icm®

Dans le cas de la valeur nous avons, en particulier:

THÉORÈME 2. Pour que la valeur $T(x_0)$ existe et soit d'ordre $\subset \mathfrak{P}$, il faut et il suffit que dans une voisinage de x_0 la distribution T soit de la forme

$$(8.3.9) \hspace{0.5cm} T = T(x_0) + \sum_{\mathfrak{A}} D^{\boldsymbol{p}} \sigma_{\boldsymbol{p}}, \hspace{0.5cm} o\grave{u} \hspace{0.5cm} |\sigma_{\boldsymbol{p}}| \big(P_{\boldsymbol{\lambda}}(\boldsymbol{x}_0) \big) = o\left(\boldsymbol{\lambda}^{|\boldsymbol{p}|+m} \right)$$

(σ_p étant des mesures).

Finalement les théorèmes 1 et 2 donnent les développements

(8.3.10)
$$(T(x,y),\chi(x,y)) = (S,\int \chi(x,y)dx)_y + \sum_{\Xi} \int D_x^p D_y^q \chi(x,y) d\sigma_{pq},$$

où $|\sigma_{pq}|(P_{\lambda}(x_0) \times Q) = o(\lambda^{|p|+m})$, pour $\chi \in \mathcal{D}_{\mathcal{E}^m \times Q}$, si $S(y) = T(x_0, y)$ et si la fixation est d'ordre $C \mathfrak{S}$ sur un ouvert contenant \overline{Q} , et

si la valeur est d'ordre $\subset \mathfrak{P}$.

Travaux cités

- [1] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), p. 237-320.
- [2] H. König, Neue Begründung der Theorie der "Distributionen" von L. Schwartz, Math. Nachrichten 9 (1953), p. 129-148.
- [3] G. Köthe, Über zwei Sätze von Banach, Math. Zeitschr. 53 (1950), p. 203-209.
- [4] S. Lojasiewicz, Sur la valeur d'une distribution dans un point, Bull. Ac. Polon. Sci. Cl. III, 4 (1956), p. 239-242.
- [5] Sur la valeur et la limite d'une distribution dans un point, Studia Math. 16 (1957), p. 1-36.
- [6] С. М. Никольский, Свойства некоторых классов функций многих переменных на дифференцируемых многообразиях, Мат. сборник 33 (75) (1953), p. 261-326.
 - [7] L. Schwartz, Théorie des distributions, I, II, l'aris 1950 et 1951.
- [8] Théorie des noyaux, Proc. Int. Congress of Math. I, Cambridge, Massachusetts 1950, p. 220-230.
- [9] Z. Zieleźny, Sur la définition de Lojasiewicz de la valeur d'une distribution dans un point, Bull. Ac. Polon. Sci., Cl. III, 3 (1955), p. 519-520.

Recu par la Rédaction le 5, 12, 1956

On certain "weak" properties of vector-valued functions

bу

A. ALEXIEWICZ (Poznań)

The starting point of this Note is the following theorem of B. J. Pettis ([6], p. 2571)): a vector-valued 2) function from a measure space to a Banach space X is (Bochner) measurable if and only if it is almost separably valued 3) and for every γ belonging to a norming set of functionals the function $\gamma x(t)$ is measurable. The subset Γ of the space Σ , conjugate to X, is called norming if there are two positive constants A and B such that

$$\sup\{A \, |\gamma x| \colon \gamma \, \epsilon \varGamma, \, \|\gamma\| \leqslant B\} \geqslant \|x\|$$

for every x. In this Note we prove that the set Γ in the above statement may be replaced by any total subset of Σ (the set Γ is total if $\gamma x = 0$ for any $\gamma \in \Gamma$, implies x = 0). Every norming set is necessarily total; the converse, however, is not true, as is shown by the following example of Mazurkiewicz [7]. Suppose that the set of all pairs (i, k) of positive integers is arranged into a single sequence, and let $\nu(i, k)$ denote the place occupied there by (i, k). Then in the space c_0 of the sequences $x = \{x_n\}$, convergent to zero, consider the set of all the functionals

$$\xi_{ik}(x) = \frac{x_1}{2^1} + \ldots + \frac{x_{2i+1}}{2^{2i+1}} + ix_{2\nu(i,k)}$$

where i, k = 1, 2, ...; the linear span Γ of this set is linear, total but not norming.

1. Let X be a separable (real or complex) Banach space, let \mathcal{E} be the conjugate space, and let Γ be a linear subset of \mathcal{E} . It is well known that the set Γ is total if and only if $\overline{\Gamma}$, its closure in the $\sigma(\mathcal{E}, X)$ topo-

¹⁾ Numbers in brackets refer to the bibliography at the end of this paper.

