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The conditional expectations and the ergodic theorem for strictly
stationary generalized stochastic processes

by
K. URBANIK (Wroctaw)

L Introduction. In the present note we shall consider generalized
stochastic processes defined in [2]. We say that a generalized stochastic
process @ (w, t) is strictly stationary if there exists a sequence {fn(w , t)}
of strictly stationary continuous stochastic processes such that &(w, t)
= [fa{w,?)]. Let F(w,t) be a continuous stochastic process and set
4 F(w,t) = F(o,t+h)—F(w,t). Then it is easy to prove the following
assertion:

The generalized process d°F(w,t)|dt" (b >1) is strictly stationary
if and only if for each hy, ks, ..., hy the process Ay, A, o dpy, Fle, 1)
is strictly stationary (in the usual sense).

By Z(t,1, ..., %) we shall denote the space of all generalized sto-
chastic processes depending on variables ¢, 1%,...,%. Suppose that
A (3, =1,2,...,k) are real constants and det|i;] % 0. Let
D(w,ty, 1y, ...,ktk) = [f,,(w;it,, s ..., t)]. Then the generalized stochastic

process P{w, > Ayly, ..., ) Ayt) is defined by the formula
=1 =1

k

;’zﬁtj)} .

k E
.72/1kjtj-) = [f,,(w, Zlﬁtj, ey
j=1 =

7=1

k

(D((U,Z}qjtf, ..
j=1

It is easy to verify that the convergence Op(w,t,,...
D(w, by, ..., 1) when T'— co implies the convergence

k
o D) gty
F=1

(The convergence of generalized stochastic processes is defined in [27]).
Hence in particular we obtain the following

Levma 1. Let Pplw,t)eZ(t). Then Pplw,ti+...+t)ed(ly, ..., t)
and the convergence of @r(w, t,+...+1;) when T — oc implies the conver-
gence of Prlw, t;) (in (8t, ..., &%)).

) te)

k k k
@T(w,Zlet,-, ...,Zlkjtj) — @(0),211,-f5, ..
= =1

=1
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Il Conditional expectations of generalized stochastic processes.
In this paper we agsume that the probability measure is complete. Let F
be a o-field of measurable o sets containing all w sets of probability 0.
We say that a generalized stochastic process P(w,t) is measurable with
respect to F if there exist an integer & and a continuous stochastic process
F(w, 1) such that *F(w, 1)/d* = &(w, {) and for any fixed %, the random
variable F(w, 1) is measurable with respect to F.

Let f(w,?) be o continuous stochastic process. By ¢(f(o, HIF) we
shall denote that version of the conditional expectation of f{w, t) relative
to F which is a continuous process, provided that the above-mentioned
version exists.

We say that the generalized process ¥(w, t) is the conditional expec-
tation of ®(w,1t) relative {o F if there arc an integer k and a continuous
process F(w,t) such that the expectation ¢ (F(w, ?)||F) exists, the
expectation €|F(w,1)| is integrable over every finite interval and.

o

a
2 (B0, | F) = ¥lw, D).

&
Pl t) = (o, 1),

From the definition of the equality of generalized stochastic processes
(ct. [2], §1) it immediately follows that ¥(w,?) does not depend upon
the choice of a continuous version of the conditional expectation of ¥ (w, t)
relative to F.

Now we shall prove that y(w, t) does not depend upon the choice of
an integer % and o comtinuous process F(w,1). In fact, assume that
Fi(w,?), Fo(w,1) are continuous processes, the conditional expectatiors
E(Fy(w, DIF), CE(Falw,1)|F) exist, the expectations C|F(w,)l,
€\ Fy(w, )| are integrable over every finite interval and for some ke =k

dn Ky
Wﬁﬁ(a},t):(b(a),t), ~W2—Fz(w,t) = @ (w, 1).

The last equalities imply

[
1 g oo ,
F Ty oj (t—-w) s~ (0, w) dut
kg1
O Falo, 1) = »FTZ s(0)f i k>

kg—1

Fyw, 1)+ Z a(0)d it

j=0

ky :'kla
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where a;(w) (j =0,1,..., k—1) are random variables. Put
Ay = {o:&(Fy (o, DIF) =0}, B ={o:&(Fi(o,)|F) <0}
Obviously,
@ [IEF (@, )1F) do = [ E(Fi(w, 1)1F)do— [ €[, 1)|F)do.
J .

