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Conversely, suppose that condition («) is not satisfied. Then there
exigt numbers g > 0 and 3, > 0, a sequence 7; — co and two sequences
My, and l,, such that I, /k,,,i - 0 for 4 — oo and b,

lﬂ’l: |
P{|f2/: 5’%‘;’%#’ = 10} > 8.

Denote by 4, the least interval containing the points tns,m,, s t"i,”‘ni 1
. . If limit (17) exists and is a continuous function of %, then
3 n1.1n,,1.+1,,1. 3
|4;| - 0, and condition (a) of the theorem of Prokhorov is nof satisfied.
This proves theorem 3.
3. Suppose now that the sequence 5* of random variables
(18)

has for each » u common distribution ¥y (@) = P{éw, < @),k = 1,2, ..., k,.
From the theorem of 8korohod (see for example [4], § 3.2) and from theo-
rems 2 and 3 we immediately obtain:

THEOREM 4. The convergence of the sequence of distribution functions

Fn
By, (@) =P {2’ & < o}
=1

6%15 51127 AR fnk"

Jor m - oo to a (infinitely divisible) limiting distribution G (x) is Necessary
and sufficient for:

(I) the compaciness of the set of measures {P, (5", T)} in the case when

the sequence of partitions T = ), B =0,1,..., k,, belongs to the class K
defined by formula (14);

(IT) the convergence Po(E*\T)> P in the case when for the sequence
of partitions T = (i}, k= 0,1, ..., kny limit (17) ewists.

In cases (I) and (IT) the limiting measures are generated by conttnuous
stochastic processes with independent increments.

"
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A theorem on distributions integrable with even power
by

K. URBANIK (Wroctaw)

L. In this paper we shall consider some spaces of distributio.ns.@tr;)—
duced by Schwartz [2]. By Dy we shall denote the space of all infinitely
differentiable complex-valued functions ¢ = @(@, %5, ..., @n) (—o0 < @
< oo, j=1,2,...,N) with compact supports. Put
max (peDy) .
1,22, - TN

gl = (%1, 2oy - -5 TN)]
The convergence in Dy is defined as follows: ¢y —0 (preDn,s
j=1,2,...) it for every system of integers (&, ks, ..., kw)

Oprgy ey Wl 0
o1 ke ... Baly | ‘

P i i ﬁxed compact.

and the supports of ¢; are contained in a . ; .

Let A be an arbitrary subset of the N -dlmensm'na..l Euclidean sg:a.ceé
By Dy (4) we shall denote the subspace of <Dy consisting of all funection
whose supports are contained in A. )

The space Dy of distributions is the conjugate space of f/)l,,:. B); (1(’] ff q;)1
we shall denote the value of T' at ¢ (T«Dy, peDy)- The conjugate
i i T,¢0) = (T, ) (pDn)-
is defined by the formula (T,¢) = (T, ¢) (¢ _ B

We say that a distribution TeDy is of order <l ... Iy on A4
if there is a continuous function f such that

© © 00 g+ +kn

da,. .. Aoy
(T,(p):f f ff(ml,...,;Z?N)vm<p(m1,-~-,m1v) 1 N

for each pe@y(4). All the distributions belonging to @y are of finite

hapt. III, § 6).
compact (cf. [2], tome I, chapt. III, :

Ol‘del’L;HTT;;fy By |.’Z’pi”’ (p=1, 2’ , ...) we shall denote the d.u:ect produclzﬁ
TxTx x1‘1;<T % x...xT, i e. the distribution belonging to €D,

» times p times
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defined by the condition

2p

»
(77,9 U ) [ (T

8=p+1

- . 2‘7)
for every geDyy, of the form g(zy, ..., ay,) = ;l T wi(#). In other words, if
=]

. N .
T,9)= f f(x) T p@)de  for  peD(4),

then
A (T, g f f ( nm ”f - dzm |
~c0 —co o =1 s=p41 e

(@15 ey Bop) Ay ... oy,

for geDyp(d x A x ... x 4).
For every puir of real numbers w,, w, and for Ted; we define the

. mz 2 ?
mtegmln{ TPy, (p=1,2,...) by the formula

]
(2) (117 @) = (TP, 00 ) (D) »
@1
wher: N
© P,y (Tay vy Byy) = fw(mr-w, veey Bop— ).

