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On some classes of linear spaces

by
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Since the fundamental papers of F. Riesz ([5], [6]) the spaces L°
and I* are reckoned among the clagsical examples of linear normed spaces
in the functional analysis. The space I°, where a > 0, is the space of se-

o0
quences {f,} such that the series '|7,|* converges; L% where a >0, denotes

the space of measurable functions in (@, ) for which the integral
b .
[ @)
a

ig finite. In the period between the wars and after World War II there
appeared several papers dealing with generalizations of the spaces A
and I°. The idea of these generalizations is based upon the following.
Let N be a non-negative function defined for all real values. One consi-
ders the class X~ of sequences for which the series

ela) = DN (1), o= {t},

converges. It may be proved under very general and natural supplemen-
tary conditions about the function N that X~ are Banach spaces. In the
case N (u) = |u|% where a >>1, these conditions are satisfied, and I* form
a particular cage of the spaces X%, An analogous situation holds for the
spaces of meagurable functions in (a, b). Denoting by X¥ the class of mea-
surable functions in (a, b) for which the integral

b
ol@) = [ N(o()dt

exists and is finite, we may prove under certain hypotheses on N that xy
is a Banach space. The spaces L® with « > 1 are a particular case of
the spaces XV corresponding to N (%) = |ul|®
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In this paper we are concerned with the examination of the spaces
XV of sequences and those of functions from a very general standpoint.
Under very slim hypotheses about the function ¥ we deal with the follo-
wing problems: a) in which case are the spaces X" -linear? b) which are
the necessary and sufficient conditions for the function N in order to make
it possible in the linear space XV to define an F- or B-norm such that the
relation ||z,|| = 0 as n - oo be equivalent to ¢ (®,) ~ 0 as # —> co?

The main results of the paper are contained in theorems 3, 6, from
which it follows that the well known sufficient conditions on N g asserting
that XV is a B-space arve in some sense necessary.

The paper consists of two paragraphs. In the first we deal with the
spaces of sequences for which the obtained results have a more complete
character than for the spaces of functions considered in the second para-
graph,

Throughout this paper N, M, ... denote non-negative functions de-
fined for all real values; in §1, @,y, ... denote sequences {t},{s.}, ...
with real terms, in § 2, #(t), y(f), ... stand for real measurable functions
in (0,1). The spaces of sequences X~ and of measurable functions are
always understood to be linear under the usual definitions of addition
and multiplication by scalars. Rquality of the measurable functions a
and y means that x() = y(t) for almost every i.

1.1. Given a function N, we shall write in this section
0
DN ().

=l

on{w) =

We shall also write o(2) instead of gy (2) if the omission of the subseript
will not cause misunderstanding about the involved function N. By XV
we shall denote the set of all sequences for which gy () < co. We shall
Irequently suppose that N satisfies the following condition:

(%) N(t,) >0 as n oo if and only if £, -0 as n — oo,
The condition (x) implies in particular N (0) = 0 and N (¢) % 0 for
i 50,

The funections N and M will be called equivalent, in yymbols N~ M,
if the following property is satisfied:

Theoe are constamts A >0, B> 0,& >0 such that N (1) =
for M{t) <e, M(t) < AN for N{i) < a.
It is easily seen from this definition that
- 1.12. For N and M satisfying the condition (%), N~M dif and only if
simultaneously N (t) < BM(1) and M () < AN() in some neighbourhood
of 0.

BM (1)
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In the sequel we shall need the following lemmata:

1.13, Let M (t, s) and N (¢, 8) be non-negative functions defined for all
real values of t and s. A necessary and sufficient condition that the conwver-

o0
gence of the series ZM L1 8,) tmply the convergence of the series DN (3,,8,)
v=1

Py §

is the existence of two positive constants C and e such that

(+) N(t,s) <CM(t,s) when M(L,8) <e.