Ay By
where 2 denotes the space of points . Since 4;, BieF, we have

[E(Fylo. 01F)do = [ Filo, hdo < C|Fy(o, 1],
4y Ay

_ JeFi(o, 0F) do = — [ Filw, hdo < EIF (o, 1)
By B

Hence and from (2) it follows that [[€(Fy(w,!)|F)|do is integrable over
2

every finite interval. Since the value of an absolutely convergent iterated
integral is independent of the crder of integration, we obtain for &, > &,
4

1 —ky—1
6(@3?;@"'!‘@—%)1«, By F,(w,u)du]?)

_ 1
= (ha—l,—1)!

Hence and from (1) we infer that

kp—1

(X as(@)?1)

. =0

i
j (t— w1 E (P (0, w)|F) du.

1]

exists. Comsequently E{g(w)|F) (7 =0,1,... and the

following equality holds:

. ky—1) exist,

i
1
—_— . Ky —ky—1 & - n
(ky—F,—1M! 5{(1 “ ' C‘Fl(w’ u)lj)d/u i
N kg—1
E(Fe(w, OIF) = + Y E@F) >k,
j=1
fg—1 )
EFy (0, IF)+ Y Elag@)F)E it ks = ky.
=0
Thus
da e
ced 'd‘bl?l‘é(Fl(W, HF) = Et—k;’(f(l"’g(w, HF),
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The conditional expectation of @ (w, t) relative to F we shall denote

by B(P(w, 1)|F)- . o
The following statements are direct consequences of the definition

of conditional expectations of generalized processes:
(8) E(®(w,1)F) is measuradle with respect to F.
(b) If B(®y(o,)F) (§=1,2,...,m) cwist and A, Ay, ..., Ay, are
m

‘constants, then B(Y 1 P;(w,1)|F) ewists and
F=1

m n

E(; 14®(0, )|F) = g{’ 2B (0, 01T

= d ‘
(¢} Ij B(P(w, 1)) evists, then B ({if~(l)(w,t)l7) ewists  and

E(% D(w, T)I?) = %E(@(w, )| F)-
() E(E(qs(w,t)ﬁ)) = B(O(w, 1))
#  (The expectation of generalized stochastic processes is defined in
[2], §L)
() If F is the o-field of all sets [having "probability 0 ov 1, then
B(® (0, HF) = B(®(o, ).
(£) If F,cF,, then

B(B(@ (w0, 0]F)|Fs) = B(D (o, )IF).

Now we shall prove the following assertion:

(g) If ®(w,?t) is measurable with respect to F amd 4f ,E(fb(w,t)’
ewists, then B(P(w,1)|F) = O(w, ).

Proof. From the agsumption it follows that there are continuous
processes f(w, t), g(w,?) and an integer k such that

gk I

; d
(3) ﬁf(w,t) = Q(w, t) = P sg{w, ),

the expectation €lg(w,t)| is bounded in every finite interval and f(w,?)
is measurable with respect to ¥. Put

13
BMw,t) = f(w, T')"Zf((o, ) ( (t——ml)...(ﬁ—d'j_l)...(t——w;1+1)-- « (= o) N
. =t

Cp=—y) - (g — By _q) o (= 1) oo (2 — D)

icm
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where @y, &,, ..., % are constants and @; # a; for i 5= . Evidently k(w, )
is measurable with respect to Z,

4) Mo,2) =0 (j=1,2,...,%)
and
dk
(5) Ttk'h(w,t) =¢((D, t).
Hence, according to (3), we obtain the equality
k-1
(6) h(w,1) = g(o, 1)+ D ay(0)?,
8=0

where a,(w) (s =0,1,...,k—1) are random variables. From the last
equality and from (4) it follows that
k-1
Za,(w)w?:- —g(w, ) i=1,2,...
8=0
Since &lg(w,?)| < oo, the last equalities imply &ag(w) < >
(¢ =0,1,..., k—1) and consequently, in view of (6), € |k(w, )| is bounded
in every finite interval. Therefore h(w,?) i3 a continuous version of the
conditional expectation of %(w,t) relative to F: h(w,?) = é‘(h(w,t)[‘] .
Hence, taking into account equality (5), we obtain @(w,?) = E(D(w, t)|F).
Agsertion (g) is thus proved.
From the assertions (a), (f) and (g) it follows that
(h)y If F,CF, and if E{q)(w, t)]_j‘fg) 18 measurable with respect to F,,
then
B(® (0, 1)|F)) = B{D(w, 1)|Fy).

