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Effective processes in the semse of H. Steinhaus

by
K. URBANIK (Wroctaw)

I. Let B be u Lebesgue measurable subset of the positive half-line.
By |E| we shall denote the Lebesgue measure of B. We say that E is
relatively measurable if the limit

1
|Blg = lim — |Bn{t: 0 <t < T}
T—maT

exigts. The number |B|g is called the relative measure of E.
We say that a system of real-valued functions g,(t), ga(?), ..., g,(?)
defined for 0 <<t < oo i3 relatively measurable if for every m;,a,,..., 4,

k
sets (M {t: g;(f) < @} are relatively measurable.
j=1
Let f(t) be a real-valued function defined for 0 <t < oc. For every
interval I = {t:ar <& <by} (0 < ar<b;) we shall use the following
notation:
) = fbr)—flar), T4t = {utt:uel}.

We say that f(t) is an effective process with independent increments
if for every integer % and for every system of disjoint intervals
L, I,..., I, the system of functions g,(t) = I+t G=1,2,...,k
is relatively measurable,

k &
(1) (ﬂ (& L+ < allz —_—j];]l We: 7L+ 1) < adle
for each x,,a,, ..., o, and
2) Dy(@) = |{t: f+(I+1) < a}lr

for every interval I is a distribution function, i.e. is » monotone non-
-decreasing function continuous on the left, with Dj(—oco) =0,
Di(oc) = 1. (This notion has been proposed by H. Steinhaus).

We remark that so far for non-degenerate functions (2) there is no
effective example of effective processes with independent increments.


GUEST


336 K. Urbauik

In the sequel we shall denote by P (@) the probability of a rundom
event defined by a condition .

In the present note we prove the following

TaeOREM. Let f(w, 1) be o measurable separable homogencous stochastie
process with mdep«mdent increments. Then almost all realizations f(w,, 1)
are effective processes with independent increments. Moreover, for every
interval I and for every real number x the equalily

®) Itz * (g, T8) < @}l == P(f*(w, I) < a)
78 true.

This theorem is an auswer to 2 problem raised by H. Steinhaus and
can be regarded as an ergodic theorem for homogeneous stochastic pro-
cesses with independent inerements. A special case of this theorem, when
f(o,1) is & Brownian movement process or u Poisson process, has been
given by C. Ryll-Nardzewski. I'or compound Poisson processes with
a denumerable set of states our assertion is connected to some extent
with the work of Khintchine ([4], p. 69).

II. Before proving the theorem we shall give some elementary pro-
perties of homogeneous stochastic processes with independent increments.

Let f(w,?) be a measurable sepurable homogeneous stochastic
process with independent increments. Then for every & > 0

(4) ‘ IJm P(f* (o, Iize=0

{ef. [1], p. 117). From the results of Lévy (cf. [3], [2], p. 407) it follows
that there is an interval function ¢(I) for which f*(w,I Y+g(I) =0

icm

with probability 1 if 7 contracts to a fixed point. The last formula, in

view of (4), implies the convergence f*(w,I) - 0 with probubility 1 if I
contraets to a fixed point. Consequently, for every s > 0,

(5) ’hIImP(sup I (w,J) =€ =0.

(In virtue of the separability of f(w, 1), sup[f (w, J)| is a random va-

na,ble, i e. an o measurable function.) Further, the characterigtic function
@r(2) of f*(w, I) is given by the Lévy-Khintchine formula

(6) @ (2) = exp {’l:yf|1|z.~|.‘ 1| f(etiw;l* l@_z_w) 1+u

where y; is a real constant and @ is a monotone non- decreaging bmmded
funetion, with @;(—o0) =0 (cf. [2], P. 419). Set

w (o) = P(f" (0, 1) <4).
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Obviously,
(8) limli'_,(m) = Fi(x)
at all continuity points of the limit funetion.

In the sequel we shall denote by N,(I) the set of all discontinuity
points of Fr(x) and by Ny the union of all sets Ny (I):

9 ,=1L¢)0.NI(I).

Lomma 1. Let %y, Ugy... and Gy, 0y, ... be two sequences of positive

numbers such that
o0

(10) Dy < oo, Dap=oo.
k=1 k=1
Then .
T E -
lim —l—f exp {Z (coszuk——l)ak} dz=0.
T T b =1

Proof. For brevity we write

(11) m(e) = ) (1—Coseu) a -
k=1

Put .
: R )
12) (@) = 7 .,f T

To prove the lemma it is sufficient to show that I]'Jm Qr(1) = 0.
=00

Contrary to this statement let us suppose that there is a sequence
T,, Ty, ... - oo for which

(13) ‘ }_ﬂlo Qr, 1) =¢>0.

