Conversely, suppose that condition (a) is not satisfied. Then there exist numbers $\varepsilon_0 > 0$ and $\lambda_0 > 0$, a sequence $n_i \to \infty$ and two sequences m_{n_i} and l_{n_i} such that $l_{n_i}/k_{n_i} \to 0$ for $i \to \infty$ and l_{n_i}

$$P\{\left|\sum_{i=0}^{l_{n_i}} \xi_{k_i,m_{n_i}+i}\right| > \lambda_0\} > arepsilon_0$$
 .

Denote by Δ_i the least interval containing the points $t_{n_i,m_{n_i}}, t_{n_i,m_{n_i}+1}$, ..., $t_{n_i,m_{n,i}+l_{n_i}}$. If limit (17) exists and is a continuous function of t, then $|A_i| \to 0$, and condition (a) of the theorem of Prokhorov is not satisfied This proves theorem 3.

3. Suppose now that the sequence \mathcal{Z}^* of random variables

(18)
$$\xi_{n_1}, \, \xi_{n_2}, \, \ldots, \, \xi_{nk_n}$$

has for each n a common distribution $F_n(x) = P\{\xi_{nk} < x\}, k = 1, 2, ..., k_n$ From the theorem of Skorohod (see for example [4], § 3.2) and from theorems 2 and 3 we immediately obtain:

THEOREM 4. The convergence of the sequence of distribution functions

$$F_{n,k_n}(x) = P\{\sum_{j=1}^{k_n} \xi_{nj} < x\}$$

for $n \to \infty$ to a (infinitely divisible) limiting distribution G(x) is necessary and sufficient for:

- (I) the compactness of the set of measures $\{P_n(\Xi^*, T)\}$ in the case when the sequence of partitions $T=\{t_{nk}\},\,k=0\,,\,1,\ldots,\,k_n,$ belongs to the class Kdefined by formula (14);
- (II) the convergence $P_n(\Xi^*,T) \Rightarrow P$ in the case when for the sequence of partitions $T = \{t_{nk}\}, k = 0, 1, ..., k_n, limit (17) exists.$

In cases (I) and (II) the limiting measures are generated by continuous stochastic processes with independent increments.

References

- [1] Gniedenko i Kołmogorow, Rozkłady graniczne dla sum niezależnych zmiennych losowych, Warszawa 1957.
- [2] Kimme, On the convergence of sequences of stochastic processes, Trans. Amer. Math. Soc. 84 (1957), p. 208.
 - [3] Kolmogorov, Foundations of the theory of probability.
- [4] Прохоров, Сходимость случайных процессов и предельные теоремы теории вероятностей, Теория вероятностей и ее применения 1.2 (1956).

Reçu par la Rédaction le 15. 2. 1958

A theorem on distributions integrable with even power

K. URBANIK (Wrocław)

I. In this paper we shall consider some spaces of distributions introduced by Schwartz [2]. By \mathcal{O}_N we shall denote the space of all infinitely differentiable complex-valued functions $\varphi = \varphi(x_1, x_2, ..., x_N)$ ($-\infty < x_i$ $<\infty, j=1,2,...,N$) with compact supports. Put

$$\|\varphi\| = \max_{n_1, x_2, \dots, x_N} |\varphi(x_1, x_2, \dots, x_N)| \quad (\varphi \epsilon \mathcal{D}_N).$$

The convergence in \mathcal{O}_N is defined as follows: $\varphi_i \to 0$ $(\varphi_i \in \mathcal{O}_N,$ i=1,2,...) if for every system of integers $\langle k_1,k_2,...,k_N\rangle$

$$\left\| \frac{\partial_{k_1 + k_2 + \dots + k_N}}{\partial x_i^{k_1} \partial x_i^{k_2} \dots \partial x_N^{k_N}} \varphi_j \right\| \to 0$$

and the supports of φ_i are contained in a fixed compact.

Let A be an arbitrary subset of the N-dimensional Euclidean space. By $\mathcal{O}_N(A)$ we shall denote the subspace of \mathcal{O}_N consisting of all functions whose supports are contained in A.

The space \mathcal{O}'_N of distributions is the conjugate space of \mathcal{O}_N . By (T, φ) we shall denote the value of T at φ $(T \in \mathcal{O}'_N, \varphi \in \mathcal{O}_N)$. The conjugate of Tis defined by the formula $(\overline{T}, \varphi) = (\overline{T, \varphi}) \ (\varphi \in \mathcal{O}_N)$.

We say that a distribution $T \in \mathcal{O}'_N$ is of order $\leq k_1 + \ldots + k_N$ on A if there is a continuous function t such that

$$(T,\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_N) \frac{\partial^{k_1 + \dots + k_{N_1}}}{\partial x_1^{k_1} \dots \partial x_N^{k_N}} \varphi(x_1, \dots, x_N) dx_1 \dots dx_N$$

for each $\varphi \in \mathcal{O}_N(A)$. All the distributions belonging to \mathcal{O}'_N are of finite order on every compact (cf. [2], tome I, chapt. III, § 6).