TEEOREM 1. If the expectation E(@(w, t)) exists, then also the condi-
tional expectation E(di(w, t)]‘]) exists.

Proof. From the assumption it follows that there are s continuous
process F(w,t) and an integer % such that €|F(w,t)| is integrable over
every finite interval and .

a* a .
(7) zz?.lf’(w,t) = O(w, 1), d—tkC(F(w,t)) = B{® (o, ).

Let I, denote the interval » <.t <n-+41 (n =0, +1,...). By %,
we shall denote the o-field of Lebesgue measurable subset of I,,,and by 9B
the o-field of Lebesgue measurable subset of the line. Since ¢|#(w, t)|
is integrable over I,, (n =0, +1,...), |F(w, t)| is integrable over @x I,
(n =0, 41,...). Consequently, according to the Radon-Nikodym theo-
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rem, there is a function ay(w, 1) measurable with respect to F X B3, such
that for each AeFXNW,

(8) [ an(@, wawiu = [ (o, w)dodu.
A 4

Moreover,
[ lew(e, w)|dowdu < [ E€[F (o, u)ldu.
I

axly

Since, according to Fubini's theorem, for almost wll w, ay(w,1?) is
Lebesgue measurable, the last inequality implies that, for almost all w,
o, (@, 1) is Lebesgue integrable over I,,. Put

9) alw,t) = ap{w,t) it tel, (n =20, 41,...).

Then, for almost all w, a(w,?) is Lebesgue integrable over every
finite interval. Moreover, a(w,?) is measurable with respect to F x93,
Consequently, the function

t
Blew, 1) = fa(w, ) de
[

is measurable with respect to X 9. Henece, in view of Fubini’s theorem,
for almost all ¢ the w-function f(w, ?) is measurable with respect to F.
Taking into account the continuity of the process (e, ), we infer that
for all ¢ the w-function B(w, ?) is meagurable with respect to . Further,
from (8) and (9) it follows for every 4¢F that

t
[Ble,H)do = [ [ F(o, ydudo .
a 40
Consequently,
i
Blw, 1) = c(fp(w,u)duier) )
0
) L
Since the expectation | [F(w, w)du| is integrable over every finite
0
interval and, according to (7)

dk+1
WJ.F(OJ, wydu = d(w, t),
b

the conditional expectation of D(w, t) relative to F exists.
The theorem is thus proved.
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Examples. 1. Let »(w) be a random variable and let P{»(w)
< t|F) be a version, measurzble with respect to (w,?), of conditional
probability distribution of »(w) relative to . Put

Flo,t) = maX(O, t—w(m))—i—min(o, »(w)) .

Obviously, F(w, t) is a continuous preeess, d2F (w, 6)/d? = 6(t—»(w))
and |[F(w, )| < [f|. From the last inequality we infer that E|[F(w, )|
is integrable over every finite interval. Moreover, it is easy to verify that

t
E(F (0, 0)F) = [Pr(o) < ulF)du.
[}
Consequently,

' d
E(8(t—»(w))|F) == Pv(w) <UF).

2. Let &(w) be a random variable with a continuous and positive
density function g(z). Put

cos E(w)t 1—cosé(w)t
H(w,t) = ——F—— Flw,t) = ————t .
((D, ) an(é'(o))) ’ (w: ) 27;52(0))9(5(60))
Obviously, H(w,?) and F(w,!) are continuous processes and

&F(0,1)/df = H(w,t). Moreover, & |F(w,1)| = 3.
Let 4 = {w: &(w) > 0} and let F be the smallest o-field containing 4.
Then it is easy to verify that |

E(F (0, 1)|F) = dltla(o),

where
1
A
2P (4) ety
a(w) = 1
—_if —4.
|2P(.Q——A.) wel—A

Consequently, E(H (o, )|7) = a(»)d().
IIL. Invariant o-fields. Let @ (w,t) be a strictly stationary gene-
ralized process. Let F(w, ) be a continnous process such that

k

d
(10) (—lt_"F(w’t) = P(w,1).