From (10), (11) and (12) it follows that the function Qp(w) is diffe-
rentiable and

T
%QT({U) = ——;—! m(z)e "™ dz.

Since m(z) > 0, we have for some z (% <:Z- <1)

T

T
1 . 1 .
Qr(3)—Qr (1) =5—T~f m(2) e~ dz 2—2—1;! m(z)e"™ dz .
0
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Hence, taking into account the inequality 0 < Qr(x)
we obtain

<1for x>0,

T
' 1 —m|
— (2) <
(14) 7 of m(z)e dz < 2.

Further, from equality (13) it follows that there is then a positive
number ¢ such that
limsup-l— [Br{z:0 <2z <Tp} >0,
N0 T”,

where
(15) B={z:e"" >0},

By yz(#) we shall denote the indicator of H, i.e. ae(®) =1 or 0

according as 2 belongs or does not belong to B. We may suppose, without
loss of the generality of our considerations, that the following limits
exist:

T
. 1"
(16) 0<o=lim = [ zz(a)e,
N—y00 ”0
17 V2
1 Ok:lﬁ?l’?! 1pR)cosamde (B =1,2,...).

Using the well-known formula

e %E“)dzzz;?f{

we obtain the mequahty 5‘ g<l (k=1,2,..)

2 V2 c,coszu,} dz+ 2 G+o(1)

Fel [

There is then an
index %, such that, a.ccordmg to (16),

(18) lex] < 2 tor

/s k=k.

Since

Lol
%) = 2 (1 —coszuy)ay,,

k=g

icm

Effective processes in the sense of H. Steinhaus 339

we have, according to (15), ), (17) and (18),

Ty Ty,
1
mf—l—f m(2)e~"® d >1iminf—f 2 (D) m ()@
T‘n ° =00 Tu e
1 T, 0 1 Ty
> climinE—T— 1g(R)m(2)de > climinf 25; f 15 (2) (1 — cos2ug) ardz
oo "y Emtadi S

o« . -5
>02a(c ck)>w°2a ==
= k| Co— —=| 2 5~ k= OO0,

= val ™ 2 k=Fkq

which contradicts inequality (14). The lemma is thus proved.
LemMMA 2. Let f(w, t) be a measurable separable homogeneous stochastic
process with independent increments, satisfying the condition

1
1
) . f 86 () = oo
—1

Then the equality Ny =0 holds.

Proof. Since

Py (0 0)—Fy(w—0) = hm—f gy (2) de,
to prove the lemma it is sufficient to show that
1 T
(20) tim - [ lpr(s)lde = 0
Ton T d

for every non-empty interval I. Setting H(u) = }(Gy(u)—Gy(—u)),

we have, according to (6) and (19),

(21) igu,(z)[:-exp{ili f (coszu—1) dH u)}

(22) f —dH(w) = oo,
[
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Let H, be the continuous component of H and let H; be the']‘ump
component: '

(23) H(u) = Hy(uw)+Hy(u).
First we assume that

1

(24) f ;2 dH, (u) = oo.

Given an arbitrary e > 0, we consider independent random variables
¢ and x with the common distribution function

o0

(25) Pe<ny= 3 T exp{—lzl—'f 1+ dHo(u)},

£ k! ut
where
0 i =20,
Vo(@) = .
1 i =z>0,
0 if r<e,
Vi) ={ || [ 140
»z_f — o dH () i o>,

Ven(®) = [ Vila—9)aVily) (k=1,2,..).

From (25) immediately follows the equality

0 it ®»#£0,
Pl =a) = I [ 14w
exp{—7f e dHn('”’)} it ®=0.
Consequently,
(26) Py =0) = exp{—lI[f 1w dHc(u)}.
u

Let y(2) be the characteristic function of

in view of (25), that &—9. It is easy to werify,

p(2) = exp{—]l[f (coszu—1) 1—::4‘ dHc(u)} .
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Hence, according to (21) and (23), lyz(2)] < p(2). Since

T
1
P(¢—y = 0) = lim —T~f vz,

Too0

the last inequality and formula (26) imply
. 1 ~layp
limep - lpr(2)|de < exp| 1| [ = aH,(w)}.
T T u?