Sufficiency being obvious, we prove only the necessity. First it is
easily seen that M (f,s) = 0 implies N (i, s) = 0. Suppose (+) is not
satisfied, then there must exist ¢,,s, such that N (&, s,) = nM(t,, s,)
and M (t,, s,) < 1/n2forn = 1, 2, ... We may suppose that M (1,, s,) % 0.
Let us choose positive integers p, such that 1/n? < p,M (4, s,) < 2/n?
for n =1,2,... Lett, =t.,8, =8 fOr Pyd...4pry < N < Poton.+Py
as r=1,2,... (we set p, = 0). Since

DM (1, 8) < oo, VN(ty, 5) =

r=1
we are led to a contradiction.
Setting M (¢, s) = M(t), N (1,
1.13 that
1.14. A necessary and sufficient condition that gu (%) < oo imply
on (%) << oo is the ewistence of two constants B> 0,e >0 such that
N(t) < BM(t) for M(t) <e

1.2. Let g,(w) denote for n =1,2,... non-negative measurable func-
tions defined in (—8, 8), satisfying for a certain constant K > 0 the inequa-
lity

(+) @@+ awy)

s) = N (t) for arbitrary ¢, s we find from

< Elpu(o)+oul0n)]  for o, 0pel,

E being o measurable set in (—98, 8) such that |H| > 14.
Then
A, If pp(w) + 0 as n > oo for |w] << 8, then for each &> 0 the follow-

ing inequality is satisfied for almost all n’s:
wlw) <e  for o] < §/4.

B. If the sequence @, (w) is bounded for each |w| < 6, then there is ¢ con-
stant L > 0 such that

Pn(0) <L for

Ad A. Given & > 0 let us set for k =1,2,...

o] < 8/4 and n =1,2, ...
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T = {wipu(0) <e for » =k, weBA(0, 8,
T = {o:pn(w) e for n =k wefn~(-4, 0)}.

Let us denote by 7T the set symmetriml to T3 with respect to the
point 0. Since llmT, = (0, 8)~nH, hmT, (—d, 0)~E we infer that

)~ Tt

follows that it is poss1b1e to choose k, so large that for the set
8 = l’k ~T%, and for the set 8 symmetrical to it (with respect to 0)
the mequahtleﬂ |87] > 28, |8*| > 40 respectively are satisfied. Bvery
translation 87 of the set §* by the length w such that |w| < 6/4 hag
common. points with S*. It follows that
where w,;e8T C 7160, —wye8™ C .’I’Z,n it || < §/4.
By (+) we have g,(w) < K[gn(m)+@u(—wy)] < K26 for |o| < §/4
and n = k.
Ad B. Let us set for k =1,2,...

TF = |wipa(w) < for 21, 0eBA(0, 8},
T = {w:(pn(w) <k for n =21, weEn(—4d, 0)} .

Starting with these sets let us define the sets S and 8~ as above.
Then (++) remains true, whence by (+) it follows

(+++) Pp(0) < K[(Pn(wl)+¢¢z(—“)z)] < K2k,

1.3. (3) We have XV = X™ if and only if N ~ M;

(b) The space X~ is identical with the space of all sequences if and
only if N(t) =0 for all ¢.

(¢) The space XV is identical with the space of the sequences {t,} for
which t, = 0 for almost all n if and only if N(0) = 0 and there is 6> 0
such that N(t) > 6 for t # 0.

Ad (a). It follows immediately by 1.14 and by the definition of
equivalence.

Ad (b). Sufficiency being trivial, let us suppose that N(#) 0;
then for the sequence @ = (¢,t,...) we have py(#) == oo, whence ,\”V
could not contain all the sequences.

Ad (c). The sufficiency is trivial. Now let X~ congist only of sequen-
ces whose almost all elements are equal to zero: then the sequence (0, 0,...)
is in X¥, whence N (0) = 0. Let us now suppose that N (,) -0 where
tn = 0. Then for a subsequence of £, we have gy () < co and XV contains
a sequence with infinitely many terms different from 0.

hm]T;,l = (0,9 nL’\ llmlT, | = |(—9, ())r\E| 11m|T,c] = |(—

(++) 0 = w,—w,

for |o| < dM4,n=1

1.4. The following conditions are necessary and sufficient that the space
XY be linear:
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On some classes of linear spaces 101

(a) There are constants C > 0, ¢ > 0 such that
N(i+s) < OLN () + N (s)] N(t) <e, N(s) < e
(b) For each w there are constants D, > 0, g, > 0 such that
N(wt) < D,N(@) for N() <&,

for

(e) N(0)=0.

