} rac{1}{2P(A)} & ext{if} & \omega \in A, \\ rac{1}{2P(\Omega - A)} & ext{if} & \omega \in \Omega - A. \end{cases}$$

Consequently, $E(H(\omega, t)|\mathcal{F}) = a(\omega)\delta(t)$.

III. Invariant σ -fields. Let $\Phi(\omega, t)$ be a strictly stationary generalized process. Let $F(\omega, t)$ be a continuous process such that

(10)
$$\frac{d^k}{dt^k} F(\omega, t) = \Phi(\omega, t).$$

Then for any h the process $\Delta_h^{(k)}F(\omega,t)$ is strictly stationary 1). By $\mathcal{F}_h^{(k)}$ we shall denote the σ -field of invariant ω sets induced by the process $\Delta_h^{(k)}F(\omega,t)$ (cf. [1], XI, § 1). It is easy to see that $\mathcal{F}_h^{(k)}$ does not depend upon the choice of a continuous process satisfying equality (10). Let $H(\omega,t)$ be a continuous process such that $d^{k+1}H(\omega,t)/dt^{k+1} = \Phi(\omega,t)$. Since

$$\Delta_h^{(k+1)}H(\omega,t)=\int_t^{t+h}\Delta_h^{(k)}F(\omega,u)du,$$

we have

$$\mathcal{F}_h^{(k+1)} \subset \mathcal{F}_h^{(k)}.$$

Put

(12)
$$\mathcal{F}_{\boldsymbol{\sigma}} = \bigcap_{k=k_0}^{\infty} \bigcap_{0 < k < 1} \mathcal{F}_{k}^{(k)},$$

where k_0 denotes the first integer k for which there exists a continuous process $F(\omega, t)$ satisfying equality (10). \mathcal{F}_{ϕ} is called the invariant σ -field induced by $\Phi(\omega, t)$.

A strictly stationary generalized process $\Phi(\omega, t)$ is indecomposable if all sets belonging to \mathcal{F}_{Φ} have probability 0 or 1.

The following theorem is a version of the zero-one law for generalized processes:

THEOREM 2. Strictly stationary generalized processes with independent values 2) are indecomposable.

Proof. Let $\Phi(\omega,t)$ be a strictly stationary generalized process with independent values. There are then a continuous process $F(\omega,t)$ and an integer k such that $d^k F(\omega,t)/dt^k = \Phi(\omega,t)$ and, for any h, $\Delta_h^{(k)} F(\omega,t)$ is strictly stationary. Moreover, for any h > 0, $\Delta_h^{(k)} F(\omega,t)$ has kh-independent values (see [2], II. 4), i. e. for every $t_1, t_2, \ldots, t_m; u_1, u_2, \ldots, u_m$ satisfying the inequality $|t_t - u_j| > kh$ $(i, j = 1, 2, \ldots, m)$ the random vectors

$$\langle \varDelta_h^{(k)} F(\omega, t_1), \varDelta_h^{(k)} F(\omega, t_2), \ldots, \varDelta_h^{(k)} F(\omega, t_m) \rangle,$$

 $\langle \varDelta_h^{(k)} F(\omega, u_1), \varDelta_h^{(k)} F(\omega, u_2), \ldots, \varDelta_h^{(k)} F(\omega, u_m) \rangle$

are mutually independent. To prove our assertion it suffices to show that all sets belonging to $\mathcal{F}_h^{(k)}$ (0 < h < 1) have probability 0 or 1. The

proof of the last statement is similar to that of the stationary processes with independent increments. In fact we can immediately deduce that for every $A \in \mathcal{F}_h^{(k)}$ there is a set A_0 such that $P(A-A_0)+P(A_0-A)=0$ and for each T the set A_0 belongs to the σ -field spanned by the sets of the form

$$S(t,x) = \{\omega \colon \Delta_h^{(k)} F(\omega,t) < x\} \quad (t \geqslant T, -\infty < x < \infty).$$

Moreover, there are a sequence of sets B_1, B_2, \ldots and a sequence of real numbers t_1, t_2, \ldots such that

$$\lim_{n\to\infty} (P(A_0 - B_n) + P(B_n - A_0)) = 0$$

and B_n belongs to the σ -field spanned by sets $S(t_1, x)$, $S(t_2, x)$, ..., $S(t_n, x)$ $(-\infty < x < \infty)$. Let $T - t_i > kh$ (j = 1, 2, ..., n). Then, according to the kh-independence of the values of $A_h^{(k)}F(\omega, t)$, we obtain $P(A_0 \cap B_n) = P(A_0)P(B_n)$. Hence, when $n \to \infty$, $P(A_0) = (P(A_0))^2$, which implies $P(A_0) = 0$ or 1. Consequently, P(A) = 0 or 1. The theorem is thus proved.

