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STUDIA MATHEMATICA, T. XVIL (1958)

Proof of a theorem of the brothers Riesz
by

P. KOOSIS (Montpellier)*

1. In this paper we consider functions F(z) of bounded variation
defined on some segment or interval (finite or infinite) of the real line.
The funetions F(z) will always be assumed to be normalized, i.e.,
F(z) = §[F(z+)+F(r—)]. If a certain property holds for all z save
possibly those belonging to a set M with f wldF (z)] = 0, we shall say
that the property holds a. e. (dF'), agreeing that *“a. e.” used by itself shall
mean “almost everywhere with respect to Lebesgue measure®.

Our proof of Riesz’ theorem shall be based on

THEOREM 1. A necessary and sufficient condition for F(x) to be
absolutely continuous is that F'(x) ewist and be finite a. e. (AF).

The referee has informed me that this theorem is known, being
contained in [3], p. 125-128, so we shall restrict ourselves to sketching
a proof. .

Necessity is evident; for by a theorem of Lebesgue ([4], §11.41),
F'(x) exists and is finite a. e., hence a. e. (dF) if F(z) is absolutely con-
tinuous. As for the sufficiency; if F'(x) exists and is finite a.e. (dF),
a theorem of Egoroff ([4], p. 339) shows that for any & > 0 there exist
& € < oo, & compact set M, and an hy > 0 such that [ |dF (z)] < &, M’
being the complement of M, whilst A7 [F(z+h)—F(2)]] < C, weM,
|h] < hy. It then follows almost immediately, that if £ is any closed
subset of M with Lebesgue measure zero, [pdF(z) = 0. (The argument
is obvious; one uses finite coverings of the compact set E by disjoint
intervals and the simplest properties of Lebesgue-Stieltjes integrals).
Thus, if D is any closed set of Lebesgue measure zero, |fpdF ()|
< ]D fMdF(m)l—i-L [M dF (z)| < & or, since £ is arbitrary, [pdF(z) = 0.

This last demonstrates absolute continuity of #(z).

Remark. The same argument shows, more generally, that F(x)
is absolutely continuous on any set where its derivative exists a.e. (dF)
and is finite.

* Fulbright scholar.
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2. LeMMA. Let V(w) be non-decreasing. V'(x) ewists, finite or infinite,
a. e (dV).

(This holds with V(x) replaced by any function F(z) of bounded
variation: for if V(») denotes the total variation of F(z), AF (2){AV (z)
exigts and has absolute value one a.e. (dV).)

Proof. The function Y (#)= V(z)-+a is strictly increasing; let
X(y) =inf{z: ¥Y(#) > y}. X(y) is non-decreaging, whence X'(y) exists
a. e.; that is, on the set of points of continuity of V (), (V’(m)+1)—1
= X'(¥ () exists a. e. (d¥), hence a. e. (d¥). On the other hand, V' ()
clearly exists and equals oo at each point of discontinuity of V(z).

TeeoREM 2. (of F. and M. Riesz; see [5], p. 158, [2], and [1]). Let
F(0) be of bounded variation on [—mn,n] and of period 2x. If
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is analytic in 0 < r < 1, F(0) s absolutely continuous.

Proof. Let ¥ (6) be the total variation of F(6); it is enough to show
that V(6) is absolutely continuous on (—m, #). For one muy then apply
the same result to F(6+-/2) and conclude that F(6) is absolutely conti-
nuous everywhere, including at & and —x. Form
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T

av(0);

let o(rd”®) be the harmonic conjugate of wu(re®) in 0  r < 1, and let
g.(z) =u(2)+w(z). In |o| <1, g(=) is regular and Ry(2) = w(z) >0
since V() is non-deereasing.

) Now by the lemma, V'(0) exists a. e. (@V) in (—ax, x), finite or infi-
nite. Let B = {0; —x < 6 < =, V'(0) = oo}, and let B’ be the comple-
ment of B in (—=n, ).

(i) For feR, PT"‘(MW) = oo, by a theorem of Fatou ([2], p.52),
whence g(re’) - co in the right-half plane as »— 1.