To prove (a) let ws set M(t,s) =N(@)+N(s), N(,s) = N(i-+s).
Since oy (®) < o0, px(¥) < oo implies gN(m—l—y) < oo, it iy sufficient to
apply 1.13 to M (¢, s) and N (¢, s). To prove (b) we apply 1.14 to the func-
tions ¥ (wt) and N () considering that from gy (2) << oo follows gy (wx) << oo,
{¢) follows from the trivial remark that X~ contains the sequence (0, 0, ...)
if and only if N (0) = 0.

L.5. Let the function N be measurable and let the space XN be linear.
Then one of the following three cases holds:

(a) N(t) = 0 for every t;
(b) N(0) =0, there is a 6 > 0 such that N(t) = 6 as t £ 0;
(e) N satisfies the condition (%).

Let us suppose that the cases (a) and (b) are not satisfied. Suppose
that for t, we have Jf,| > o > 0 and N (f,) — 0. The space X" being li-
near, we have by 1.4 (b) N (wt,) - 0. for || <1. In (—1,1) there is a set
B of measure greater than 7/4 such that N (wit,) < ¢ for almost all n'’s
for weB. Applying 1.4 (a) and 1.2,A to @,(w) = N(wt,) with n suffi-
ciently large, we get for m sufficiently large

N(wty) < & lw| < 1/4,

and since |t,| = ¢, we infer that N(¢) < e for || < o/4, consequently
N(t) = 0 for |t| < ¢/4. This implies together with 1.4 (b) that N (i) =

for arbitrary ¢, which is contrary to the hypothesis. Thus N(f,) - 0 as
n — oo implies %, - 0. To prove that, conversely, #, - 0 ag » — oo implies
N (t,) - 0 let us notice that if (b) is not satisfied, then for certain 7, % 0

for

. we have N (#,) — 0 as n — oco. By the preceding #, — 0 as % -> co. Applying

to N {wi,) the same argument as formerly to N (wt,) we can prove N (wf,) < &
for jo| < 1/4 and m sufficiently large. Let ¢, = 0 as » — co. Then since
for almost all » we have t, = w,i, Where |w,| < 1/4, we see that N (f,) < e.

1.51. The following example shows that without the hypothesis
of measurability of N Theorem 1.5 is no longer true. Let f(2) be a complex
function of the complex variable discontinuous and satisfying the equa-
tions f(z1+z2) = f(zl)‘*"f(zz); f(212:) = f(21) f(25) for arbitrary s, 2,.
Let us set N (¢) = |f(t)|; for real ¢. The space X~ is linear, for N (i+s) <
< N(@)+N(s ) N(st) = N(s)N(t). For the function N none of the condi-
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tions (a), (b), (¢) of 1.5 is satisfied, whence we can easily show by aid of
1.3 (a) that there exists no measurable fanction M such that XV = x™,
The condition 1.5 (a) does not hold for N for, if it were so, the funetion
f(z) would vanish along the real axis, whence also for every 2, which is
evidently impossible. The condition 1.5 (b) is not satisfied for f(t) = at-+bts
for rational t where ¢ and b are real constants. The condition 1.5 (c)
is not satisfied. Indeed, if N satisfies the condition (%), the function f(t)
is continuous at 0 and since f(f-+ts) = f(t,)--f(ts), we infer that f(t) =
— at-+bti for all real t. Hence f(2) = f(w)£f(y)? when z = x4y ; therefore
f would be continuous.