Studia Mathematica XVIT 18
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- Then for any h the process APFlw,t) is strictly stationary 1),
By 7 we shall denote the o-field of invariant w sets induced by the
process AP F (w, 1) (cf. [1], XT, §1). It is easy to see that T does not
depend upon the ehcice of a continuous process satisfying equality (10).
Let H(w,f) be a continuous process such that d* H(q,1)/dd+
= @(w, t). Since

i+
AFH (0, 1) = [ MHF (0, w)du,

t

we have

(11) T C g,
Put

(12) Fo=( N F,

ke=lty 0<th<l

where k, denotes the firgt integer & for which there exists a continuous
process F(w, t) satisfying equality (10). F, is called the invariant o-field
induced by D(w, ).

A strictly stationary generalized process @(w,t) is indecomposable
if all sets belonging to ¥, have probability 0 or 1.

The following theorem is o version of the zero-one law for generalized
processes:

TruorEM 2. Strictly stationary generalized processes with independent
values?) are indecomposable.

Proof. Let &(w, ) be o strictly stationary generalized process with
independent values. There are then a continuous process F(w,?) and
an integer k such that d*F(w, 1)/dt* = &(w, 1) and, for any h, APF(w,1)
is strictly stationary. Moreover, for any & > 0, A¥F(w,?) has kh-inde-
pendent values (see [2], IL 4), i, e. for every #, 1, ..., Ty Upy Ugy eeey Um
satisfying the inequality [f;—u| > Fh (4, =1, 2, ..., m) the random
vectors

PP (0, ), A0F (0, ), ..., APF (0, tn)y,
CAPF (0, w), APF (0, u), ...y APF (0, um)>

are mutnally independent. To prove our assertion it suffices to ghow
that all sets belonging to Fi (0 < b < 1) have probability 0 or 1. The

Y ADf0) = anfe), V1) = 4, 4P
*) Generalized processes with independent values are defined in [2].

icm®
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proof of the last statement is similar to that of the stationary processes
with independent increments. In fuct we can immediately deduce that
for every A «Ff there is a seb 4, such that P(4d—Ay)+P(dy—A4) = 0
and for each T the set 4, belongs to the o-field spanned by the sets of the
form

8, 2) = {w: APF (0, 1) < o}

Moreover, there are a sequence of sets B,, B,, ... and a sequence of
real numbers 1,,1,, ... such that ’

lim (P(dy—B,)--P(B,—4,)) = 0

=T, —cc <2< o).

and B, belongs to the o-field spanned by sets S (¢, @), S(ts; ), ..., S(ty,2)
(—oo<®<oo)Let T—# > kh (j =1,2,...,n). Then, according to the
kh-independence of the values of APF(w,t), we obtain P(4,~B,)
= P(4,)P(B,). Hence, when n — oo, P(4,) = (P(4,))?, which implies
P(4,) = 0 or 1. Consequently, P(4) = 0 or 1. The theorem is thus proved.
1V. Lemmas. In the sequel we shall use the following
LEMMA 2. Let fr(w, t) be a family of continuous stachastic processes and

a?‘fl"

.y 1) when T — oo, then Dp(w,?)

(13) Dp(w, 1) = (o, t).

If Op(w,t) converges in E(t,t,, ..
converges in S(t)3).

Proof. From (13) and from the convergence of Pr(w,t) in
E(tyy ...y %) it follows that there are continuous processes Fr{w, i),
Hr(w, t,...,%) and an integer s such that
. & '

(14) %,*Fr(w; ) = Or(w, 1),
e

(18) T

Hp(wytyyees i) = Pplw, t)

and Hr(w, 4, ..., 1) converges when T — oo for almost all « uniformly
in every compact. Let @,y Ty ..., Ty e real numbers for which z; # 5
if 45 4. Put ‘

& k
@) VO = [[o-a), Grie,b,. i) = Frio,w) [ [ 76,
) . [0 ’

%) The assumption that @p(w, t) are derivatives of the same order of continuous
processes can be omitted. -
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Obviously, Gr(w, b, ..., &) are continuous processes,

aks

— Dp(w,t
... o, z(@; )

Gr(w, bty ...y ) =

and

A7) Gr(w, by, ...
Hence and from (15) we obtain the equality

(18)  Gr(w,tyy oy ly) = Hy(w, by oovy b))+

k s—1

+Z’ D A0yt eyt

r=1 i=0

) =0 i th=a (r=2,3,..,ki=1,2,..59).