IV. Lemmas. In the sequel we shall use the following LEMMA 2. Let $f_T(\omega, t)$ be a family of continuous stochastic processes and

(13)
$$\Phi_T(\omega, t) = \frac{d^r}{dt^r} f_T(\omega, t).$$

If $\Phi_T(\omega, t_1)$ converges in $\Xi(t_1, t_2, \ldots, t_k)$ when $T \to \infty$, then $\Phi_T(\omega, t)$ converges in $\Xi(t)^3$.

Proof. From (13) and from the convergence of $\Phi_T(\omega, t_1)$ in $\Xi(t_1, \ldots, t_k)$ it follows that there are continuous processes $F_T(\omega, t)$, $H_T(\omega, t_1, \ldots, t_k)$ and an integer s such that

(14)
$$\frac{d^s}{dt^s} F_T(\omega,t) = \varPhi_T(\omega,t) \,,$$

(15)
$$\frac{\partial^{ks}}{\partial t_1^s \dots \partial t_k^s} H_T(\omega, t_1, \dots, t_k) = \varPhi_T(\omega, t_1)$$

and $H_T(\omega, t_1, ..., t_k)$ converges when $T \to \infty$ for almost all ω uniformly in every compact. Let $x_1, x_2, ..., x_s$ be real numbers for which $x_i \neq x_j$ if $i \neq j$. Put

(16)
$$V(t) = \frac{1}{s!} \prod_{j=1}^{s} (t-x_j), \quad G_T(\omega, t_1, \ldots, t_k) = F_T(\omega, t_1) \prod_{r=2}^{k} V(t_r).$$

¹⁾ $\Delta_h^{(1)} f(t) = \Delta_h f(t), \ \Delta_h^{(k+1)} f(t) = \Delta_h \Delta_h^{(k)} f(t).$

²⁾ Generalized processes with independent values are defined in [2].

^{*)} The assumption that $\Phi_{T}(w, t)$ are derivatives of the same order of continuous processes can be omitted.

276

Obviously, $G_T(\omega, t_1, ..., t_k)$ are continuous processes,

$$rac{\partial^{ks}}{\partial t_1^s \ldots \partial t_k^s} \mathit{G}_T(\omega,\,t_1,\,\ldots,\,t_k) = \mathit{\Phi}_T(\omega,\,t_1)$$

and

(17)
$$G_T(\omega, t_1, ..., t_k) = 0$$
 if $t_r = x_j$ $(r = 2, 3, ..., k; j = 1, 2, ..., s)$.

Hence and from (15) we obtain the equality

(18)
$$G_T(\omega, t_1, ..., t_k) = H_T(\omega, t_1, ..., t_k) +$$

$$+\sum_{r=1}^k\sum_{i=0}^{s-1}A_{ri}^T(\omega,t_1,\ldots,t_{r-1},t_{r+1},\ldots,t_k)t_r^i.$$

Putting in the last equality $t_n = x_j$ (j = 1, 2, ..., s; n = 2, 3, ..., k)and taking into account equality (17) we obtain the linear equations for the functions $A_{ni}^{T}(\omega, t_1, ..., t_{n-1}, t_{n+1}, ..., t_k)$ (i = 0, 1, ..., s-1; $n=2,3,\ldots,k$). Hence it follows that the function $A_{ni}^T(\omega,t_1,\ldots,t_{n-1},t_n)$ t_{n+1}, \ldots, t_k $(i = 0, 1, \ldots, s-1; n = 2, 3, \ldots, k)$ is a line r combination of the functions $H_T(\omega, t_1, ..., t_{n-1}, x_j, t_{n+1}, ..., t_k)$ (j = 1, 2, ..., s), $A_{rm}^{T}(\omega, t_{1}, \ldots, t_{n-1}, x_{j}, t_{n+1}, \ldots, t_{r-1}, t_{r+1}, \ldots, t_{k})t_{r}^{m}$ $(j = 1, 2, \ldots, s; r \neq n, t_{r+1}, \ldots, t_{r+1},$ $r=1,2,\ldots,k; m=0,1,\ldots,s-1$). Consequently, taking into account formula (18) and the convergence of $H_T(\omega, t_1, \ldots, t_k)$, we obtain the following equality:

$$G_T(\omega, t_1, \dots, t_k) = H_{T1}(\omega, t_1, \dots, t_k) + \sum_{j=0}^{s-1} D_j^T(\omega, t_2, t_3, \dots, t_k) t_1^j + \sum_{2 \leqslant r < m \leqslant k} \sum_{i,j=0}^{s-1} C_{rmij}^T(\omega, t_1, \dots, t_{r-1}, t_{r+1}, \dots, t_{m-1}, t_{m+1}, \dots, t_k) t_r^i t_m^j,$$

where $H_{T_1}(\omega, t_1, ..., t_k)$ converges when $T \to \infty$ for almost every ω uniformly in every compact. Putting in the last equality $t_n = x_i$, $t_1 = x_i$ (n, l = 2, 3, ..., k; i, j = 1, 2, ..., s) we obtain the linear equations for the functions $C_{nki}^{T}(\omega, t_1, ..., t_{n-1}, t_{n+1}, ..., t_{l-1}, t_{l+1}, ..., t_k)$, which implies that $C_{nlij}^T(\omega, t_1, \ldots, t_{n-1}, t_{n+1}, \ldots, t_{l-1}, t_{l+1}, \ldots, t_k)$ is a linear combination of the functions $H_{T1}(\omega, t_1, \ldots, t_{n-1}, x_p, t_{n+1}, \ldots, t_{l-1}, x_w)$ t_{l+1}, \ldots, t_k , $C_{rmij}^T(\omega, t_1, \ldots, t_k) t_r^i t_m^j$, $D_j^T(\omega, t_2, \ldots, t_k) t_1^j$ with $t_n = x_n, t_1 = x_q$, $(\langle r, m \rangle \neq \langle n, l \rangle, p, q = 1, 2, ..., s; i, j = 0, 1, ..., s-1).$

By iterating this procedure we finally obtain the equality

(19)
$$G_T(\omega, t_1, ..., t_k) = H_{T, k-1}(\omega, t_1, ..., t_k) + \sum_{j=0}^{s-1} b_j^T(\omega, t_2, ..., t_k) t_1^j + \dots$$

$$+ \sum_{0 \leqslant i_1, i_2, \dots, i_k \leqslant s-1} a_{i_1, i_2, \dots, i_k}^T(\omega) t_1^{i_1} t_2^{i_2} \dots t_k^{i_k},$$

where $H_{T,k-1}(\omega,t_1,\ldots,t_k)$ converges when $T\to\infty$ for almost all ω uniformly in every compact. Let $y_2, y_3, ..., y_k$ be a system of real numbers such that $\prod_{r=0}^{\infty} V(y_r) = 1$. Then, in view of (16), $G_T(\omega, t, y_2, y_3, \ldots, y_k) =$ $=F_T(\omega,t)$. Put

$$W_T(\omega, t) = -\sum_{i=0}^{s-1} b_j^T(\omega, y_2, ..., y_k) t_j -$$

$$- \sum_{0 \leqslant i_1, \ldots, i_k \leqslant s-1} a_{i_1, \ldots, i_k}^T(\omega) t^{i_1} y_2^{i_2} \ldots y_k^{i_k}.$$

277

Then

(20)
$$\frac{d^s}{dt^s} W_T(\omega, t) = 0$$

and, in view of (19), $F_T(\omega,t)+W_T(\omega,t)$ converges when $T\to\infty$ for almost all ω uniformly in every finite interval. Consequently, according to (14) and (20), $\Phi_T(\omega, t) = d^s(F_T(\omega, t) + W_T(\omega, t))/dt^s$ converges in $\Xi(t)$. The lemma is thus proved.