Theorems 1.3, 1.5 explain the importance of the condition («): Under
the hypothesis of -measurability of N, except the two extreme trivial
cases of linear sequence spaces listed in 1.3 (a), (P), XY is a linear space

only if the condition (x) is satisfied. If N satisfies the condition («) (with- |

out being measurable), then the cases 1.5 (a), (b) evidently do mnot hold,
whence the condition (%) excludes the above-mentioned extreme cases.
The last remarks justify the need of supposing () in the sequel.
1.6. Let N satisfy the condition (x); if
(a) there exist constanis C > 0, & > 0 such that N (1) < C[N ()N (s)]
for |t <e, 8] < ¢
(b) for every w there are constamts D, > 0, ¢, > 0 such that N{wl) <
< D,N(t) for |t| < e,,
then
(0) for every g > 0 there exists D > 0, & > 0 such that N (wt) < DN(1)
for i} < 8, || < e.
Let us define M as follows:
BN (s) as
M(t) = { st
1 a8

[t < e,

[t = e.

Continuity at 0 of the function N implies, together with (a), M (f) < oo
for |t| < &. M is a measurable function equivalent to N. To prove that
M~XN let us observe that M (1) = N () in some neighbourhood of 0.
The inequality N (s) < C[N(8)+N(s—t)] satisfied for [f << ¢, |s—¥ <e
implies M (1) = ]irrixN(s) < O[N(t)-klin?N(s——t)f] = (ON(t) for |t <& It

81 8+

iy sufficient to apply 1.12.

Let us suppose that our theorem does not hold. Then there exist
tn # 0,1, >0 a8 1 = oo and «, such that |w,| < ¢, N (wntn) /N (h) > o0
as # - oo. Let us obsgerve that the condition (x) implies N (t,) - 0, since
ty, # 0. Let us define for # =1, 2, ... and |o| < ¢ the functions

Pnlw) = M(wty)| M (t,).

icm
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We have M(t,) 5 0, for M ~ N. The definition of M implies that
the conditions (a), (b) remain valid when N is replaced by M. It follows
that for n sufficiently large the functions g,(w) satisfy the inequality
(+) of 1.2, with some constant K and 6 = g, B = (—0, 6). Applying
(b) to M we deduce that the sequence g,(w) is bounded for |w| < g;
moreover the functions ¢, (w) are measurable. By 1.2, B we have g, (0) < L
for |w| < ¢/4 and sufficiently large n. Hence and from M ~ N we get

for almost all »
N (oontn) [N () < L'

with some constant L' > 0, which leads to a contradiction.

1.61. Concerning 1.6 let us notice that there exist non-measurable
functions satisfying the conditions (x), 1.6, (a), (¢). As an example we
may take an arbitrary non-measurable function N satisfying the condi-
tions at < N(t) < bt for t = 0 where 0 < a < b, N(t) = N(—t) for ¢t < 0.
The non-measurable functions N, however, may always be eliminated
in the investigation of linear spaces X~ provided that the condition (x)
be satisfied. Indeed, -

Let the function N satisfy the condition (%) and 1.6 (a), (b); then there
exists a function M equivalent to N continuous and increasing for t =0
and such that M(t) = M (—1).

To prove this let us choose a positive integer m so that N (1) <1
for 0 <t << 1‘/m and let &, be a decreasing sequence such that 0 < g, <

< sup N(s) for n > m. This is possible, for N (¢) is continuous at 0 and
oe<l/n .

N(t) # 0 for t # 0. Let us define first M (f) for ¢ > 0 as follows:

M©) =0,
M(1jn) = sup N(s)+éen,
ocs<in

M (%) is equal to the linear function for 1/(n+1) <t << 1/n, if n = m,
M(#) is equal to an arbitrary continuous function increasing for
t > 1/m provided that it is chosen so that the continuity of M is pre-
served at the point ¢ = 1/m.
For t < 0 we set M(f) = M(—t). The equivalence of M and N re-
sults from the following inequalities, which result from 1.6 (c): E

1 N(t) 1 1
N < DN(t N|l—— = — for < —
S V() < DN, (n+1) D e A
1
M) < M(—) <2 sup N(s) <2DN(¢),
n 0gs<I/n
1 1 N ()
Mt>M(—)> sup N(s >N(—-—~)>———
() = n+1 /0<s<1/1(n+1) (8) nt1]” D
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for 1/(n+1) <t <1/n. In all these inequalities »n = m,»n > 1/8 and
6, D are constants involved in 1.6 (¢) when ¢ = 2. We can suppose befo-
rehand about N that N(—t) = N(¢) for ¢ >0, for every funetion N sa-
tistying the condition 1.6 (b) is equivalent to N(t) = N(|t]); consequently
M~N.

