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Dans le cas de la valeur nous avons, en particulier:

THEOREME 2. Pour que la valewr T(x,) ewiste et soit dordre C P,
il faut et il suffit que dans une voisinage de @, la distribution T soit de la forme

+ X' Do, ot gyl (Py(@0) = oA
£y
(0, étant des mesures).
Finalement les théorémes 1 et 2 donnent les développements

(8, 20, y)da), -Q JPRDg 2 (@, y) oy,

ol Gyl (P (20) xQ) = o(APH™), pour yeDem, o; 8 S(Y) = T(w,7) eb si
la fixation est d’ordre C & sur un ouvert conmtenant g, et
(T(@), p(x)) =T (@) [p(@)dx+ D) [ DPoda,,
|opl (P2 (%)) = 0 (AP1F™),

si la valeur est d’ordre C °P.

(8.3.9) T = Tlw)+

(8.3.10) (T (m y), 2(®,y)) =

(8.3.11)
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The starting point of this Note is the following theorem of B. J. Pettis
([6], p. 257%)): a vector-valued?) function from a measure space to a Ba-
nach space X iy (Bochner) measurable if and only if it is almost separably
valued®) and for every y belonging to a norming set of functionals the
function yx(f) is measurable. The subset I' of the space &, conjugate
to X, is called norming if there are two positive constants 4 and B such
that

sup{4 [y2|: y T, ly| < B} = (=]

for every z. In this Note we prove that the set I' in the above state-
ment may be replaced by any total subset of Z (the set I' is total if
yz = 0 for any yel', implies # = 0). Every norming set is necessarily
total; the converse, however, is not true, as is shown by the following
example of Mazurkiewicz [7]. Suppose that the set of all pairs (i, k)
of positive integers is arranged into a single sequence, and let »(4, k)
denote the place occupied there by (%, %). Then in the space ¢, of the

sequences # = {x,}, convergent to zero, consider the set of all the fune-
tionals

Ein(2) = — + -+ ZZE iy 0, 1y

where i,k =1,2,...
not norming.

; the linear span I' of this set is linear, total but

1. Let X be a separable (real or complex) Banach space, let & be the
conjugate space, and let I' be a linear subset of 5. It is well known
that the set I" is total if and only if T, its closure in the o(&, X) topo-

) Numbers in brackets refer to the bibliography at the end of this paper.

*) In the sequel all Banach-space-valued functions will be called simply wvector-
-valued. Numerically valued functions will be called functions.

3) 4. e., there exists a subset N of measure zero such that the set {y:y =ux(t),
tnone N} is separable.

Studia Mathematica T. XVII 5


GUEST


66 A, Alexiewicz

logy%), is equal to 5. After Banach ([2], p. 213) we denote by I the
weak sequential closure of I' (i.e., yeI™ if and only if there exists a se-
quence y, of elements of I' such that y,(z) —»y(2) for every zeX).
Then for every ordinal p < 2 we define I = (| ™). Banach has shown

a<le
(partly published in [2]) that for every ¢ < Q there exists a linear set I’
such that I'” == I'**1; on the other hand, for any linear set I" there exists
a g < 2 such that I'* = I'"*" (for the sét defined by Mazurkiewicz we
have I' £ It £ I? = &).

Let ¢ be the smallest ordinal such thai = Tt then I'* =T,

Indeed, by & theorem of Banach ([2], p. 124, théoréme 5) the set I™”
is regularly closed, which is equivalent to the closedness in the o(Z,X)
topology. Evidently I'CI"CI and since I' is the smallest weakly
(= regularly) closed set ‘containing I', we have I'C I'.

Denote by X, the sphere: ||&]| <1. Then I' = I'* implies I'nX =
= (I~ Z,)" .

2. Now let R be a family of functions defined in a set D, and let
R have the following property:

(1) the limit of any pointwise convergent sequence of funomons
of R belongs to R.

THEOREM 1. Suppose that (i) is a function from D to X, X being
separable. Let I' be a linear total subset of E. If yw(t) is in R for every
yel' (for every yel'n Xy), then Ex (i) 48 in R (Ea(t) is in a,R, o being
a constant) for every £eZ.