Let $T \in \mathcal{D}'_1$. By $|T|^{2p}$ (p=1,2,...) we shall denote the direct product $T \times T \times ... \times T \times \overline{T} \times \overline{T} \times ... \times \overline{T}$, i. e. the distribution belonging to $\mathcal{Q}_2^{\prime p}$

p times p times

defined by the condition

$$(|T|^{2p}, \varphi) = \prod_{j=1}^{p} (T, \psi_j) \prod_{s=p+1}^{2p} (\overline{T}, \psi_s)$$

for every $\varphi \in \mathcal{D}_{2p}$ of the form $\varphi(x_1, \ldots, x_{2p}) = \prod_{j=1}^{2p} \psi_j(x_j)$. In other words, if

$$(T,\varphi) = \int_{-\infty}^{\infty} f(x) \frac{d^k}{dx^k} \varphi(x) dx$$
 for $\varphi \in \mathcal{D}_1(A)$,

then

$$(1) \qquad (|T|^{2p},\varphi) = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \dots \int\limits_{-\infty}^{\infty} \prod\limits_{j=1}^{p} f(x_j) \prod\limits_{s=p+1}^{2p} \overline{f(x_s)} \frac{\partial^{2pk}}{\partial x_1^k \dots \partial x_{2p}^k}$$

$$\varphi(x_1, \dots, x_{2p}) dx_1 \dots dx_{2p}$$

for $\varphi \in \mathcal{D}_{2p}(A \times A \times \ldots \times A)$.

For every pair of real numbers ω_1 , ω_2 and for $T \in \mathcal{D}_1'$ we define the integral $\int_{\omega_1}^{\omega_2} |T|^{2p} \in \mathcal{D}_{2p}'$ $(p=1,2,\ldots)$ by the formula

(2)
$$\left(\int_{\omega_1}^{\omega_2} |T|^{2p}, \varphi\right) = (|T|^{2p}, \varphi_{\omega_1, \omega_2}) \quad (\varphi \in \mathcal{D}_{2p}),$$

where $\varphi_{w_1,w_2}(x_2,\ldots,x_{2p}) = \int_{x_1}^{x_2} \varphi(x_1-x,\ldots,x_{2p}-x) dx$.

For every number h the transformations $\tau_h^{(j)}$ $(j=1,2,\ldots,N)$ of \mathcal{D}_N on \mathcal{D}_N are defined by the formula $\tau_h^{(j)}\varphi(x_1,\ldots,x_N)=\varphi(x_1,\ldots,x_{j-1},x_{j-1},x_{j-1},\ldots,x_N)$. Further, for every interval I we set $\tau_h I=\{x+h\colon x\in I\}$.

Let $T \in \mathcal{O}_1'$. If the family $\int_{u_1}^{u_2} |T|^{2p}$ converges when $\omega_1 \to -\infty$, $\omega_2 \to \infty$, we shall write

$$\int_{-\infty}^{\infty} |T|^{2p} = \lim_{\substack{\omega_1 \to -\infty \\ \omega_2 \to \infty}} \int_{\omega_1}^{\omega_2} |T|^{2p} \qquad (p = 1, 2, \dots).$$

The notion of integral $\int_{-\infty}^{\infty} |T|^2$ was introduced in connection with the study of the filtering of generalized stochastic processes [3]. The distributions $T \in \mathcal{D}_1'$ for which $\int_{-\infty}^{\infty} |T|^2$ exists are weighing distributions in the optimal least-squares prediction of stationary generalized processes.

By L^q (q>1) we shall denote the space of all measurable complex-valued functions f for which $\int\limits_{-\infty}^{\infty} |f(x)|^q \ dx$ exists. We set

$$\left\|f
ight\|_{L^{q}}=\Big(\int\limits_{-\infty}^{\infty}\left|f(x)
ight|^{q}dx\Big)^{1/q}.$$

By \mathcal{D}_{L^q} we shall denote the space of all infinitely differentiable complex-valued functions $\varphi = \varphi(x)$ ($-\infty < x < \infty$) for which $d^k \varphi/dx^k \epsilon L^q$ ($k=0,1,\ldots$). The convergence in \mathcal{D}_{L^q} is defined as follows: $\varphi_j \to 0$ ($\varphi \in \mathcal{D}_{L^q}, j=1,2,\ldots$) if, for every non-negative integer k, $\|d^k \varphi_j/dx^k\|_{L^q} \to 0$.