1.62. Let N be non-decreasing for t = 0 and let N (1) = N (—1) for all t;
then the conditions 1.6 (a), (b) are equivalent lo
(+) N(©@t) < EN(@) for some K in a neighbourhood of 0.

Setting ¢ = s in 1.6 (a) we get (+). Conversely leb the condition (+)
be satisfied. The function & being monotone and even, we have for guffi-
ciently small £, s ;

N([t4s)) < N (Jt]+ls]) < N (2max (jt], [s]))

KN (max ([t], [s])) < K[V ([t)+ (s))]-
If || <1, then 1.6 (b) is satisfied with D, = 1 and arbitrary e,.

Let || > 1; choose & positive integer 7 so that 2" < |w| < 2" It follows
from (+) that in some neighbourhood of 0

VAN/AN

N(oli) < N(z"'f’—n‘ )< KN(ig’—’— m) <IN ().

1.7. TaHROREM 1. Let N satisfy the condition (x). The mecessary and
sufficient condition that X~ be a linear space is that the conditions 1.6 (a),
(c) be satisfied. The function N may always be replaced by a continuous
even function M increasing for t = 0 and equivalent to N, 4. e. such that
XM =XV

1.8, Now we shall discuss the possibility of introducing the norm
in the linear spaces XV. We remember that, in a linear space, the norm
of type F is a functional | | satisfying the conditions 1) [zf =0,
2) [lo]l = 0 if and only it & = 0, 3) [w-+yll < |2+l 4) @] = | —a], 5).the
product wx where w i§ real is continuous with respect to the norm in both
variables jointly. A linear space provided with an F-norm will be called
the F*-space; if, moreover, the axiom of completenesy is satisfied it will
be called the F-space.

Let the space X~ be linear; we shall say that the sequence wm, of
elements of X~ is o-convergent to ®, (in symbols x, 5 », a8 n - oo) if
o(#, —x,) = 0 for n - co. Suppose that an F-norm || | is defined in XV,
the convergence with respect to the norm || || will be called equivalent
to the convergence o if the relation |m,—a,| -0 ay n — oo implies
ol{w,—x,) =0 for m - oo, and conversely. Let us observe that if the
convergence with respect to the norm is equivalent to the convergence g,
then |z = 0 if and only if o(z) = 0.

icm
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1.81. Let N satisfy the condition (%) and let the space XV be linear.
If:
(@) xeXY,w, >0, then w,x 5 0 as n — oo,
() @,eXY, the sequence w, is bounded and x, > 0 as n - oo, then
W@y, S 0. .
For the proof let us notice that if & = {f,} «X", then, by 1.6 (c),

D N(wt)) <D D' N(t.) when DN ()<, ol <7,

N=p N=P n=p

o(wz) < Do(w) . when o(x) <6, o] <7,
where D, § are constants of 1.6 (¢) and the constant ¢ appearing in 1.6 (c)
is denoted by r. The first of these inequalities and the continuity of N

at 0 imply (a), the second inequality implies (b).

1.811. Let M~N; then op(z,) >0 as n —> oo implies gn(z,) =0
as n - oo, and conversely.

This follows immediately from the definition of equivalent functions.

1.82, Let the function N be non-decreasing for t >0, N(t) = N (—1)
for all t and let it satisfy the condition (x); let the space XY be linear. One
can define in X~ an F-norm so that convergence with respect to the norm is
equivalent to the convergence o. With this definition of norm X% is an F-space.

By 1.6 (c) and 1.81 (a) we have g(z/e) >0 as 0 < & - oo, whence
there exist & > 0 satisfying the inequality .

() o(mfe) < e.

Let u§ define the norm |z|| = infe, the infimum being extended over
the set of the ¢ > 0 satisfying (+). We shall verify that| || satisfies all
the axioms of F-norms. Let us observe first that o(x) < o(@fe) <e
when g(z/e) < &,0 <& << 1. We shall prove that
(++) |zl =0 as n - co implies o(w,) >0 as n — oo, and comversely.