Hence, in virtue of (24), for ¢+ 0 we obfain equality (20).
1
Now we assume that [w?dH.(u) is finite. Then, in view of (22)
0
and (23), the equality

1

. 1 )
@7 f = aHy{u) = o0

Q

is true. From (21) and (22) immediately follows -
: 1
or@)) < osp 1] [ (coszu—1) 5 a8 (w}.
0

The discontinuity points of H (u) (0 < u < 1) will be denoted by
Uy, gy .-~ Then

©

ipr(2)] < exp {Z (coszu -—1)ak},
k=1
where

I
ak=—l”;—%-(H,(uk+0)—Hj(uk—0))>0 (k =1!2"")'

o0 0
Obviously, Y u}az < co and, in view of (27), } az = co. Hence, in
k=1 k=1

virtue of lemma 1, we obtain equality (20). The lemma is thus proved.
Lymua 3. Let f{w, t) be a measurable separable homogeneous stochastic
process with independent increments for which Ny # 0. There is then a real
constant f; such that setiing fo(w,t) = f(o, t)—ﬂ,«tfﬁ
(28) lim P (sup |fg @, J) = 0) =1
05 JCI
and for every x

(29) HmP (7 (w, J) < @) = P(fo(w, I) < a).
JI

Moreover, Ny, is a countable set.
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Proof. From the assumption Ny =% 0, in virbue of lemma 2, it follows
that

1
1
f 5 () < oo
Setting -

ool % 1 2
br=r [ Tag), H@= [T aw

“o0 —00

we have, according to (6),
o) = expig o] j (6 1) dty ().

Taking into account the last equality it is easy to verify that for
every Borel subset Z the equality

(30) Plfy (@, I)eB) = 2 L21* de}" u)exp (— |I|Hy(0))

k=0 B
holds, where
0 if »<0
H?"(w)={ ¢ oo
1 i =>0,
B (2) = Hy(w), H* () JH, w—y)dH,(y) (k =1,2,...).

The following equality is a direct consequence of the last formuls
Ny, (I) = Ny (J) for each I, J # 0. Consequently, if we take into account
the definition (9), Ny, is a countable set. Moreover, from (30) immediately
follows assertion (29). Equality (30) also implies the well-known formula

P(suplfy(w, J)| = 0) = e~HP,
JI
‘where

b — i 1P (0, 1) = 0)

T T = Hy(c0)—H,(+ 0)+ Hy(—0)

;‘
(ef. [2], p. 259). Hence we obtain assertion (28). The lemma is thus proved.

HOL Proof of theorem. Without logs of generality we may suppose

that, in the case N; # 0, the constant B determined by lemma 3 is equal
to 0. In other words

(31) f(w,t):fo(w,t) if .N,#O-

icm®
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For brevity we write f(w, I) instead of supf*(w, J) and
Jex
(32) Fr(o) = P(f(o,I) < 2).

From the assumption of the separability and the measurability of
f(w, t) it follows that for every interval I the process f(co I+1t) is mea-
sumble Set

(@, { 0 if Mo, I+ >0,

vl =

(38) Irel®s 1 i e, I+) <o,
N 0 i Flo,I+1) >0,

34 W@, ) =

54) gro(, 1) {1 it fiw, I+1) <o,
- 0 it Flo,I+1) %0,

35 -

(35) o, ={ | i o

Obviously, the processes (33), (34) and (25) are measurable. From
the homogeneity of f(w, ) we infer that all the processes
k

(36) T 920, 9),
J=1

are strictly stationary. It is well known that the homogeneous stochastic
process f(w, t) with independent increments is metrically transitive rela-
tively to the difference field, i. e. relatively to the smallest Borel field
of w sets with respect to which all the increments 7*(w, I) are measurable
(cf. [2], p. 512). Consequently, all the processes (36) are metrically transi-
tive. Moreover, the expectations of processes (36) are finite.