LEMMA 3. Let $\Phi(\omega, t)$ be a strictly stationary generalized process for which $E(\Phi(\omega,t))$ exists. There is then an integer k_{Φ} such that if a continuous process $F(\omega, t)$ satisfies the equality

(21)
$$\frac{d^k}{dt^k}F(\omega,t) = \Phi(\omega,t) \quad (k \geqslant k_{\Phi}),$$

then for every t_0 the continuous process

(22)
$$F_{t_0}^*(\omega, t) = \max_{\substack{|A_{l_1} \leq t_0 \\ i-1; 2, \dots, k}} |A_{h_1} A_{h_2} \dots A_{h_k} F(\omega, t)|$$

is strictly stationary and $\mathcal{E}F_{t_0}^*(\omega,t) < \infty$.

Proof. Let $\Phi(\omega,t) = [f_n(\omega,t)]$, where processes $f_n(\omega,t)$ $(n=1,2,\ldots)$ are strictly stationary. Moreover, there are continuous processes $H(\omega,t), H_1(\omega,t), \ldots$ and an integer k_0 such that

(23)
$$\frac{d^{k_0}}{dt^{k_0}} H_n(\omega, t) = f_n(\omega, t) \quad (n = 1, 2, ...),$$

(24)
$$\frac{d^{k_0}}{dt^{k_0}}H(\omega,t) = \Phi(\omega,t)$$

and $H_1(\omega,t), H_2(\omega,t), \ldots$ converges to $H(\omega,t)$ for almost all ω uniformly in every finite interval:

(25)
$$H_n(\omega, t) \rightrightarrows H(\omega, t)$$
.

Assume that equality (21) is satisfied and $k > k_0$. Put

$$\begin{split} F_n(\omega,t) &= \frac{1}{(k-k_0-1)!} \int_0^t (t-u)^{k-k_0-1} H_n(\omega,u) du \quad (n=1,\,2,\,\ldots), \\ F_\infty(\omega,t) &= \frac{1}{(k-k_0-1)!} \int_0^t (t-u)^{k-k_0-1} H(\omega,u) du \,. \end{split}$$

Then, according to (23), (24) and (25),

(26)
$$\frac{d^k}{dt^k} F_n(\omega, t) = f_n(\omega, t) \quad (n = 1, 2, ...),$$

(27)
$$\frac{d^k}{dt^k} F_{\infty}(\omega, t) = \Phi(\omega, t)$$

and

(28)
$$F_n(\omega,t) \stackrel{?}{\Rightarrow} F_{\infty}(\omega,t).$$

Further, according to (26), we obtain

$$\Delta_{h_1}\Delta_{h_2}\ldots\Delta_{h_k}F_n(\omega,t)=\int\limits_t^{t+h_k}\int\limits_{x_{k-1}}^{x_{k-1}+h_{k-1}}\ldots\int\limits_{x_1}^{x_1+h_1}f_n(\omega,u)dudx_1\ldots dx_{k-1}.$$

From this equality it immediately follows that the process

$$F_{n,t_0}^*(\omega,t) = \max_{\substack{|h_i| \leqslant t_0 \\ |h_i| \leqslant t_0}} |\varDelta_{h_1} \varDelta_{h_2} \ldots \varDelta_{h_k} F_n(\omega,t)| \quad (i = 1, 2, \ldots, k)$$

is strictly stationary. Since, according to (21), (22), (27) and (28),

$$F_{n,t_0}^*(\omega,t) \stackrel{\rightarrow}{\Rightarrow} F_{t_0}^*(\omega,t)$$
 when $n \to \infty$.

the process $F_{t_0}^*$ (ω, t) is also strictly stationary.

From the assumption of Lemma it follows that there are a continuous process $G(\omega,t)$ and an integer k_1 such that the expectation $\mathcal{E}|G(\omega,t)|$ is bounded in every finite interval and

$$\frac{d^{k_1}}{dt^{k_1}}G(\omega,t)=\varPhi(\omega,t),\quad \frac{d^{k_1}}{dt^{k_1}}\mathcal{E}G(\omega,t)=E\bigl(\varPhi(\omega,t)\bigr)\,.$$