Indeed, if ||z,]] - 0 as % —> oo, then g(x,/e) <& for 0 <& <1 and
large n, whence g{(a,) < & Conversely let o(z,) >0 .as n — co: then in
virtue of 1.81 (b) we have o(z,/e) < & for large », whence |2,/ < & for
large n. The symmetry |af| = |—a|| follows directly from the fact that

N is even; |0 = 0 is obvious. If |jz] =0, then applying (++) to the

sequence &, %, ... we get o(z) = 0, 4. e. ® = 0. To prove the triangle in-
equality we may suppose that |jz| > 0 |ly]| > 0. Given 6 > 0, there exist
e>0,7>0, satisfying (+) and o(y/y) <7 respectively, such that
e < |lall+8, 7 < llyll+6. Then
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t+8n |t,,,+sn|) (|t7,.|+|sn\) (»t,,,l e sl oy )
N{-—=]=¥ <N LN | — L
V( e+ ) ( etn 1 et+n e ey n etn

, ln, n
< sup (N (_[tLl)’ N (M)) <N (Lt) ~|~N(—|—ﬂ),
e 7 & n
whence
0 (-W’ ) <o (“5) +o (-"‘) < ety < [l Iyl+29,
e+n g 7

which implies [le+yll < [lfl+[lyll+29.

The continuity of wx with respect to the variables o, w follows by
1.81 and (++). Finally, (++) implies the equivalence of the g-conver-
gence to the convergence with respeet to the norm. To prove the axiom
of completeness let us choose a continuous function M satisfying (x)
equivalent to N (this is possible in virtue of 1.61). Let |z, —®4l| —~ 0 as
P, ¢ - oo, whence because of 1.811 g {#—u) =0 a8 p, g - oo. It
follows &) — 1@ ag r > oo for n =1, 2,... (we have set here », = {i}).
For sufficiently large p, ¢ we have o (#,—®,) < &, whence by the conti-
nuity of M

01 (p —1o) < &,

where @, = {t§)}, i. €. ou(B—w) >0 ag p -»oco and consequently
lep—2off >0 as p -+ oo. Since mp——woeXN for large p, 507,€XN, whence
woe XY . Putting together 1,82 and 1.61 and taking into account 1.811
we get

THEOREM 2. Bach XV linear sequence space forms an F-space if N
satisfies the condition (x); the F-norm may be defined so that the g-conver-
gence s equivalent to the comvergence with respect to the norm.

1.9. If XV is a locally convew F-space, N satisfies the condition (%)
and, norm-convergence implies o-convergence, then N is equivalent. to a conti-
nuous even convex function salisfying the condition (x).

By a known theorem of Banach the norm in X¥ ig equivalént to the
norm of theorem 2, whence the convergence with regpect to the norm is
equivalent to the convergence g. We may suppose by 1.61 that N is con-
tinuous, even and increasing for ¢ > 0. The local convexity of X~ implies
the existence of ¢ > 0 such that e(wy) < ¢ for & ==1,%,...,n implies
o(w,+a,4... +a,)/n) < 1. Let us denote by e, the sequence {t}?}, =1
for k =m, =0 for & % m. Writing for any positive integer p, @, =
Hex+eppn T+ - FChip—1yn), We geb Q(Wk) = pN (1),

9(ml+wz—%~--.+wn) _ pnN(—t—),

n n
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whence for N (1) < e/p we have N(i/n) <1/pn. If 0 < N(1) <& and p
is chosen o that ¢/(p+1) < N(t) < ¢/p, then N (¢/n) <1/pn < (2[en) N (1).
@Given g > 0 let us choose ¢ > 1 so that N (¢/g) < & for [¢| < . We have

(+) N(gt) <D N for |t <e.