r—11 r+1; cevy tlc)t:-

Putting in the last equality ¢, = @; (j =1, 2,...,8; % = 2,3,.., k)
and taking into account equality (17) we obtain the linear equations
for the functions AZL(w, tyy.eey tueyy bagpry-oer &) (E=10,1, ..., 8—1;
n=2,3,...,k). Hence it follows that the function Ar;(w, %, ...,
by 1=0,1,...,s—1;n =2,3,...,k) is a line r combination
HT((D, By eevybn_yy @,y tn-i-ly iy tlc) (? = 1, 2, ooy 6‘),
Af(oy by ooy s %) bagdy oy broty By o BV (F=1,2, 0,857 %y
r=1,2,...,k; m=0,1,...,s—1). Consequently, taking into account
formula (18) and the convergence of Hyp(w, 4, ..., %', we obtain the fol-
lowing equality:

tu-1,

R TRT
of the functions

8§~1

+ Z_sz'(w,tg,i“ ceey

=0

Grlo, b, ..., t) = Hny(w, &, ..., Be) tlc)t{'i‘

ta—1

+ 2 Z Cnmy [IFRITEN

egremsk 1,7=0

tr—u tr+17 LN t‘m-—ly tm-(-!.y ey tk)t;:tgny
where Hpy(w,t, ..., %) converges when 7I'— co for almost every
uniformly in every compact. Putting in the last equ.lity #, = a;, &, = %
(n,1=2,8,...,k; 4, j=1,2,...,8) we obtain the linear equations
for the functions Chy(w, 1, .. i1y tiiy ...y &), Which
implies thet  CoRyp(w,thy+eey tacyy fngrs ooen gy gy ooep b)) 19 @ linear
combination of the functions Ha(w, b, ..oy tuyy @pytugry eey sy Toy
try ooyt Crmis (@3 Ty ooyt ity DF (0,8, ooy )8 Wikh b, = 5, 8, = 4,
((r,m) FN0, 0,0 =1,2,...,8;4,5=0,1....,8—1).
By iterating this procedure we finally obtain the equality

bty gay -eny

8-1

(19) Grlw,t, ..., t) = Hypglw, by, ..., B+ be(w, fyy oeny )]
7=0
+ afl,iz,...,i,‘(w)tf”gz 1,

0y, By, .0, 1781

icm
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where Hp y_i(w,%,...,1%) converges when T -> oo for almost all w
uniformly in every compact. Let ¥a, ¥s, ..., ¥x be a system of real numbers
k

such that []V(y,) = 1. Then, in view of (16), Gr(w, 1, Yoy ¥ay -+, Yx) =
=2 .

= Fr(w,t). Pub

8—1
Wolo, 1) = — 35 (0, 42, .o, y)—
=0

— 2 a:;[;“ (@) Pyl Lyl

and, in view of (19), Fr(w,t)+Wr(w,?) converges when T — oo for
almost all o uniformly in every finite interval. Consequently, according
to (14) and (20), Or(w,!) = d*(Fr {»,t)+Wrl(w, 1)}/d® converges in
E(t). The lemma is thus proved.

Levma 3. Let D(w,t) be a strictlly stationary gemeralized process for
which T(D(w, 1)) exists. There is then an inieger kg such that if a continuous
process F(w,t) satisfies the equality

14
(21) —d—t,;—F(w,t)zdi(w,t) (k= ke,
then for every i, the comtinuous process
(22) Fto(m, 1) = max |4, Ay, ... 4 Flo,i)

Ny 1|<’0 * %

is strictly stationary and CFtn(co t) < oo.

Proof. Let (w,?) = [fz(w, t)], where processes f,(w,?) (n = 1, 2, )
are strictly stationary. Moreover, there are continuous processes

H(w,t), Hy(w,t),... and an integer k, such that
P
(23) d—tkn‘Hn(w;t)=fn(w,t) (n=1,2,..),
ko
(24) (0,0 = Do, 1)

and H,(w,t), Hy(w,1t),... converges to H(co t) for almost all o uni-
formly in every finite interval:

(25) Hn(w,t)ZH(w,t).
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Agsume that equality (21) is satisfied and & > k,. Put

3

1 i€y~
Fy(@, 1) = =gy f(twu)"""’ oo, wdu  (n=1,2,...),
“hm D1 ]
1 i
Fof,) = G =Ty1 f (=) (0, ) s
T

Then, according to (23), (24) and (25),

k
a Fo(w, 1) = faw, 1)

(26) 7 (n=1,2,..),
dk

@) T Fl(@,1) = (0, )

and

(28) Fp(w,t)3 Fo(w,t).