Let $k > k_1$. Then the equality

$$\Delta_{h_1} \Delta_{h_2} \dots \Delta_{h_k} F(\omega, t) = \Delta_{h_1} \Delta_{h_2} \dots \Delta_{h_k} \frac{1}{(k - k_1 - 1)!} \int_0^t (t - u)^{k - k_1 - 1} G(\omega, u) du$$

is true. Consequently, for any $|h_i|\leqslant t_0$ $(i=1,\,2,\,\ldots,\,k)$

$$|A_{h_1}A_{h_2}\dots A_{h_k}F(\omega,t)| \leqslant 2^k \int\limits_{-|t|-kt_0}^{|t|+kt_0} (|t|+kt_0-u)^{k-k_1-1} |G(\omega,u)| du.$$

Hence, according to (22),

$$\mathcal{E}F_{t_0}^*(\omega,t) \leqslant 2^k \int\limits_{-|t|-kt_0}^{|t|+kt_0} (|t|+kt_0-u)^{k-k_1-1} \mathcal{E}[G(\omega,u)] du.$$

Putting $k_{\phi} = \max(k_0+1, k_1+1)$ we obtain the assertion of the lemma.

V. Ergodic theorem. For every generalized process $\Phi(\omega, t)$ and constants A, B we define the integral $\int_{t+A}^{t+B} \Phi(\omega, u) du$ by the following formula:

$$\int_{t+A}^{t+B} \Phi(\omega, u) du = \Psi(\omega, t+B) - \Psi(\omega, t+A),$$

where $\Psi(\omega, t)$ is a generalized process satisfying the equality $d\Psi(\omega, t)/dt = \Phi(\omega, t)$. Obviously, $\int_{-t}^{t+B} \Phi(\omega, u) du$ is also a generalized stochastic process.

THEOREM 3. Let $\Phi(\omega,t)$ be a strictly stationary generalized stochastic process for which $E(\Phi(\omega,t))$ exists. Then

(29)
$$\frac{1}{T} \int_{-T}^{T} \Phi(\omega, u) du \to E(\Phi(\omega, t) | \mathcal{F}_{\phi})$$

when $T \to \infty$. The conditional expectation $E(\Phi(\omega, t)|\mathcal{F}_{\Phi})$ is a random variable independent of t.

In particular, if the process $\Phi(\omega, t)$ is indecomposable, the right-hand side of (29) can be replaced by the constant $E(\Phi(\omega, t))$.

Proof. First we shall prove that

$$\frac{1}{T}\int_{t}^{t+T}\Phi(\omega,u)du$$

converges when $T \to \infty$. Let $k \geqslant k_{\varphi}$, where k_{φ} is determined by Lemma 3. There is then a continuous process $F(\omega, t)$ such that

(30)
$$\frac{d^k}{dt^k}F(\omega,t) = \Phi(\omega,t).$$

4

Consequently, for any t_1, t_2, \ldots, t_k the process $\Delta_{t_1} \Delta_{t_2} \ldots \Delta_{t_k} F(\omega, t)$ is strictly stationary and, in view of Lemma 3, $\mathcal{E} |\Delta_{t_1} \Delta_{t_2} \ldots \Delta_{t_k} F(\omega, t)| < \infty$. Put

(31)
$$\Gamma_T(\omega, t_1, t_2, \ldots, t_k) = \frac{1}{T} \int_0^T \Delta_{t_1} \Delta_{t_2} \ldots \Delta_{t_k} F(\omega, u) du.$$

Obviously, $\Gamma_T(\omega, t_1, \ldots, t_k)$ is a continuous process of variables t_1, t_2, \ldots, t_k . Using Birkhoff's ergodic theorem (cf. [1], XI, § 2), we infer that for fixed t_1, t_2, \ldots, t_k the limit

(32)
$$\Gamma(\omega, t_1, t_2, ..., t_k) = \lim_{T \to \infty} \Gamma_T(\omega, t_1, t_2, ..., t_k)$$

exists almost everywhere. Now we shall prove that $I_T(\omega,t_1,\ldots,t_k)$ converges to $I_T(\omega,t_1,\ldots,t_k)$ in the sense of the convergence in $I_T(t_1,t_2,\ldots,t_k)$. From equalities (22) and (31) it follows that

(33)
$$\max_{\substack{|l_{t}| \leq t_{0} \\ i=1,2,...,k}} |\Gamma_{T}(\omega,t_{1},...,t_{k})| \leqslant \frac{1}{T} \int_{0}^{T} F_{t_{0}}^{*}(\omega,u) du \quad (T \geqslant 0).$$