Indeed, this inequality is trne with some constant for [f| < 8, in virtue
of 1.6 (¢), and since inf N () > 0, sup N (gt) < oo in {4,, ¢>, We may choose
D, > 0 so that (+) is satisfied in the whole of the interval [t < o. By
the inequality proved previously

¢ 1t By 12 .
N|=)=¥l¢—)<DN) <= DN as |t <o
n qn gnl e

I 0 < o < 1let us choose n so that 1/(n+1) < o < 1/n. As1/n < 20,
setting K, = 4D,/e we get

(++) N(w) < K,wN(@# for 0<o<1,l]<e.
Let us write
N(wt
P(t) = sup —ﬂl
<ot @

By (++) it follows that 0 < P(f) < oo for each #; moreover, P(at) <
< aP(t) for 0 <a 1. By (++) P(t) < K ;N (¢) for [t <1; moreover
P(#) = N (), whence P~XN. Let us set @(t) = P()/t for ¢ > 0; this fune-
tion is non-decreasing on the half axis ¢ > 0, for we have for 0 <¥' <"

tl t,
Plt) o P@” .
P(tl) (t” ) t” ( ) _P(t )
= == < == 7
¢ t v ¢

Let us now define -
t .
M) = [Q@)ds for =0, M) =M(~t) for t<0.
8

= Q")

Q)

The function M is evidently convex, moreover N~M. The equiva-
lence follows by the inequalities

i
M) <1Q1) = P(t), ﬂf(t)>[@(s)ds=%g(_2t_)=1’(-§) for 30,

tf2

P (%) >N (—t—) = %N (#) in a neighbourhood of 0.
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1.91. Let the space XV be lincar. If the function N sm‘zsfws the condi-
tion (x) and N is equivalent to a convex function, then XY is a B- -space
with norm-convergence equivalent o o-convergence.

Let the function M be convex and equivalent to N. The continuity
of N at 0 implies the same for the function M, whence M is continuouy
everywhere. We may suppose that M (¢) = M (1) for ¢ > 0; moreover
M{0) =0 for N(0) = 0 and M~N. The function M satisfies the condi-
tion (). Indeed, if ¢, — 0 as n — oo, then M(t,) - 0; if M (#,) — 0, then
t, - 0 as n - oo. In the contrary case we would infer from the continuity
and convexity of M that M (¢) = 0 in some neighbourhood of 0, whence
also N (¢) in a neighbourhood of 0, which iy impossible, for N satisfies
the condition (x). Let W denote the set of the elements  satisfying the
condition o) < 1. From the properties of M it follows that the set W
is convex and symmetric with respect to 0. By 1.82 there exists in X~ = X
an F-norm, say || ||*, such that gs-convergence is equivalent to the con-
vergence with respect. to || |*. Thus choosing a sufficiently small r > 0
we deduce from |jz||" < r that gy(®) < 1, 4.e 0 is an inner point of W
in the || |*-normed space X~. The set W is also bounded; in fact M (wt) =
= M(|o| ) < || M (t}) a8 |o| < 1, whenee oy (wz) <ol ou (@) for jo|< 1.
From the above properties of W it follows by a known Lheorem that the
norm || ||* is equivalent to a B-norm. Let us observe that the correspond-
ing B-norm may be obtained as follows. Let us set |#|| = infk, the infi-
mum being taken over the set of the % > 0 satisfying the inequality
on(z/k) < 1). The axioms of the norm are easily verified. One can also
prove directly the equivalence of the convergence o and the conver-
gence with respect to || ||, which implies in turn the axiom of comple-
teness.

1.92. As a corollary to 1.9 and 1.91 and taking into account that
for even functions M non-decreasing for M > 0 the condition 1.6 (a) is
equivalent to 1.62 (+), we deduce

THEOREM 3. Let the function N satisfy the condition (x), then

(a) X is a Banach space if and only if the function N is equivalent
to a continuous conver even function M vanishing only at 0 and satisfying
the inequality 1.62 (+),

() if XV 4s a By-space, X~ is o B-space.

Here nmorm-convergence is always to understand as equivalent lo
p-convergence.

) This method of the introduction of the norm in XV is known (see [2]).
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2.1. Throughout this section we suppose that N and M are Baire
functions; this hypothesis will not be mentioned in the subsequent conside-
rations. We shall use the notation

1
o (@) = |
0
moreover, the subscript N will be omitted when there is no doubt about
the considered function N. Since N is a Baire function, the function N (2(1))
is measurable when @(?) iy measurable. The set of those x for which
oy (@) < oo will be denoted by X¥, Saying “N satisfies the condition ()
we shall always mean the condition 1.1 (x). We gshall also often need’
the following condition:

N (w(t)) dt;

(o) N(t,) - oo as n — oo if and only if || = o0 as n — oo.