Further, according to (26), we obtain

z1+hy

e, wduday.. ...
1

By Ty P
Ahldh, s A;,kF,L(w, t) = f
t

Tp—1

From this equality it immediately follows that the process

,“"((D t) = max IAhlAhz

Ahan(wy B
i<ty

(6 =1,2,...,k

is_strictly stationary. Since, according to (21), (22), (27) and (28),

Frplo, )3 Fy(w,1)  when 2 —> oo,

the process Fy (,1) is also strictly stationary.

From the assumption of Lemma it follows that there are a conti-
nuous process G(w,?) and an integer %, such that the expectation
C|G(w, ¥)| is bounded in every finite interval and

ky k

mG(w,t) = O(w, 1), w —i C8w, 1) = B(P(w, 1)).

Let % > %,. Then the equality

N [
1
A,.,A,,,...A,,kF(w,t) = A,,IA,,’.,,Ahkmf(t—u)k—m-xa(w,u)du
. . — Ry '0

icm
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is true. Consequently, for any ] <t

1t +¥

(t=1,2,..., k)

[ny dng o Ay P00, 0] <25 [ (14 Fto— )Y G (0, u)| du .
[t Kty
Hence, according to (22),
it} +ky
CFy(w,1) <2 [ (li+kto— uf172C |G (@, w)l du
1t —kfy

Putting %, = max(k+1,%-+1) we obtain the assertion of the
lemma.

V. Ergodic theorem. For every generalized process ®(w,?) and
t+B
constants A, B we define the integral [ @(w,u)du by the following
t+4d
formula:
>£+B
[ o0, v)du = ¥(o,t+B)—¥(0, 1+4),
b4
where ¥ (w, t) is a generahzed process satisfying the equality d¥(w, )/dt

= &(w, t). Obvmusly, f (P(w, «)du is also a generalized stochasgtic process.

THEOREM 3. Let @(w, 1) be a sirictly siationary generalized stochastic
process for which E(®(w,1)) exists. Then

i+T

(29) f @ (a,4)du — B(0(w,)|F)

when T — oco. The conditional expectation E(@(co ) Fg) 8 a mndom
variable independent of t.

In particular, if the process ®(w,t) is indecomposable, the right-hand
side of (29) can be replaced by the constant E(® (v, ).

Proof. First we shall prove that

47
Tf B (0, u)d

converges when T — co. Let k > k,, where &, is determined by Lemma 3.
There is then a continuous process F(w,t) such that

U

d
Flw,t)

- = (0, ).

(30)
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Consequently, for any &%, ..., & the process 4,4, ..

" . Al}cF ("”7 t)
is strictly stationary and, in view of Lemma 3, € |4, A,2

Ay, F(w,1)] <oo.

Put
T
(31) Ip(w, by tyyoony ) = f Ay, . Plw,u)du.
Obviously, I'p(w,ty,...,%) is a confinuous process of variables
U1y tay - tz. Using Birkhoff’s ergodic theorem (cf. [1], XI, § 2), we infer

that for fixed t,,1,,...,#, the limit

(32) T(w,tyy 1y .00y b) =11'im1’1'(wa by tay oovy b)
-0
exists almost everywhere. Now we shall prove that ['p(w,t,...,1,)

converges to I'(w,?,...,%) in the sense of the convergence in

8(ty, sy <.y ). From equalities (22) and (31) it follows that
1 T
(33)  max |Tn(w,ty, ..., 1) g——fﬁ,"u (@, 6)du (T > 0).
sk T

39gn ey

From Lemms 3, using Birkhoff’s ergodic theorem, we infer that for
each t, the limit

lim —
Tesoo T

.{Ft" w, u)du

exists and is finite almost everywhere. Consequently, there is a random
variable M; (o), such that