(ii) Since Rg(z) >0, (1+4g(re”))™ is bounded, 0 <r < 1, there-
forc.s, py onother theorem of Fatou ([2], p. 145-146), this last tends to
a limit for almost all 6 ag r->1. In particular, limg(re'®) exists a. e.

r—1

on ¥, finite or infinite. By the lemma, V'(6) is finite a.e. (dV) on F',
and the remark of § ltshows that a property which holds 2. e. on &' holds
there a. e. (dV); this is thus the case with the limit under consideration.
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In fine, limg(re®) exists a.e. (dV) on (—mx,sn), finite or infinite.
=31

Assume that V() is not absolutely continuous on (—m, ).
« Then, if Q ={0; —n <0 <z, limg(re”) = oo}, we have EC @
-1

by (i), and the lemma, together with theorem 1, implies that fodV (§) >0.
Or, since V() is the total variation of F(f), we can find an interval
JC(—n, %) with [o6”dF(6) 0, where Q' = Q~J. The limit of
f(re"") (defined in the hypothesis) as r —» 1 exists and is finite a.e.,
(since #"(0) exists and is finite a. e., see [3], p. 53), so that we may suppose

J s0 chosen that this holds when 0 is either of its endpoints. If J = (a, ),

we let C be the contour, described in the positive sense, which consists
of the two radii re*, reé”, 0 < r < 1, and the are €”, a < 0 < B.
On ¢ we define a measure dm(z) as follows: )

dm(z) = e*fré®ar for z=ré" 0<r<1,
dm(z) = ie®dF(@) for 2= a<O<LP,
am(z) = —éPfré®dr for =¥ 0 <7 < 1.

It is then clear that [gldm(z2)j< oo. Moreover, if ¥(z) is analytic
in a region including the closed interior of C, we have f c¥(=)dm(z)==10,
this being an obvious consequence of the analyticity of f(z) in |2 <1,
Cauchy’s theorem, and the fact that

B 8 ) i
fw(reiﬂ)m“’f(re“)da > [W(e")ie" AR () as 51

Finally, let &(w) = w(l+w)™'; D(w) is anelytic and in absolute
value < 1 in 9w > 0, and can be continuously extended there so as to
mop oo into the point 1. Since Rg(z) > 0 for Jo| <1, P(g(rz)) is, for
7 < 1, analytic in & region properly including ‘C. Thus, [@(g(re)}dm(2) = 0.

C o4
But, by the above discussion, limg(rz) exists a. e. (dm) on C, finite or in-
r—1
finite, whilst |®{g(rz))| remians < 1 on C as » —> 1. Hence, if we define
g(€®) = limg(re®®) we have, by Lebesgue’s bounded convergence theorem,
r—1

Jola@)ame) = o,

since clearly &(g(2)) = Lim®(g(re)), 2¢C, P(oo) having been defined to
r—>1

equal 1. And the same is true with &(g(2)) replaced by its n*™ power for
n=2,3,4,... But for 2¢C, g(2) = oo if 2 is of the form 6, 0, and
otherwise |g(z)] < oo @.e. (dm); that is, @ (g(2)) =1 or is in absolute
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value < 1, according as z = ¢ with 02’ or not. We may thus apply

Lebesgue’s bounded convergence theorem once more to obtain

0 = [lim[D((g(e))"dm(2) = [iedF(0),
C N0 2
contardicting fe“’dlf’(@) #= 0. The proof iz complete.
NIERENEY: ¢
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STUDIA MATHEMATICA, T. XVII (1958)

Multiplikatoren fiir starke Konvergenz von Fourierreihen I

von

G, GOES (Ludwigshurg)

1. Einleitang und Definitionen. Herr Karamata[7] bewies folgenden
Satz:

Die reellen Multiplikatoren {4} (i =0,1,2,...) transformieren die
Fourierreihe

1] kad .
E"- - 2 (a;c08jt -+ b;sin i)
=1

jeder stetigen Fumktion genau dawn in eine gleichmipig konvergente Fou-
rierreche )

Aot
2

+ A;(aycosit-+ bysingt) ,

De

1

<
1

wenn

7

4‘| A"'D k3
— + X’ lfcosjtl dt =0(1) fir n-—oo.
Jlz+2

1

Die Absicht der hier vorliegenden Note ist es, verwandbe Siitze fiir
Multiplikatoren zwischen verschiedenen linearen und normierten Riumen
zu beweisen. Der oben genannte Satz von Karamata ist als Spezialfall
in unserem Satz 1 enthalten.

Unsere Sitze 1 bis 3 stellen eine Erweiterung beknanter Sétze iber
Multiplikatoren dar, die aus zahlreichen Axrbeiten, vorwiegend polnischer
Mathematiker, bekannt sind. Wir nennen W.H. Young (1912, 1913),
H. Steinhaus (1916, 1919, 1926, 1929), 8. Szidon (1921, 1939), M. Fekete
(1923), A. Zygmund (1927, 1935), 8. Bochner (1929), W. Orlicz (1929
bis 1954), 8. Kaczmarz (1933, 1938), J. Marecinkiewicz (1938, 1939),
S. Verblunsky (1932, 1935), L. B. Hedge (1943) und G. A. Alexits (1951).
Die Erweiterung besteht darin, daB als Bildraum E, Tunktionenrgume
genormmen werden, in denen die erzeugten Fourierreihen stark, das hei3t
nach der Norm des jeweiligen Raumes, konvergieren. :
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