The space $\mathcal{D}'_{L^r}(r>1)$ of distributions is the conjugate space of \mathcal{D}_{L^q} , where q=r/(r-1). Obviously, for every r>1 the inclusion $\mathcal{D}'_{L^r} \subset \mathcal{D}'_1$ is true.

II. The aim of this paper is to give the following characterization of the space $\mathcal{O}'_{L^{2p}}$ $(p=1,2,\ldots)$:

THEOREM. Let $T \in \mathcal{D}_1'$. Then $T \in \mathcal{D}_{L^{2p}}'$ (p = 1, 2, ...) if and only if the integral $\int_{-\infty}^{\infty} |T|^{2p}$ exists.

Before proving the Theorem we shall prove three Lemmas. In the sequel we shall denote the real line by R.

LEMMA 1. Let $T \in \mathcal{D}'_1$. If there is a non-empty interval I such that $|T|^{2p}$ (p = 1, 2, ...) is of finite order on $\bigcup_{-\infty < h < \infty} \tau_h I \times \tau_h I \times ... \times \tau_h I$, then T is of finite order on R.

Proof. Since $|T|^{2p}$ is of finite order on $\bigcup_{-\infty < h < \infty} \tau_h I \times \tau_h I \times \ldots \times \tau_h I$ there are a continuous function f and an integer r such that the equality

(3)
$$(|T|^{2p},\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_{2p}) \frac{\partial^{2pr}}{\partial x_1^r \dots \partial x_{2p}^r} \varphi(x_1, \dots, x_{2p}) dx_1 \dots dx_{2p}$$
is true for $\varphi \in \mathcal{O}_{2p}(\bigcup_{-\infty < h < \infty} \tau_h I \times \tau_h I \times \dots \times \tau_h I)$.

To prove the Lemma it is sufficient to show that for every h the distribution T is of order $\leq r$ on $\tau_h I$ (cf. [2], tome I, p. 27). Obviously, if T=0 on $\tau_h I$ (for definition see [2], tome I, p. 25, 26), then T is of order $\leq r$ on $\tau_h I$. Therefore we may suppose that $T\neq 0$ on $\tau_h I$. Since T is of finite order on $\tau_h I$, there are a continuous function g_0 and an integer k such that the equality

(4)
$$(T,\varphi) = \int_{-\infty}^{\infty} g_0(x) \frac{d^k}{dx^k} \varphi(x) dx$$

holds for $\varphi \in \mathcal{O}_1(\tau_h I)$. Without loss of generality we may assume that k > r. Let a_1, a_2, \ldots, a_k $(a_i \neq a_j \text{ for } i \neq j)$ be a system of real numbers belonging to $\tau_h I$ and set

$$g(x) = g_0(x) - \sum_{j=1}^k g_0(a_j) \frac{(x-a_1) \dots (x-a_{j-1}) (x-a_{j+1}) \dots (x-a_k)}{(a_j-a_1) \dots (a_j-a_{j-1}) (a_j-a_{j+1}) \dots (a_j-a_k)}.$$

Then

(5)
$$g(a_n) = 0 \quad (n = 1, 2, ..., k)$$

and, in view of (4),

(6)
$$(T,\varphi) = \int_{-\infty}^{\infty} g(x) \frac{d^k}{dx^k} \varphi(x) dx \quad \text{for} \quad \varphi \in \mathcal{O}_1(\tau_h I).$$

Hence, taking into account definition (1), we obtain the equality

(7)
$$(|T|^{2p},\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \prod_{j=1}^{p} g(x_{j}) \prod_{s=p+1}^{2p} \overline{g(x_{s})} \frac{\partial^{2pk}}{\partial x_{1}^{k} \dots \partial x_{2p}^{k}} \varphi(x_{1},\dots,x_{2p}) dx_{1} \dots dx_{2p}$$

for $\varphi \epsilon \widehat{\Omega}_{2p}(\tau_h I \times \tau_h I \times \ldots \times \tau_h I)$. From equalities (3) and (7) it follows that there are then functions of 2p-1 variables $b_{j,s}$ $(j=1,2,\ldots,2p;s=0,1,\ldots,k-1)$ such that

(8)
$$[(k-r-1)!]^{-2p} \int_{0}^{x_1} \int_{0}^{x_2} \dots \int_{0}^{x_{2p}} \prod_{j=1}^{2p} (x_j - u_j)^{k-r-1} f(u_1, \dots, u_{2p}) du_1 \dots du_{2p}$$

$$= \prod_{j=1}^{p} g(x_j) \prod_{s=p+1}^{2p} \overline{g(x_s)} - \sum_{j=1}^{2p} \sum_{s=0}^{k-1} b_{j,s}(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_{2p}) x_j^s,$$