L5
For every number A the transformations P (7 =1,2,.
”DN on Dy are defined by the formula §g (s, . ,

—hy @y ..., ). Further, for every inte
wd} )

.., N) of
v BN) = @@y, oy By,
Wl T we set 7l = {x-4h:

Tot TeD;. If the family f ITP converges when w; -+ ~~co, m, -
we shall write

@y
lim f Ik
@y—+—00
wz—fﬁﬁ

(p=1,2...

}OlT!Zﬂ:Z

o1

The notion of integral f [T was introduced in connection with 1he

study of the filtering of gonera,hzed stochastlc processes [3]. The distri-

butiony T efD1 for which f IT} exists are weighing distributions in the

optimal Ieast-squares pred.lctlon of stutionary generalized processes.
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By I (¢ > 1) we shall denote the space of all measurable complex-
-valued functions f for which f If(z)]¢ de exists. We seb

lige = ( J if(x)i“dm)l’"
-0

By D,y we shill denote the space of all infinitely differentiable
complex-valued functions g = ¢ (z) (—oo < @ < oco) for which @'p/dz"eL"
(k =0,1,...). The convergence in D, is defined as follows: g;— 0
(peDperi=1,2, ..) if, for every non-negative integer &, ]]d qn,]d:c liga—> 0.

The space D o (r > 1) of distributions is fhe conjugate space of @Lq,
where ¢ = r/( r—-l) Obwously, for every 7 > 1 the inclusion fDL,C(Dl
is frue.

II. The aim of this paper is to give the following characterization
of the space @Lgp (p=1,2,...:

TE:EOREM Let TeDy. Then Ty (p = 1,2,...) if and only if the

integral f TV exists.

Before proving the Theorem we shall prove three Lemmas. In the
sequel we shall denote the real line by E. :

Levea 1. Let T eDy. If there is a non-empty interval I such thai 1T
(p =1,2,...) is of finite order on U =mIxuIx...xwl, then T is

—oo<h<oo
of finite order on k.

Proof. Since |TP® is of finite order on {J wIxzlx...
~oo<h<oo

there are a continuous function f and an integer » such that 1_;he equality

X T;.I

llep f f ff Bryees Bap) Sy I e (@5 - e y Bap) Wiy -+ Ay
—00 —00 1
is true for pe@Dy( U wl Xt d X oo X ThI)-
—co<h<oo

To prove the Lemma it is sufficient to show that for every h the
distribution T is of order < 7 on 7,I (ef. [2], tome 1, p. 27). Obviously,
if T =0 on 7,1 (for definition see [2], tome I, p. 25, 26), then 7 is of
order <7 on 7, I. Therefore we may suppose that T 0 on 731 Since T
is of finite order on I, there are a continuous function g, and an
integer & such that the equality

® 0 = [ g0 Zxo@d
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holds for ¢eD,(z;I). Without loss of generality we may assume that

k> r Let ay, ay, ..., & (a; # a; for i £ ) be a system of real numbers
belonging to 7,1 and set

o) = (2— al c (B4 ) (B ay4). . (B ay)
9@) = go(@) = ;gﬂ v ly—ay_y) (@ —ay44).. o —a)”
Then
(5) g(a,) = (n=1,2,..., k)
and, in view of (4),
o i
®) @,9) = [ g@)zp@in  tor  pedy(rsl).

Hence, taking into account definition (1), we obtain the equality

(") -
(lewyfl?):E[ f fng(xj)ngwa 1'“ " Py, 20) Ay . . oy,

—00 f=1 8=p4-1
for @eDop(tal xtyIx... x7,I). From e
qualities (3) and follo
that there are then functions of 2p —1 variables bie (4 =(1) 2;3
M 4

8=0,1,...,k—1) such that

Ty &y w20

®) ((b—r—1)1]-2 f f N 17 <w, ) (.