From Lemma 3, using Birkhoff's ergodic theorem, we infer that for each t_0 the limit

$$\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}F_{t_{0}}^{*}(\omega, u)du$$

exists and is finite almost everywhere. Consequently, there is a random variable $M_{t_0}(\omega)$, such that

$$\sup_{T\geqslant 0}\frac{1}{T}\int\limits_0^T F_{t_0}^*(\omega,u)du\leqslant M_{t_0}(\omega)<\infty$$

almost everywhere. Hence and from (32) and (33) we obtain the convergence

$$\lim_{T \to \infty} \int\limits_{-t_0}^{t_0} \int\limits_{-t_0}^{t_0} \dots \int\limits_{-t_0}^{t_0} |\Gamma_T(\omega, u_1, \dots, u_k) - \Gamma(\omega, u_1, \dots, u_k)| \, du_1 du_2 \dots du_k = 0$$

almost everywhere. This implies the convergence

$$\lim_{T \to \infty} \int_0^{t_1} \int_0^{t_2} \dots \int_0^{t_k} \Gamma_T(\omega, u_1, \dots, u_k) du_1 du_2 \dots du_k$$

$$= \int_0^{t_1} \int_0^{t_2} \dots \int_0^{t_k} \Gamma(\omega, u_1, \dots, u_k) du_1 du_2 \dots du_k$$

for almost all ω uniformly in every compact. Hence by differentiation $\partial^k/\partial t_1\partial t_2\dots\partial t_k$ we obtain the convergence

(34) $\Gamma_T(\omega, t_1, t_2, \ldots, t_k) \rightarrow \Gamma(\omega, t_1, t_2, \ldots, t_k)$ in $\Xi(t_1, t_2, \ldots, t_k)$.

Further, in virtue of (30) and (31), we have

$$rac{\partial^k}{\partial t_1 \partial t_2 \ldots \partial t_k} arGamma_T(\omega, t_1, t_2, \ldots, t_k) = rac{1}{T} \int\limits_{t_1 + t_2 + \ldots + t_k}^{t_1 + t_2 + \ldots + t_k + T} arDelta(\omega, u) du,$$

which, in view of (34), implies the convergence of

$$\frac{1}{T} \int_{t_1+t_2+...+t_k}^{t_1+t_2+...+t_k+T} \Phi(\omega, u) du$$

in $\mathcal{Z}(t_1, t_2, \ldots, t_k)$ when $T \to \infty$. Hence, according to Lemma 1,

$$\frac{1}{T}\int_{t_1}^{t_1+T} \varPhi(\omega, u) du \text{ converges in } \mathcal{Z}(t_1, t_2, \dots, t_k).$$

Since, according to (30),

$$\frac{d^k}{dt^k}\frac{1}{T}\int_t^{t+T}F(\omega,u)du=\frac{1}{T}\int_t^{t+T}\Phi(\omega,u)du,$$

and the processes $\frac{1}{T} \int_{t}^{t+T} F(\omega, u) du$ are continuous, there exists, in virtue of Lemma 2, a generalized process $\Psi_{0}(\omega, t)$ such that

(35)
$$\frac{1}{T} \int_{-T}^{T} \Phi(\omega, u) du \to \Psi_0(\omega, t) \quad \text{(in } \mathcal{Z}(t))$$

when $T \to \infty$,

Now we shall prove the equality

(36)
$$\Psi_{\mathbf{0}}(\omega, t) = E(\Phi(\omega, t) | \mathcal{F}_{\boldsymbol{\Phi}}).$$

From formula (35) it follows that there are continuous processes $G_T(\omega, t)$, $G(\omega, t)$ and an integer s such that

(37)
$$G_T(\omega, t) \stackrel{>}{\Rightarrow} G(\omega, t),$$

(38)
$$\frac{d^s}{dt^s}G_T(\omega,t) = \frac{1}{T}\int_t^{t+T} \Phi(\omega,u)du,$$

(39)
$$\frac{d^s}{dt^s}G(\omega,t) = \Psi_0(\omega,t).$$

Without loss of generality, we may assume that s is an arbitrary sufficiently great integer and there is a continuous process $F(\omega,t)$, with locally integrable expectation $\mathcal{E}|F(\omega,t)|$, satisfying the equality