for $\langle x_1, x_2, \ldots, x_{2p} \rangle \epsilon \tau_h I \times \tau_h I \times \ldots \times \tau_h I$ (cf. [1], § 10). Substituting in the last formula $x_{j_0} = a_n$ $(n = 1, 2, \ldots, k; j_0 = 1, 2, \ldots, 2p)$ and taking into account equality (5), we obtain the linear equations for the functions $b_{j_0,s}$ $(s = 0, 1, \ldots, k-1)$:

$$(9) \qquad \sum_{s=0}^{k-1} b_{j_0,s}(x_1, \dots, x_{j_{0-1}}, x_{j_{0+1}}, \dots, x_{2p}) a_n^s$$

$$= B_{j_0,n}(x_1, \dots, x_{2p}) - \sum_{j \neq j_0} \sum_{s=0}^{k-1} b_{j,s}(x_1, \dots, x_{j_{-1}}, x_{j_{+1}}, \dots, x_{j_{0-1}}, a_n, x_{j_{0+1}}, \dots, x_{2p}) a_j^s$$

$$(n = 1, 2, \dots, k).$$

where the k-r-th derivatives of $B_{j_0,n}$ $(n=1,2,\ldots,k)$ are continuous. Hence it follows that $b_{j_0,s}$ $(s=0,1,\ldots,k-1)$ are linear combinations

of the right-hand side of equations (9). Consequently, taking into account formula (8), we have the equality

$$\begin{split} &\prod_{j=1}^p g(x_j) \prod_{s=p+1}^{2p} \overline{g(x_s)} = C(x_1, \, \ldots, \, x_{2p}) + \\ &+ \sum_{1 \leqslant j_1 \leqslant j_2 \leqslant 2p} \sum_{s_1, s_2=0}^{k-1} c_{j_1, j_2, s_1, s_2}, \, (x_1, \, \ldots, \, x_{j_1-1}, x_{j_1+1}, \, \ldots, \, x_{j_2-1}, \, x_{j_2+1}, \, \ldots, \, x_{2p}) x_{j_1}^{s_1} \, x_{j_2}^{s_2} \end{split}$$

for $\langle x_1, x_2, \ldots, x_{2p} \rangle \epsilon \tau_h I \times \tau_h I \times \ldots \times \tau_h I$, where all the k-r-th derivatives of $C(x_1, \ldots, x_{2p})$ are continuous. By iteration of this procedure we finally reach the equality

$$\prod_{i=1}^{p} g(x_i) \prod_{s=p+1}^{2p} \overline{g(x_s)} = D(x_1, \dots, x_{2p}) + \sum_{0 \leqslant s_1, s_2, \dots, s_{2p} \leqslant k-1} d_{s_1, \dots, s_{2p}} x_1^{s_1} \dots x_{2p}^{s_{2p}}$$

for $\langle x_1, x_2, \ldots, x_{2p} \rangle \in \tau_h I \times \tau_h I \times \ldots \times \tau_h I$, where all the k-r-th derivatives of $D(x_1, \ldots, x_{2p})$ are continuous and $d_{s_1, \ldots, s_{2p}}$ $(0 \leq s_1, \ldots, s_{2p} \leq k-1)$ are constants.

Since $T \neq 0$ on $\tau_h I$, there is, according to (6), a number $a \in \tau_h I$ such that $g(a) \neq 0$. Formula (10) implies the equality

$$\begin{split} g(x) &= [\overline{g(a)}]^{-p} [g(a)]^{-p+1} \Big\{ D(x, a, \ldots, a) + \\ &+ \sum_{0 \leqslant s_1, s_2, \ldots, s_{2p} \leqslant k-1} d_{s_1, \ldots, s_{2p}} x^{s_1} a^{s_2 + \ldots + s_{2p}} \Big\} \quad \text{ for } \quad x \in \tau_h I \,. \end{split}$$

Thus the k-r-th derivative of g(x) is continuous in $\tau_h I$. Setting

$$h(x) = (-1)^{k-r} \frac{d^{k-r}}{dx^{k-r}} g(x),$$

we have, according to (6),

$$(T,\varphi) = \int_{-\infty}^{\infty} h(x) \frac{d^r}{dx^r} \varphi(x) dx$$
 for $\varphi \in \mathcal{D}_1(\tau_h I)$.

Consequently, T is of order $\leqslant r$ on $\tau_h I$. The lemma is thus proved.

Lemma 2. Let $T \in \mathcal{D}_1'$. If the integral $\int\limits_{-\infty}^{\infty} |T|^{2p}$ (p=1,2,...) exists, then T is of finite order on R.