²⁾ In the sequel all Banach-space-valued functions will be called simply vector-valued. Numerically valued functions will be called functions.

a) i. e., there exists a subset N of measure zero such that the set $\{y:y=x(t)$, thon $s\,N\}$ is separable.

logy⁴), is equal to \mathcal{Z} . After Banach ([2], p. 213) we denote by Γ^1 the weak sequential closure of Γ (i. e., $\gamma \in \Gamma^1$ if and only if there exists a sequence γ_n of elements of Γ such that $\gamma_n(x) \to \gamma(x)$ for every $x \in X$). Then for every ordinal $\varphi < \Omega$ we define $\Gamma^{\varphi} = (\bigcup \Gamma^a)^1$. Banach has shown

(partly published in [2]) that for every $\varphi < \Omega$ there exists a linear set Γ such that $\Gamma^{\varphi} \neq \Gamma^{\varphi+1}$; on the other hand, for any linear set Γ there exists a $\varphi < \Omega$ such that $\Gamma^{\varphi} = \Gamma^{\varphi+1}$ (for the set defined by Mazurkiewicz we have $\Gamma \neq \Gamma^1 \neq \Gamma^2 = \Sigma$).

Let φ be the smallest ordinal such that $\Gamma^{\varphi} = \Gamma^{\varphi+1}$; then $\Gamma^{\varphi} = \overline{\Gamma}$.

Indeed, by a theorem of Banach ([2], p. 124, théorème 5) the set Γ^{φ} is regularly closed, which is equivalent to the closedness in the $\sigma(\mathcal{Z}, X)$ topology. Evidently $\Gamma \subset \Gamma^{\varphi} \subset \overline{\Gamma}$ and since $\overline{\Gamma}$ is the smallest weakly (= regularly) closed set containing Γ , we have $\overline{\Gamma} \subset \Gamma^{\varphi}$.

Denote by Σ_1 the sphere: $\|\xi\| \leqslant 1$. Then $\overline{\Gamma} = \Gamma^{\varphi}$ implies $\overline{\Gamma} \cap \Sigma_1 = (\Gamma \cap \Sigma_1)^{\varphi}$.

- 2. Now let $\mathfrak R$ be a family of functions defined in a set D, and let $\mathfrak R$ have the following property:
- the limit of any pointwise convergent sequence of functions of R belongs to R.

THEOREM 1. Suppose that x(t) is a function from D to X, X being separable. Let Γ be a linear total subset of Ξ . If $\gamma x(t)$ is in \Re for every $\gamma \in \Gamma$ (for every $\gamma \in \Gamma \cap \Sigma_1$), then $\xi x(t)$ is in \Re ($\xi x(t)$ is in $\alpha_{\xi}\Re$, α_{ξ} being a constant) for every $\xi \in \Xi$.

Proof. Let \mathfrak{L}_{φ} be the family of all functions $\gamma x(t)$ with $\gamma \in \Gamma^{\varphi}$; in virtue of (1) we verify by transfinite induction that $\mathfrak{L}_{\varphi} \subset \mathfrak{R}$ for every $\varphi < \Omega$. There exists a φ such that $\Gamma^{\varphi} = \overline{\Gamma} = \Xi$.

The proof of the alternative part of Theorem 1 is similar.

As applications we get:

THEOREM 2. A vector-valued function x(t) is measurable $^{\mathfrak{a}}$) if and only if it is almost separably valued and $\gamma x(t)$ is measurable for every γ in a total subset Γ of Ξ .

Proof. The necessity being trivial, we prove the sufficiency. We may freely suppose that the space X is separable itself and that the set Γ is

The following result generalizes a theorem of Dunford:

THEOREM 3. A vector valued function $x(\zeta)$ from a domain D of the complex plane to a complex Banach space X is holomorphic in D if and only if it is separably valued, almost uniformly bounded, and $\gamma x(\zeta)$ is holomorphic in D for every γ in a total subset of Ξ .

Proof. We may suppose again that the space X is separable and that the set Γ is linear. We prove the necessity only. Let C_n be compact subsets of D such that $D = \bigcup_{n=1}^{\infty} C_n$; then $A_n = \sup\{\|x(\zeta)\|: \zeta \in C_n\} < \infty$. Applying the alternative part of Theorem 1 to the family \Re of holomorphic functions g in D satisfying the inequality $\sup\{|g(\zeta)|: \zeta \in C_n\} \leq A_n$, we infer that for every $\xi \in \mathcal{Z}$ the function $\xi x(\zeta)$ is in $a_{\xi}\Re$ ($a_{\xi} - a$ constant depending on ξ), whence it is holomorphic. We conclude the proof by applying the theorem of Dunford.

Let us now consider vector valued functions from a metric space T. If x(t) is separably valued, then x(t) is of Baire's α -th class α if and only if for every open set $G \subset Y$ the set $\{t: x(t) \in G\}$ is of additive α -th class of Borel.