0

ooy Usp) Ay . . dug,,

2p k-1
~H9 @ [] -3 S i
ol s A& f,s( 1y w0y Bjay Byyg, "'150227) 25

for <@y, @y oy BpderaI xtpl ... x 10
»d (cf. [1], §10). Substituting in
the last formula Tpg =0 (n=1,2,...,Fk; j, =1, 2,...,2p) and t. ilng

into account equahty (5), we obtam the Ii
tions By, (s = 0,1, k’ iy near equatmns for the funec-

k-1

©® Y b, ...

8
2.
fror H 210) G,

) mio_ ] mjo+17 e

= Bjyn(®1; ..., Bp)— Eijaml; 291y By gy

5
/) 1 %ap) &g

’w7'0~17“mw10+1,-- .

n=1,2,...,k),

where the k—r-th derivatives of By (n=1,2,.

Treye y-++, k) are continuous.
it follows that bjpe (s =0,1, .-+, k—1) are linear combinations
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of the right-hand side of equations (9). Consequently, taking into account
formula (8), we have the equality )

D 2P
ng(mi) n g(w,):G(wl, ~--’w2p)+
f=1 8=p+1
k-1

+ D0 D e (s
1<) <Ta<<2D 81,89=0

. K 51
y Djy—1905y 415 -+ o9 Dggm1y Hfpp1y <3 Byp) Tt w‘:fs:

for (@y, %oy ...y Bappetnl x Tl x ... x 751, where all the k—r-th deriva-
tives of C(®,...,&;,) are continuous. By iteration of this procedure
we finally reach the equality

(10)
D 2p
[[ot@) [] 9@) = Diar, ..., )+ DI S R
3=1 8=p+1 0<8y, 8y, ..., Spp<h—1
for @y, @y e, BappeTpl X Tpd X o x Ty, where all the k—rth deri-

vatives of D(®y,..., ) are contmuous and d, (0 < 81y evny 829

< k—1) are constants.
Sinee T # 0 on 7,1, there is, according to (6), a number aet,I such
that g(a) = 0. Formula (10) implies the equality

g(@) = F@1 791D, q, ..., a)+

+ ds sma: a’ *””} for werpl.

Dgsl,sz,,__,sngk—x T
Thus the %k—rth derivative of g(z) is continuous in z,I. Setting

k—r

hio) = (=1 2= g(@),

we have, according to (6),

f ha)—

Consequently, 7' is of order <7 on 7;I. The lemma is thus proved.

qza:)d'z for @eDy(mal).

Lemma 2. Let Te®,. If the integral [ |Tf® (p =1,2,...) evists,

then T 8 of finite order on R.
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. e
Proof. Since the integral [ |71 exists, the inequality

sup (fITI”“- p)l < o0

—oco<w], w2<oo 1

holds for each peD,,. Consequently, for every non-empty interval I there
are a constant A7 and a system of integers <k, %, ..., kypy such that
the inequality

FEr

6k1 + +k2p

11) - U liss M
@ BCN
holds for geQy,(IxIx...xI) (cf. [1], §6).

Let & be an arbitrary rea.l number and ey, (11X 3L ... x 7, ]).

Then ... 78" peDy, (IxIx...x1I),
6k1+..,+7¢2p 1 6k1+~'- +7€2p l
= ) 0
ll k.. dalze? | ”am{‘a..a:oggﬂ;‘ )
and, according to (2),
oy . wg+h ‘
( [z o) = ( [ 1P, 0...ofmg).
oy wy+h

Hence, in virtue of (11), for every % we have the inequality

1t tlep
(12) su T)* < M| s
—m<¢*1£)‘2<oa(( f S )’ u .. awk“’(p
H 9eDyy (vl x 1yl x... x 14 I). Put
0 : ,
Pi{@y, ooy Byp) = "a"agq’(ml’ -'-awzp) (j = 1,2,...,2p).