Proof. Since the integral $\int_{-\infty}^{\infty} |T|^{2p}$ exists, the inequality

$$\sup_{-\infty < \omega_1, \, \omega_2 < \infty} \left| \left(\int_{\omega_1}^{\omega_2} |T|^{2p}, \, \varphi \right) \right| < \infty$$

holds for each $\varphi \in \mathcal{D}_{2p}$. Consequently, for every non-empty interval I there are a constant M and a system of integers $\langle k_1, k_2, \ldots, k_{2p} \rangle$ such that the inequality

$$\sup_{-\infty>\omega_1,\,\omega_2<\infty}\left|\left(\int\limits_{\omega_1}^{\omega_2}T^{2p},\,\varphi\right)\right|\leqslant M\left\|\frac{\partial^{k_1+\ldots+k_{2p}}}{\partial x_1^{k_1}\ldots\partial x_{2p}^{k_{2p}}}\varphi\right\|$$

holds for $\varphi \in \mathcal{O}_{2p}(I \times I \times ... \times I)$ (cf. [1], § 6).

Let h be an arbitrary real number and $\varphi \in \mathcal{D}_{2p}(\tau_h I \times \tau_h I \times \ldots \times \tau_h I)$. Then $\tau_h^{(1)} \ldots \tau_h^{(2p)} \varphi \in \mathcal{D}_{2p}(I \times I \times \ldots \times I)$,

$$\left\|\frac{\partial^{k_1+\cdots+k_{2p}}}{\partial x_1^{k_1}\ldots\partial x_{2p}^{k_{2p}}}\varphi\right\| = \left\|\frac{\partial^{k_1+\cdots+k_{2p}}}{\partial x_1^{k_1}\ldots\partial x_{2p}^{k_{2p}}}\tau_h^{(1)}\ldots\tau_h^{(2p)}\varphi\right\|$$

and, according to (2),

$$\left(\int\limits_{\omega_1}^{\omega_2} |T|^{2p},\; arphi
ight) = \left(\int\limits_{\omega_1+h}^{\omega_2+h} |T|^{2p},\; au_h^{(1)} \dots au_h^{(2p)} arphi
ight).$$

Hence, in virtue of (11), for every h we have the inequality

(12)
$$\sup_{-\infty < \omega_1, \, \omega_2 < \infty} \left| \left(\int_{\omega_1}^{\omega_2} |T|^{2p}, \, \varphi \right) \right| \leqslant M \left\| \frac{\partial^{k_1 + \dots + k_{2p}}}{\partial x_1^{k_1} \dots \partial x_{2p}^{k_{2p}}} \varphi \right\|$$

if $\varphi \in \mathcal{D}_{2p}(\tau_h I \times \tau_h I \times \ldots \times \tau_h I)$. Put

$$q_j(x_1, \ldots, x_{2p}) = \frac{\partial}{\partial x_j} \varphi(x_1, \ldots, x_{2p}) \quad (j = 1, 2, \ldots, 2p).$$

Then the well-known equality

$$\int_{\omega_{1}}^{\omega_{2}} \sum_{j=1}^{2p} \varphi_{j}(x_{1}-x, \ldots, x_{2p}-x) dx$$

$$= \varphi(x_{1}-\omega_{1}, \ldots, x_{2p}-\omega_{1}) - \varphi(x_{1}-\omega_{2}, \ldots, x_{2p}-\omega_{2})$$

is true. Consequently, according to (2),

$$\lim_{\omega_2 \to \infty} \left(\int_0^{\omega_2} |T|^{2p}, \sum_{j=1}^{2p} \frac{\partial}{\partial x_j} \varphi \right) = (|T|^{2p}, \varphi)$$

for $\varphi \in \mathcal{D}_{2p}$. Hence, in view of (12), the inequality

$$egin{aligned} |(|T|^{2p},arphi)|&\leqslant \sup_{-\infty$$

holds for $\varphi \in \mathcal{O}_{2p}(\tau_h I \times \tau_h I \times \ldots \times \tau_h I)$, where C is a constant. Consequently, $|T|^{2p}$ is of order $\leqslant k_1 + \ldots + k_{2p} + 4p$ on $\tau_h I \times \tau_h I \times \ldots \times \tau_h I$ for every h (cf. [1], § 5). This implies that $|T|^{2p}$ is of finite order on $\bigcup_{-\infty < h < \infty} \tau_h I \times \ldots \times \tau_h I$. Hence, in virtue of Lemma 1, T is of finite order on R. The lemma is thus proved.

By $\Delta_h f$ we shall denote the difference f(t+h)-f(t). We shall use the notation $f*g(x) = \int\limits_{-\infty}^{\infty} f(x-u)g(u)du$, provided that this convolution exists.