Let us denote by R the set of all rational numbers. The set of all
non-empty intervals with rational endpoints will be denoted by f&. From
lemma 3, in virtue of assumption (31), we infer that the set Ru N, is
denumerable. There is then, in view of Birkhoff’s ergodic theorem
(cf. [21, p. 51B), a w set 2, with P(Q,) = 1, such that all realizations
Flog, 1) (wpe ) are Lebesgue measurable functions and for each

.‘31.0(‘”, t), !;I(wyt)

U, Uy, Ugynny UpeRy 0, 01,05, .0y 03 €0 Ny (% =1, 2,...) the following
limits exist:
1 T %k k

(87) Jim f [ ] gogyleny it = 1] ﬂ G030, 0),

LT
(38) - lim j fos(@0, 0@t = ) fual, 0),

1 T
@) tim - [ dolon 0t = [{]o(0,0).

0
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From (7),
k 1]
fH J(ny D = |08 /{0, UyD) <;,0 <t < T,
0 F=1 = .
T

[ Gow @t dt——!{tfw.,,U—l-t)<'v 0t <Y,

0
r

[ G oy @t = iz flo,, U+1) =0,0 <t<

[1]
E fv0(w,0) Edu(w,0) = Fy(+0)—Fy(—0)

and for disjoint intervals U,, U,, ..., Uy

TH,

=FU('D)7 =ﬁ(](+0),

k
FUI(’Dj) .
-]

k
E[]sv;m(0,0) =
J=1

Hence, according to (37), (38) and (39), we have the following asser-

tion: for every w,ef,, and every system of disjoint intervals
U, U1, Uy, ooy Us Ry 0, 0,0, ..., e RoNyand & = 1,2, ... the equal-
ities
k k
(40) 062 (w0, Up+1) < ville = [ [ Foy(0),
= ju1
(41) {t: flwoy U+19) < o}lr = Fp(v),
(42) iz 7 (@0, U+1) = 0} = Ty (+0).
are true.

Now we shall prove that all realizations flwg, 1) (wgef2,) ure effective
Pprocesses in the sense of Steinhaus. Suppose that we are given an arbitrary
system of disjoint intervals I, I;,...,I, and an arbitrary system of
real numbers oy, @y, ..., o . Let Ui (1 =1,2,...,k; n=1,2,...) be
a sequence of intervals belonging to R such that
(43) UnCI;,

Im Ty =1, (j=1,2,.., )

Obvmusly, the set I;\ Uy, is the union of two disjoint intervals:
L\Up —I,nuI,,, Then there are intervals Up,, Uy, belonging to &
such th&t I,,,C Uf,” I,,.C Ufn and

(44) U |Uj| = 0 = lim |Ujn|  (f=1,2,..., k).
N0 [ ey

(32), (33), (34) and (35) we obtain the following equalities:

icm
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Let Vuny Vomy 20y Uam (m=1,2,...) be a sequence of numbers
belonging to Ru N; and satisfying the conditions

o

(48) Dyt ;:b—<w, G=1,2,..
(46) Im o =a (j=1,2,...,%).
Mepoo )
Since for j =1,2,...,kand n=1,2,...
(47) w0y I) = f* (w05 Upn)+1* (00, Tin) -+ f* (00, Iin)
48) M@0, L) < Flwo; Tpa)y  F*{@0y i) < Fle, Uj),
we have, in view of (45), the inclusion

{8:1* (w0, I;-+1) < a4}

, 1
o] {t:f*(wa; U +1) < Opm \({t f*y(wo;-ljn‘i‘t) 2‘7;}“’

[

u{t:f‘(wo,I};+t) —}) {t:7* (wgy Upm+1) < tpmb\

m

\({“f(wmmﬁ-t) i—}u{ (wp, Up+1) > ;})

holds for j=1,2,...,%k n=1,2,... and m =1,2,... Consequently,

k

ﬁ {t:* (w0, L+1) < o} 379 {t:fk(a’n’ Upn+1) < v\

k ~ P 1 z 7] 1
) ({s7ans Ot >l esan, vt > ).

Hence,

k
[ (0 L0 < 2,0 <t < T

k

>I p {¢: f (woy Upn+1) < tymy 0 <T T”_'
1
(T—]{t:f(w.., Upm+1) <% ,0 <t T}i -

- 1
-y (T—l {t:f(w.,, Tt t) <, 0 <1 <T};.
Fm=1


GUEST


346 K. Urbanik

Thus, taking into account relations (40) and (41), we have the ine-
quality

1 k
timint o= | () {i:f"(en, L41) < 3y, 0 < ¢ < T
T'sco j=1
k k i k 1
. . - 7 57 el
> [T Zo it~ ; (1—Fum(m)) 1§1 (1 ﬂ%(m))
J=k =1 =