12 Tfl"to (0, W) < i) < oo

almost everywhere. Hence and from (32) and (33) we obtain the conver-
gence

: L) fy

1111_1130 {0 Jz; _tfIFT(w,u,,...,u,c)——l‘(w,ul, vy W) Aty dug. . duy, =0
~h ]

almost everywhere. This implies the convergence
4ty U
hg;of af ...fI’T(w,ul, woey Uy) AUy Ay, . du,
’ i iy
—ff fr(w Uny ey Ug) Bty Aty . .. gy
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for almost all o uniformly in every compact. Hence by differentiation
0%/dt,0t,...0t, we obtain the convergence

(84) I'r{w,tyytyy..uy

Further, in virtue of (30) and (31), we have

b)) >y by tay s ty) 0 Bl tey .0y b)-
byt g T
3 tk) = “1*7‘ @(w, 3

t g+ H

ak

T Tp(w, by, tyy e
Gty 5, T @ ot

)du,
which, in view of (34), implies the convergence of

1 bty it T

= D(w, u)du

i+t i
in B(ty, tsy .+, &) when T — co. Hence, according to Lemma 1,
{4+ T
Tf D(w, u)du converges in H(ty, s, ..., &)-

b

Since, according to (30), i i
t+T 4T
dtka Fm,u)du“_wf ®(w, u)du,
4T

and the processes Tf F(w, u)du are continuous, there exists, in virtue
13

of Lemma 2, a generalized process ¥y(w, ) such that
t+T

(35) —f B (0, w)du - Polw, 1)  (in B(t)

when T'— oo,
Now we shall prove the equality
Po(w,t) = B(P(w, )]F o).

From formula (35) it follows that there are eontmuous processes
Gr{w,t), G(w,t) and an integer s such that

(36)

(37) Gr(w, 1) = G, 1),
8 t+7
(38) —5Gr(o, ) =—f B (o, w)du,
d-?
(39) 6o, ) = ¥o(w, ).
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Without loss of generelity, we may assume that s is an arbitrary
sufficiently great integer and there is a continuous process F(w,t), with
locally integrable expectation &|F(w, 1), satisfying the equality

8

d—F(w, 1) = O(w, 1).

(40) i

aSince for each h the process APF(w,?) is strictly stationary ang
E|APF(w, )] < oo, therefore, according to Birkhoff's ergodic theorem,
for any ¢ and A the limit : ‘ '
1 7
Iy el ( "
(41) b T,f APF (0, w)du = (4D T (w, )|FP)

exists almost everywhere and is a continuous version of the conditional

expectation of A F(w, 1) relative to 7, being independent of t. Further

in view of (38) and (40), ’
ter

1
A9Gp (o, ) =“17,f AP (0, u)du.

Consequently, according to (37) and (41), for each h

(42) R0, 1) = (AP P (o, FY).
Since the right-hand side of the last equalibty is independent of ¢,
we have ,
a({w) ©
4 _—
(43) Glo, 1) =2 r’+2a,(w)tf,
I=0

where.a(w),ao(w),...,a,-l(w) are random variables.
according to (39),

(44)

This implies,

Po(w, 1) = a(w).
From (42) and (43) it follows that

(15) ala) = =2 (AP, i),

z;hichhimplies that a(w) is measurable with respect to all the o-fields %’)
relai' <1; s>>s), where s, denotes the smallest integer for which
1ons (37), (38) and (39) are true. Consequently, taking into account

icm®
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formulas (11) and (12), we infer that a(w) is measurable with 1'espeét

oo
to Fo = (N F¥. Hence, according to equality (45) and property (h)
=8y 0<hi<l
of conditional expectations (p.271), we obtain

1
(46) a(w) = ?é(Aﬁf)F(m, 1)|F o).
Furthef, according to theorem 1, we may assume without loss of
generality that there is a continunous version of the conditional expectation
E(F(w, 1)|F,) and, according to (40),
d

& (P, 01F) = Bo (0, DiF).

Consequently,
1 1
5 WEF(@,8]Fo) = 25 E(MB(w, 1|F o) > B(@(w, ]F4)

when 7 — 0 (cf. [2], § 1.6). Henee, in view of (46), a(w) = E(D(w, 1)|F4),
which, aceording to (44), implies equality (36). Convergence (29) is thus
proved.

For indecomposable generalized processes the assertion of the
theorem is a direct consequence of property (e) (p.270) of conditional
expectations.
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