LEMMA 3. Let $\varphi \in \mathcal{D}_1$ and let f be a continuous function such that for $|h| \leqslant c \quad (c>0) \quad \mathcal{A}_h f \in L^r \quad (r>1)$ and the functions $\|\mathcal{A}_h f * d^s \varphi / dx^s\|_{L^r}$ (s=0,1,2) are integrable (with respect to $h, |h| \leqslant c$). Then for every pair $h_1 < h_2 \ (|h_1| < c, |h_2| < c)$ of Lebesgue points of $\|\mathcal{A}_h f * \varphi\|_{L^r}$ the inequality

$$\left\|f*\frac{d}{dx}\varphi\right\|_{L^{r}}\leqslant (h_{2}-h_{1})^{-1}\left\{\left\|\varDelta_{h_{1}}f*\varphi\right\|_{L^{r}}+\left\|\varDelta_{h_{2}}f*\varphi\right\|_{L^{r}}+\int\limits_{h_{1}}^{h_{2}}\left\|\varDelta_{h}f*\frac{d}{dx}\varphi\right\|_{L^{r}}dh\right\}$$

is true. Consequently, $f*d\varphi/dx \in L^r$.

Proof. It is easy to verify the following equality:

(13)
$$\Delta_{h+v}f*\varphi = \Delta_h f*\Delta_v \varphi + f*\Delta_v \varphi + \Delta_h f*\varphi.$$

Let $h_1 < h_2$ $(|h_1| < c, |h_2| < c)$ be a pair of Lebesgue points of $\|A_h f^* \varphi\|_{L^p}$. Then the equality

(14)
$$\lim_{v \to 0} \int_{h_j}^{h_j+v} \|\Delta_h f \cdot \varphi\|_{L^p} dh = \|\Delta_{h_j} f \cdot \varphi\|_{L^p} \quad (j = 1, 2)$$

is true. By integration of (13) with respect to h we obtain the equality

$$(h_2-h_1)f*\Delta_v\varphi = \int\limits_{h_2}^{h_2+v} \Delta_h f*\varphi dh - \int\limits_{h_1}^{h_1+v} \Delta_h f*\varphi dh - \int\limits_{h_1}^{h_2} \Delta_h f*\Delta_v\varphi dh.$$

Consequently, for a sufficiently small positive number v the inequality

$$(15) \qquad (h_{2}-h_{1}) \left\| f^{*} \frac{1}{v} \Delta_{v} \varphi \right\|_{L^{r}} \leq \frac{1}{v} \int_{h_{1}}^{h_{1}+v} \|\Delta_{h} f^{*} \varphi\|_{L^{r}} dh + \frac{1}{v} \int_{h_{2}}^{h_{2}+v} \left\| \Delta_{h} f^{*} \varphi \right\|_{L^{r}} dh + \int_{h_{1}}^{h_{2}} \left\| \Delta_{h} f^{*} \frac{1}{v} \Delta_{v} \varphi \right\|_{L^{r}} dh$$

holds. Since

$$\frac{1}{v}\Delta_h\varphi(x)-\frac{d}{dx}\varphi(x)=\frac{1}{v}\int_0^v\frac{d^2}{du^2}\varphi(u+x)(v-u)du,$$

we have

$$\int\limits_{h_{2}}^{h_{2}} \left\| \varDelta_{h} f \star \left(\frac{1}{v} \varDelta_{v} \varphi - \frac{d}{dx} \varphi \right) \right\|_{L^{r}} \leqslant \frac{1}{2} v \int\limits_{h_{1}}^{h_{2}} \left\| \varDelta_{h} f \star \frac{d^{2}}{dx^{2}} \varphi \right\|_{L^{r}} dh \,.$$

Hence follows the convergence

(16)
$$\lim_{v \to 0} \int_{h_1}^{h_2} \left\| \Delta_h f \cdot \frac{1}{v} \Delta_v \varphi \right\|_{L^r} dh = \int_{h_1}^{h_2} \left\| \Delta_h f \cdot \frac{d}{dx} \varphi \right\|_{L^r} dh.$$

Further, according to Fatou's Lemma,

$$\liminf_{v\to 0} \left\|f*\frac{1}{v}\varDelta_v\varphi\right\|_{L^p} \geqslant \left\|f*\frac{d}{dx}\varphi\right\|_{L^p}.$$

Hence, in view of (14), (15) and (16), we obtain the inequality

$$\left\|(h_2-h_1)\right\|f^*\frac{d}{dx}\varphi\right\|_{L^r}\leqslant \left\|\Delta_{h_1}f^*\varphi\right\|_{L^r}+\left\|\Delta_{h_2}f^*\varphi\right\|_{L^r}+\int\limits_{h_1}^{h_2}\left|\Delta_{h}f^*\frac{d}{dx}\varphi\right\|_{L^r}dh,$$

q. e. d.