Proof. Let £, be the family of all functions yx (i) with yel™; in
virtue of (1) we verlfy by transfinite mductlon that £,C R for every
@ < 2. There exists a ¢ such that I =T =

The proof of the alternative part of ’l‘hemem 1 is similar.

As applications we get:

THEOREM 2. A vector-valued function x(t) is measurable®) if and
only if it is almost separably valued and yx(t) is measurable for every vy in
a total subset I' of Z.

Proof. The necessity being trivial, we prove the sutficiency. We may
freely suppose that the space X ig separable itgelf and that the set I' is

4) This is the weakest locally convex topology in & for which the funetionals
f(§) = éx, 26X are continuous; the Dbasis of neighbourhoods of the null element

n
is formed by the sets (M) {5: 1€ (@) | << 1} where ©y, ..., %n are arbitrary olements of X;
g1

the notation o (%,

%) o = {g: g = ah, heR}.
¢) in the sense of Bochner, with respect to a o-measure.

X) is due to J. Dieudonné [3].
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linear. Taking as R the family of all measurable functions we see that
§x(f) is measurable for every £e¢5, whence theorem follows by a theorem
of Pettis ([b], p. 278).

The following result generalizes a theorem of Dunford:

THEOREM 3. A wector valued function 2(f) from a domain D of the
complex plane to ¢ complex Bamach space X is holomorphic in D if and
only if it is separably valued, almost uniformly bounded?), and yx(l) is
holomorphic in D for every y in a total subset of =.

Proof. We may suppose again that the space X is separable and
that the set I' is linear. We prove the necessity only. Let ¢, be com-
pact subsets of D such that D = | 0,; then 4, = sup{um(f)uzﬁe ) <oo.

n=1
Applying the alternative part of Theorem 1 to the family R of holo-
morphie functions ¢ in D satisfying the inequality sup{|g(§)] : CeC’n} < An,
we infer that for every ZeZ the function £z(f) is in a,R (4, — a con-
stant depending on £), whence it is holomorphic. We conclude the proof
by applying the theorem of Dunford.

Let us now consider vector valued functions from a metric space 7.
If »(t) is separably valued, then z(¢) is of Baire’s a-th class®) if and only
if for every open set G C ¥ the set {t: (f) eG} is of additive a-th class
of Borel.

THEOREM 4. Let the function x(t) be separably valued and let yz(t)
be a Batre function for every y in a total subset of =. Then x(t) is a func-
tion of Baire.

Proof. Using the device applied above we may show that for every
& eZ the numeric function £x(f)is in a Baire’s class, in B%, say. By a theo-
rem of Banach ([2], p. 124) there exists a sequence &, of linear functionals
such that for every £e.5 there exists a sequence n;. such that &ny, (@) — &(@)
for every zeX. Set ¢ = sup ag,,, then £z (%) is of class at most B*t! whence

n

by a theorem of the author and Orlicz ([1], p. 108) «

(t) is at most of
class BPt%. '
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Addition to the paper “On some theorems of S. Saks*
by
A. ALEXIEWICZ (Poznanh)

Mr. C. Ryll-Nardzewski has pointed out in a review?) that theorem 3
of my paper On some theorems of S. Saks®) must be corrected, for the num-
Der p in this theorem depends on e. Indeed, the number ¢ is not preceeded
there by a quantifier operating on it, and it is obvious that this must
be the existential one. Thus the correct formulation is as follows:

TrEOREM 3. Under the hypotheses of theorem 2 there ewists for every
e> 0 a decomposition T = A-+B-+0, a ¢ > 0, and o residual set Z such
that

(a) the series )V, (x, )" converges for any x and every || <o a.e.
B n=0
in A,
(b) the series >V, (x,1)(" diverges for ‘every weZ and every |f| > 0
N=0

a.e. i B,

(e) u(0) <e.

On the other hand, the following theorem is easily deduced by the
general argument:

TuEOREM 3'. Under the hypotheses of Theorem 2 there exisis for every
o > 0 a decomposition T = A+B and o residual set Z such that

(a) for every « the series Y Va(z,1)(" has a.e. in A the radius of
n=0

convergence at least equal to o,
00 -
(b) for every zeZ the series YV, (x,t)(" has a.e. in B the radius of

=0
convergence less than g.
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