THEOREM 4. Let the function x(t) be separably valued and let $\gamma x(t)$ be a Baire function for every γ in a total subset of Ξ . Then x(t) is a function of Baire.

Proof. Using the device applied above we may show that for every $\xi \in \mathcal{Z}$ the numeric function $\xi x(t)$ is in a Baire's class, in $B^{a_{\xi}}$, say. By a theorem of Banach ([2], p. 124) there exists a sequence ξ_n of linear functionals such that for every $\xi \in \mathcal{Z}$ there exists a sequence n_k such that $\xi_{n_k}(x) \to \xi(x)$ for every $x \in \mathcal{X}$. Set $\varphi = \sup_n \alpha_{\xi_n}$, then $\xi x(t)$ is of class at most B^{r+1} , whence

by a theorem of the author and Orlicz ([1], p. 108) x(t) is at most of class B^{p+2} .

Bibliography

[1] A. Alexiewicz and W. Orlicz, Sur la continuité et la classification de Baire des fonctions abstraites, Fundamenta Mathematicae 35 (1948), p. 105-126.

⁴⁾ This is the weakest locally convex topology in \mathcal{Z} for which the functionals $f(\xi) = \xi x, x \in X$ are continuous; the basis of neighbourhoods of the null element is formed by the sets $\bigcap_{i=1}^{n} \{\xi: |\xi(x_i)| \leq 1\}$ where x_1, \ldots, x_n are arbitrary elements of X; the notation $\sigma(\mathcal{Z}, X)$ is due to J. Dieudonné [3].

⁵⁾ $a\Re = \{g: g = ah, he\Re\}.$

⁶⁾ in the sense of Bochner, with respect to a σ-measure.

⁷⁾ i. e., is bounded in every compact subset of D.

^{*)} We adopt here the "analytic" classification: the continuous functions form the 0-th class B^0 ; B^a is the class of all functions which are limits of pointwise convergent sequences of functions of classes less than B^a . The functions of Baire are the functions of $\bigcup B^a$.

A. Alexiewicz

68

- icm[©]
- STUDIA MATHEMATICA, T. XVII. (1958)

- . [2] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warszawa 1932.
- [3] J. Dieudonné, La dualité dans les espaces vectoriels topologiques, Ann. Ecole Norm. 59 (1942), p. 107-139.
- [4] Nelson Dunford, Uniformity in linear spaces, Trans. of the American Math. Society 44 (1938), p. 305-356.
 - [5] B. J. Pettis, On integration in vector spaces, ibidem 44 (1938), p. 277-304.
 - [6] Differentiation in Banach spaces, Duke Math. Journal 5 (1939), p. 254-269.
- [7] S. Mazurkiewicz, Sur la dérivée faible d'un ensemble de fonctionnelles linéaires, Studia Mathematica 2 (1930), p. 68-71.

Reçu par la Rédaction le 2.1.1957

Addition to the paper "On some theorems of S. Saks"

bу

A. ALEXIEWICZ (Poznań)

Mr. C. Ryll-Nardzewski has pointed out in a review 1) that theorem 3 of my paper On some theorems of S. Saks 2) must be corrected, for the number ϱ in this theorem depends on ε . Indeed, the number ϱ is not preceded there by a quantifier operating on it, and it is obvious that this must be the existential one. Thus the correct formulation is as follows:

THEOREM 3. Under the hypotheses of theorem 2 there exists for every $\varepsilon>0$ a decomposition T=A+B+C, a $\varrho>0$, and a residual set Z such that

- (a) the series $\sum_{n=0}^{\infty} V_n(x,t) \zeta^n$ converges for any x and every $|\zeta| < \varrho$ a. e. in A,
- (b) the series $\sum_{n=0}^{\infty} V_n(x,t) \zeta^n$ diverges for every $x \in Z$ and every $|\zeta| > 0$ a. e. in B,
 - (c) $\mu(C) < \varepsilon$.

On the other hand, the following theorem is easily deduced by the general argument:

THEOREM 3'. Under the hypotheses of Theorem 2 there exists for every $\rho > 0$ a decomposition T = A + B and a residual set Z such that

- (a) for every x the series $\sum_{n=0}^{\infty} V_n(x,t) \zeta^n$ has a.e. in A the radius of convergence at least equal to ϱ ,
- (b) for every $x \in Z$ the series $\sum_{n=0}^{\infty} V_n(x,t) \zeta^n$ has a.e. in B the radius of convergence less than ϱ .

Reçu par la Rédaction le 2.1.1957

¹⁾ Polska Bibliografia analityczna, Matematyka (1956), review 220.

²⁾ Studia Mathematica 13 (1953), p. 18-29.