By iteration of the last lemma we obtain the following

COROLLARY. Let $\varphi \in \mathcal{D}_1$ and let f be a continuous function such that, for h_1,h_1,\ldots,h_k $(|h_j|\leqslant c;\ c>0;\ j=1,2,\ldots,k),\ \varDelta_{h_1}\varDelta_{h_2}\ldots\varDelta_{h_k}f\epsilon L^r$ (r>1) and the functions

$$\left\| \Delta_{h_1} \Delta_{h_2} \dots \Delta_{h_k} f^* \frac{d^s}{dx^s} \varphi \right\|_{L^r} \qquad (s = 0, 1, \dots, k+1)$$

are integrable (with respect to $h_1, h_2, ..., h_k$; $|h_j| \leq c$, j = 1, 2, ..., k). Then $f * d^k \varphi / dx^k \in L^r$.

Proof of the theorem. Sufficiency. Let us suppose that $T \in \mathcal{D}_1'$ and that the integral $\int\limits_{-\infty}^{\infty} |T|^{2p}$ exists. Then, in virtue of Lemma 2, T is of finite order on R. There are then a continuous function f and an integer k such that

$$(17) T = \frac{d^k}{dx^k} f.$$

Let I be a non-empty interval containing the point 0. There are then a family of continuous functions $g_{\langle \omega_1, \omega_2 \rangle} = g_{\langle \omega_1, \omega_2 \rangle}(x_1, \ldots, x_{2p})$ and a system of integers $\langle k_1, \ldots, k_{2p} \rangle$ such that

(18)
$$\left(\int_{\omega_{1}}^{\omega_{2}} |T|^{2p}, \varphi \right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g_{\langle \omega_{1}, \omega_{2} \rangle}(x_{1}, \dots, x_{2p}) \frac{\partial^{k_{1} + \dots + k_{2p}}}{\partial x_{1}^{k_{1}} \dots \partial x_{2p}^{k_{2p}}} \times \varphi(x_{1}, \dots, x_{2p}) dx_{1} \dots dx_{2p} \right)$$

for $\varphi \in \mathcal{O}_{2p}(I \times I \times \ldots \times I)$ and the family $g_{\langle \omega_1, \omega_2 \rangle}$ converges uniformly on $I \times I \times \ldots \times I$ when $\omega_1 \to -\infty$, $\omega_2 \to \infty$ (see [1], § 10). Without loss of generality we may suppose that

$$(19) k_1 = k_2 = \ldots = k_{2n} = k.$$

Further, according to (1), (2) and (17), we obtain the equality

$$\left(\int\limits_{\omega_{1}}^{\omega_{2}}|T|^{2p},arphi
ight)=\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\ldots\int\limits_{-\infty}^{\infty}\int\limits_{\omega_{1}}^{\omega_{2}}\prod_{j=1}^{p}f(x_{j}+x)\prod_{s=p+1}^{2p}\overline{f(x_{s}+x)}dx imes \ imes rac{\partial^{2pk}}{\partial x_{1}^{k}\ldots\partial x_{2p}^{k}}arphi(x_{1},\ldots,x_{2p})dx_{1}\ldots dx_{2p}$$

for $\varphi \in \mathcal{O}_{2p}$. Hence, taking into account (18) and (19), for sufficiently small $h_1^{(j)}, \ldots, h_k^{(j)}, x_j$ $(j = 1, 2, \ldots, 2p)$ we have the equality

$$\int_{\omega_{1}}^{\omega_{2}} \prod_{j=1}^{p} \Delta_{h_{k}^{(j)}} \dots \Delta_{h_{k}^{(j)}} f(x_{j}+x) \prod_{s=p+1}^{2p} \Delta_{h_{k}^{(s)}} \dots \Delta_{h_{k}^{(s)}} \overline{f(x_{s}+x)} dx$$

$$= \Delta_{h_{k}^{(1)}} \dots \Delta_{h_{k}^{(2p)}} \dots \Delta_{h_{k}^{(2p)}} y_{\langle \omega_{1}, \omega_{2} \rangle} (x_{1}, \dots, x_{2p}).$$

Hence, taking into account the convergence of the family $g_{\langle \omega_1, \omega_2 \rangle}$ we infer that the family $\int_{\omega_1}^{\omega_2} |\Delta_{h_1} \dots \Delta_{h_k} f(x)|^{2p} dx$ converges when $\omega_1 \to -\infty$, $\omega_2 \to \infty$ uniformly for $|h_j| \leqslant c$ $(j=1,2,\ldots,k)$, where c is a positive constant. Consequently, for every h_1,\ldots,h_k $(|h_j| \leqslant c,\ j=1,2,\ldots,k)$,

 $A_{h_1} \dots A_{h_k} f \in L^{2p}$ and the norm $\|A_{h_1} \dots A_{h_k} f\|_{L^{2p}}$ is continuous with respect to h_1, \dots, h_k . Moreover, for every $\varphi \in \mathcal{O}_1$ the norms $\|A_{h_1} \dots A_{h_k} f^* d_{\varphi}^k \varphi / dx^s\|_{L^{2p}}$ $(s = 0, 1, \dots, k+1)$ are integrable with respect to h_1, \dots, h_k $(|h_j| \leq c, j = 1, 2, \dots, k)$. Hence, in virtue of the Corollary to Lemma 3,