From lemma 3 and from formula (8) it follows that Fy () is a conti-
nuous interval function for I 7 0. Consequently, in virtue of (5), (32),
(43) and (44), the lagt inequality implies for # — co:

% k
limint — m (21" (00 L+1) < 27, 0 <t < T = [ Fyy (o).
—00 =1 {i=1
Hence, according to (45), (46) and according to the continuity on the
left of Fz(z), we obtain for m — co the inequality

PR IR -
(49)  Mminf | () {t:/* (w0, L+0) < 27,0 <t < TY| = [| Py ().
T—s00 T =1 F=1
Further, we may suppose that »,, #,, ..., #, non eN; and @,_,,...,

Tre Ny Leb Wi, Wyny ooy Wi (M =1,2,...) be a sequence of numbers
belonging to RN, and satisfying the conditions

2 .
(50) ij>w7'+% G=1,2,..,r5m=1,2,...)
(51) Wpm =@  (J=r+1,...,k;m=1,2,..)
(52) Umowpm = o (G =1,2,...,k).
M0

From (47), (48), (50) and (51) we obtain the following inclusions for
j=1,2,..,1, n=1,2,...,m = 1,2,..:

{t:1*(wg, L+ 1) < a5}

, 1
C{t:f* (w05 Upnt+-1) < 2y} u{t:j'*(wo, L +1) >%}u
" 1
u{t:f*(wo,lm—l—t) };n—}c {t:f*(wo, Upn+1) < wp}v

I} 4 1 7 1
V{tif(wo» Ujnt-1) 2"—} u{t:f(wo, Upm+1) >i}
m m

icm

Bffective processes in the sense of H. Steinhaus 347

and for j =1,...,k;n=1,2,...; m=1,2,...

{t:* (w0, L+1) < @y} C {8:£* (g, Tin-+1) < wym}
{t:f" (wgy Tint1) 7 Op {t:1" (@qy Ln+1) # 0} C {1:1*(wyy Upn+1) < 103m}
w{t:f(@o, Tjnt-1) 7 0}S{t:f(wn, Tput1) # 0}

Hence, similarly to the preceding considerations, we obtain the
inequality

[l(j {t:f" (wo, L+1) < 23,0 <t < T}

F
< pl{t:f*(mo, Upn+1) < w0pm, 0 <t < TY|+

r . , 1
+ Z (T— I{t:f(w,,, Uptt) < —,0 <t < T}l +

+2(T~ {t H(@o, Upnt-1) <— 0<1 <1’}{)+
=1
k -
+ E (T—i{t:f (g, Tin+1) = 0,0 <t < TH)+
F=r+1
N
(T—1{t:F(wo, Upn+ 1) = 0,0
Jumr41

<t < TY).

Thus, taking into account the relations (40), (41) and (42), we get
the inequality

1 k
h‘ITnSUPA[ ﬂ {t:1* (g, Li+1) < a5, 0 <t < Th

< H P, (wm) +Z( —Fv,,.( )) +Z ( ¥, (_))+

J=1 u-l
+Z 1—Fgy, (+0))+ 2(1—Fu;'(+0))
Fmr+l Jmril

If r < &, then N; == 0. Therefore, in view of (32), (44) and lemma 3,
we have

lim Fy’ (+0) = 1= im Fy’’ (4 0).
R in Nroo in
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Thus, taking into account formulas '(4), (43), (44), (81) and the conti-
nuity of the interval function Fr(z) (I 5= 0), we obtain for n — o0;

1 I r k
msup 7| () (37" (n, I 1) <oy, 0 <t <2) < [ [ Py 0m) [ ] Fyley).
00 =1 Fml 7

=41

Since wjmnon e Ny (j =1,2,...,7; m =1, 2,...), according to (62),
the last inequality implies for m

1,k k
limsup — t:f I+t ot R .
I'.EEPTIjQ{ [ o Iit+t) < 2,0 <t }| \!J 1:,(-’1"1)

Thus, if we take into account inequality (49), for every system of disjoint

intervals Iy, Iy, ..., I and for every system of real numbers @, @,, ..., @,
k

the relative measure | (M) {t: f*(wo, I;-+1) < @}z exists. Moreover, the
f=1

equality

% k
|0 6 @ Lit1) < ayllm = [ [ Fr(ay)
= g=1

is true. This implies equalities (1) and (3). In other words, f(wg,t)
(woefdy) is an effective process satisfying econdition (3). The theorem ig
thus proved.
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