Then the well-known equality

g 2

qu;,-(wl——w, covy Bop— ) de

@ I=1 '

=¢@—ay,..., Typ— 1) — @ (@1~ g, ..., Byp—aw,)

.is true. Consequently, according to (2),

g 2o
2
m]::‘i;(af e, /Z_;ij ) = (IT]”,¢)

icm
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for peDy,. Hence, in view of (12), the inequarity

(TP @)l < sup

11217 I i
_w<m,,,,z<m(f| | d "’)

Fl ky+.. +7fzp M 01~1+ +Rgp--2p o
' Z <
L oy oa . aam TS l o+ ki)

holds for ¢ e Dy (31 3131 x ... x 751), where € is a constant. Consequently,
IT|™ is of order < +.. +k2p+4p on 1, f xtpl x...x 11 for every b
(cf. [1], § B). This implies that |7 is of finite order on {J 7,1

—oo<h<oo
xtpl % ... x731. Hence, in virtue of Lemma 1, T is of finite order on
R. The lemma is thus proved.

By 4,f we shall denote the difference f(i--h)—7(f). We shall use

[l

the notation f«g(z) = (u)du, provided that this convolution

exists.

Levwma 3. Let @eD; and let | be a continuous function such that for
Bl K¢ (6> 0) Axfel” (r>1) and the funciions ]|A;,f*d"'¢p/d:v"[lv.
(8 =20,1,2) are mtegmble (with respect fo h, |h| < ¢). Then for every pair
by < hg (k1] < ¢, |ho| < ¢) of Lebesgue points of l4nf*¢lly the inequality

d
|ize]. < R f T an

i8 true. Consequently, f+dp/dzeL’.
Proof. It is easy to verify the following equality:

(13) Anyofrp = Apfrdop+fedop+ Anfro.

Let hy < hy ([hy] << ¢, kg < ¢) be a pair of Lebesgue points of
4nf+¢l|,r- Then the equality

17
(14) tm [ Aol dh = | nfolye (G =1,2)
v0?
Ay
is true. By integration of (13) with respect to » we obtain the equality

hgtv kv
hy—Tn)fedog = f Anfopih— f Ay fopdh— fA;.f'Awdh
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Consequently, for n sufficiently small positive number v the in-
equality

h1+v
(15) ()] o AMP‘ f 1 4nfegllpth+
1h2+'u by, 1
+—f Apfre| b+ f Apfe—dupil b
U L " v L
holds. Since
1 f -+ @) (v— u)du
;Anw(m) w?@ =5 duﬂ -+ ),
we have
g l g, |
[laran—gol, <5e[|orzn
Y 1
Hence follows the convergence
hy
(16) A,.fa— ol b = f l .
v-»oh o L
Further, according to Fatou’s Lemma,
¢ |
h“.,‘»tni f‘_A”"” =" 2®|,

Hence, in view of (14), (15) and (16), we obtain the inequality

(hy— by

a |
«—ql| dh,
At dw l’L’

A hg
|, d
) f' d—mq;“Lr < ”Ahl,f*q’”Lr"{"”AhzfquL"_l_h'lf ’

q.e. d ]
By iteration of the last lemma we obtain the following
OOROLLARY. Let gD, and let | be a continuous fumetion such that, for
. r
Biybyy ooy b (Bl <65 6> 05 §=1,2,...,k), Ahldh,-- -Ahkff]-" (r>1)
and the functions
| |4y .. 2,

(§=10,1,...,k4+1)

m"q)1
are integrable (with respect to hy, hy, ...

vhe byl <o,
Then frd e jds®e L',
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Proot of the theorem. Sufficiency. Let us suppose that Te®;

o
and that the integral f |T|°” exists. Then, in virtue of Lemma 2, Tis
-0
of finite order on R. There are then a continuous function f and an
integer k¥ such that
dk
TI'= —f.
a7) dm"f

Let I be.x non-empty interval containing the point 0. There are then

a  family of continuous Ffunetions’ eoropy = Giwg,upy (1 - -y Tap)  and
a system of integers (%, ..., ky,) such that -
2] » © o oo ak1+ +k‘zp
(18) (f [T, @) = f f f Gcwpmpy @1y -5 J/zp) amkm X
oy —00 —o0
Xp(®yy ooy mgp)dml...dmzp

for peDy(IxIx...xI) and the family Jqon,mgy CODVETges uniformly
on IxIx...xI when w, - —oo, w, > oo (see [1], §10). Without loss
of generality we may suppose that

(19) by =ky = ... =ky = k.