(20)
$$f^* \frac{d^k}{dx^k} \varphi \in L^{2p} \quad \text{if} \quad \varphi \in \mathcal{D}_1.$$

Since the support of $\varphi(\varphi \in \mathcal{D}_1)$ is compact, $T^*\varphi$ exists. (The convolution of distributions is defined in [2], tome II, chapter VI). Moreover, from equality (17) it follows that $T^*\varphi = f^*d^k\varphi/dx^k$. Hence, in view of (20), $T^*\varphi \in L^{2p}$ for each $\varphi \in \mathcal{D}_1$. Thus, according to a theorem of Schwartz ([2], tome II, p.57) $T \in \mathcal{D}'_{L^{2p}}$. The sufficiency of the condition of the theorem is thus proved.

Necessity. Let $T \in \mathcal{O}'_{L^{2p}}$. There is then, according to a theorem of Schwartz ([2], tome II, p. 57), a system of functions f_0, f_1, \ldots, f_n belonging to L^{2p} such that

$$T = \sum_{r=0}^{u} \frac{d^r}{dx^r} f_r.$$

Let g, g_0, g_1, \ldots, g_n be a system of continuous functions such that

$$(21) g = \sum_{r=0}^{n} g_r,$$

(22)
$$\frac{d^{k-r}}{dx^{k-r}}g_r = f_r \quad (r = 0, 1, ..., n)$$

and, consequently, $T = d^k g/dx^k$. Hence, in virtue of (1) and (2),

$$\begin{split} \left(\int\limits_{\sigma_{1}}^{\varpi_{2}}\left|T\right|^{2p},\varphi\right) \\ &= \int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\dots\int\limits_{-\infty}^{\infty}\int\limits_{\omega_{1}}^{\omega_{2}}\prod_{j=1}^{p}g\left(x_{j}+x\right)\prod_{s=p+1}^{2p}\overline{g\left(x_{s}+x\right)}dx\frac{\partial^{2pk}}{\partial x_{1}^{k}\dots\partial x_{2p}^{k}}\times\\ &\times\varphi\left(x_{1},\dots,x_{2p}\right)dx_{1}\dots dx_{2p} \quad \left(\varphi\in\mathcal{D}_{2p}\right). \end{split}$$

This implies, according to (21) and (22), the following equality:

$$\begin{split} &\left(\int\limits_{\omega_{1}}^{\omega_{2}}\left|T\right|^{p},\varphi\right) \\ =& \sum_{\mathbf{0}\leqslant s_{1},\ldots,s_{2p}\leqslant n} \pm \int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}\ldots\int\limits_{-\infty}^{\infty}\int\limits_{\omega_{1}}^{\omega_{2}}\prod_{j=1}^{p}f_{s_{j}}(x_{j}+x)\prod_{r=p+1}^{2p}\overline{f_{s_{r}}(x_{r}+x)}\,dx\frac{\partial^{s_{1}+\ldots+s_{2p}}}{\partial x_{1}^{s_{1}}\ldots\partial x_{2p}^{s_{2p}}}\times\\ &\times\varphi(x_{1},\ldots,x_{2p})\,dx_{1}\ldots dx_{2p} \quad (\varphi\in\Omega_{2p}) \end{split}$$

Consequently, to prove that $\int_{-\infty}^{\infty} |T|^{2p}$ exists it is sufficient to show that for every system $0 \leqslant s_1, \ldots, s_{2p} \leqslant n$

(23)
$$\sup_{x_1,...,x_{2p}} \int_{-\infty}^{\infty} \prod_{j=1}^{2p} |f_{s_j}(x_j+x)| \, dx < \infty.$$

From the inequality

$$\prod_{j=1}^{2p} |f_{s_j}(x_j+x)| \leqslant \sum_{j=1}^{2p} |f_{s_j}(x_j+x)|^{2p}$$

it follows that

$$\int\limits_{-\infty}^{\infty} \prod_{j=1}^{2p} |f_{s_j}(x_j+x)| \, dx \leqslant \sum_{j=1}^{2p} \|f_{s_j}\|_{L^{2p}}^{2p} \, ,$$

which implies formula (23). Thus $\int_{-\infty}^{\infty} |T|^{2p}$ exists, which was to be proved.

References

- [1] I. Halperin, Introduction to the theory of distributions, Toronto 1952.
- [2] L. Schwartz, Théorie des distributions, Paris, tome I, 1950; tome II, 1951.
 [3] K. Urbanik, Filtering of stationary generalized stochastic processes, Science Record 1958.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Reçu par la Rédaction le 24. 2. 1958