(40)
$$\frac{d^s}{dt^s} F(\omega, t) = \Phi(\omega, t).$$

Since for each h the process $\Delta_h^{(e)}F(\omega,t)$ is strictly stationary and $\mathcal{E}|\Delta_h^{(e)}F(\omega,t)|<\infty$, therefore, according to Birkhoff's ergodic theorem, for any t and h the limit

(41)
$$\lim_{T\to\infty}\frac{1}{T}\int_{t}^{t+T}\Delta_{h}^{(s)}F(\omega,u)du = \mathcal{E}(\Delta_{h}^{(s)}F(\omega,t)|\mathcal{F}_{h}^{(s)})$$

exists almost everywhere and is a continuous version of the conditional expectation of $\Delta_h^{(8)}F(\omega,t)$ relative to $\mathcal{F}_h^{(8)}$, being independent of t. Further, in view of (38) and (40),

$$arDelta_{\hbar}^{(s)}G_{T}(\omega,t)=rac{1}{t}\int\limits_{t}^{t+T}arDelta_{\hbar}^{(s)}F(\omega,u)du.$$

Consequently, according to (37) and (41), for each h

(42)
$$\Delta_h^{(s)}G(\omega,t) = \mathcal{E}(\Delta_h^{(s)}F(\omega,t)|\mathcal{F}_h^{(s)}).$$

Since the right-hand side of the last equality is independent of t, we have

(43)
$$G(\omega,t) = \frac{a(\omega)}{s!} t^s + \sum_{t=0}^{s-1} a_t(\omega) t^t,$$

where $a(\omega), a_0(\omega), \ldots, a_{s-1}(\omega)$ are random variables. This implies, according to (39),

$$\Psi_0(\omega,t) = a(\omega).$$

From (42) and (43) it follows that

(45)
$$a(\omega) = \frac{1}{h^{\theta}} \mathcal{E}(A_h^{(\theta)} F(\omega, t) | \mathcal{F}_h^{(\theta)}),$$

which implies that $a(\omega)$ is measurable with respect to all the σ -fields $\mathcal{F}_{h}^{(s)}$ (0 < h < 1; $s \ge s_0$), where s_0 denotes the smallest integer for which relations (37), (38) and (39) are true. Consequently, taking into account

formulas (11) and (12), we infer that $a(\omega)$ is measurable with respect to $\mathcal{F}_{\phi} = \bigcap_{s=s_0}^{\infty} \bigcap_{0 < h < 1} \mathcal{F}_{h}^{(s)}$. Hence, according to equality (45) and property (h) of conditional expectations (p. 271), we obtain

(46)
$$a(\omega) = \frac{1}{h^s} \mathcal{E}(\Delta_h^{(s)} F(\omega, t) | \mathcal{F}_{\Phi}).$$

Further, according to theorem 1, we may assume without loss of generality that there is a continuous version of the conditional expectation $\mathcal{E}(F(\omega,t)|\mathcal{F}_{\phi})$ and, according to (40),

$$\frac{d^s}{dt^s} \mathcal{E}(F(\omega, t) | \mathcal{F}_{\phi}) = E(\Phi(\omega, t) | \mathcal{F}_{\phi}).$$

Consequently,

$$\frac{1}{h^{\theta}} \Delta_{h}^{(\theta)} \mathcal{E}(F(\omega, t) | \mathcal{F}_{\phi}) = \frac{1}{h^{\theta}} \mathcal{E}(\Delta_{h}^{(\theta)} E(\omega, t) | \mathcal{F}_{\phi}) \rightarrow E(\Phi(\omega, t) | \mathcal{F}_{\phi})$$

when $h \to 0$ (cf. [2], § I.6). Hence, in view of (46), $a(\omega) = E(\Phi(\omega, t)|\mathcal{F}_{\phi})$, which, according to (44), implies equality (36). Convergence (29) is thus proved.

For indecomposable generalized processes the assertion of the theorem is a direct consequence of property (e) (p. 270) of conditional expectations.

References

[1] J. L. Doob, Stochastic processes, New York-London 1953.

[2] K. Urbauik, Generalized stochastic processes, Studia Mathematica 16 (1958).p. 268-334.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 5. 12. 1957