Further, according to (1), (2) and (17), we obtain the equality

@y

w2 oo oo o0
(Jizeee) = [ oo [T [Tro+o [] flaat-2)awx
oy —03 —oa —c0

wy  F=1 s=p41
azpk

(9 k (P(ﬂ'/‘l, . '7w2p)dm1ud$2p

Ba;l

for (pe‘sz Hence, taking mto account (18) and (19), for sufficiently small

o, ), e (G=1,2,...,%) we have the equality
2p e
f”Ah(n Ahﬁ)f (@-+2) H Ah(ls)...zlhgg)f(m,,—é-m)dm
7 8=P-1
= ... A,{,&’...Ahgzm...Ahgczp)ywmz)(wl, vy D).

Hence, taking into account the convergence of the family g, a,

@y
we infer that the family [|4,,...4s,f(#)[Pdx converges when w, - —oo,
o1

wy — co uniformly for |k <e (j =1,2,...,k), where ¢ is a positive
constant. Consequently, for every hy, ...,k (B <e¢, §=1,2,..., k),
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Apyeer Ay fell # und the norm ||dy,... 4y, fllzw is continuous with respect

to hl, ., hz. Moreover, for every pe (D, the norms [y, ... Ay, f*dyo/ds® “Lﬂ:n
(s =0, 1 ., k+1) are integruble with respect t0 hy, ..., Ay (Jhyl <
j=1, 2 s k). Hence, in virtue of the Corollary to Lemma 3,

a* . :
(20) 1* »&:T’—,c(psL”’ it peD.

Since the support of ¢(peD,) is compact, T*¢ exists. (The convoln-
tion of distributions is defined in [2], tome II, chapter VI). Moreover,
from equality (17) it follows that T*e = frdtp)dn®. Hence, in view of (20),
T*pe L for each pe®,. Thus, recording to a theorem of Schwartz ([2],
tome II, p.B7) 7D The sufficiency of the condition of the theorem is
thus proved. .

Necessity. Let T eDyow. There is then, according to w theorem of
Schwartz ([2], tome II, p. 57), & system of funetions 7y, f1, ..., f, belonging
to I?® sueh that N

7= N .‘?: fo.
= dz”

, gn. be a systerm of continuous functions such that

n
7= gn

70

Let: s Gos Gry -
(21)

dkm-r

(22)° = h =01,

and, consequently, T = d¥g/do".

(] )

Hence, in virtue of (1) and (2),

) 0 oo o wy pk
-0 —0 —00 o [ 8=41 mw
1
X@(Bry orny Dop) Ay . . Ay ((pefZ),,,).

This implies, according to (21) and (22), the following equality:

(Jme
@
e ® 2 e o w 81t .. 8
=0<sb§m<n:\:~i .{, mlwf ﬂfsf ;) Jpl foul wr—l-00)07599-——«———61 ma;g?x
(‘P‘q)zp)

XQ(@1y .. vy Dop) 085 ... Aoy
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Consequently, to prove that f |71 exists it is sufficient to show that
for every system O <s;,...,8, <» .

o 2P

sup fnlij('vf +a)de < .

Blyeens®ap Soof=1

(23)

From the inequality

2p

[] @+ < Vm -+ )
F=1 :l=!

it follows that
o 2p ' 20
| [is@+a)de < onf.,,wLw,
—o0 F=1 =1

=]
which implies formula (23). Thus |7 exists, which was to be proved.
)
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