The condition (0) obviously implies that N is bounded in every finite
interval.
The functions N and M will be said to be equivalent if they have

the following properties:
There exist constants 4 >0, B> 0, K > 0, r > 0 such that the
following inequalities are satisfied:

(+) N@) < BM@) for M@)>r, M@ <AN@ for NQ@) =7,
Nhy<KE for MO <r, M) <E for N(t)<r:
Tor this definition of equivalence we shall use the same notation

as in section 1 to denote the equivalent functions: N~M.
2.12. Let N and M satisfy the condition (0); then N~M if and only
if simultaneously N (1) < BM(t); M (1) < AN (t) for sufficiently va*ge 2.
2.13. Let M(i,s) and N(t,s) be two non-negative Baire functions
of the variables 1, s, defined for all real ¢, s. A mecessary and sufficient con-
dition that for wrbztmm/ functions , Yy the inequality

(++)

1 B
JM(@(t), y()d < oo
0
imply
: 1
[V (@), ye)at < oo
0
is that for certain constamts ¢ > 0, K > 0, 7 > 0 the following inequalities
be satisfied :
(+) N(t,8) <OM(t,s) as
(++) N(i,8) < K as

Sufficiency is evident.

M(t,8) =7
M(t,s) <r.
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Necessity. Let us supppose that (+) is not satisfied. Then there
exist 1, s, such that

o

l £ 0 £
Z_W—— ]7 Z\'Y("ﬂysw)’ WJI(??"%) f()] “z17‘37"-

t,,, ) ‘9-)1.)

N

n=1

. Let 8,,8,, ... denote disjoint intervals in (0,1) with lengths

1 1
12M (b, 81) 22 (ty, 85) "
Let
t, for sedy,,n=1,2,...,
2 (s) = e
0 for «(0,1)—J 6.,
() 1
* s, for sed,,m=1,2,..,
y(s)= -
: 0 for se(0,1)—Jd,.
1
Then
: o 1 vl
fM(m(s), y(s))ds = 2;{5’ fN (s) 7/(8))ds > 2 = oo,
0 M=l =

contrary to hypothesis. Let us now suppose that (+-) is not satisfied.
There exist i, s, such that N(i,,s,) oo for n - oo, M(t,,s,) <
Let us choose positive @, so that

©0
Tg;an<1

and then disjoint intervals 4, in (0,1) with lengths a,; next we define the
functions @,y by aid of (). We obtain

A N (tyy 8y) =00,

Nk

n

1
-

1 1

[ M (w(s), y(s)ds < oo, [N (w(s),y(s)ds = oo,
0

0

which leads to a contradiction.
Setting M (¢, 8) = M (1), N(t,s) = N() for arbitrary ¢, ¢ we deduce
from 2.13 that .

2.14. A necessary and sufficient condition that the ihequality oy (1) < oo

imply on(x) < oo is the ewistence of constanis B > 0, K > 0,7 > 0 such
that

BM (1) for M) =,
K for M) <r.
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2.2, (a) XV = XM if and only if N~M;
(b) X is identical with the space of all measurable functions if and
only if M is bounded in (—oo, oo).

Ad (a). It immediately follows from 2.14 and the definition of equi-
valence.

Ad (b). Sufficiency is trivial.
Necessity. If N is unbounded, then there exist ¢, such that

<!
N(t,) 00 as % —> oo, —— 1
ﬂ; N (t,)

Let us choose disjoint intervals ¢, in (0,1) with lengths 1/¥(4,)

and let us set
t, for sed,,n=1,2,..,
o0

P =10 for  se(0,1)— Us,.
N=

Obviously gy (%) = co and XV does not contain ajl measurable functions.

2.3. The following conditions are mnecessary and sufficient that X~
be a linear space:

(a) There exist constants 0 > 0, K > 0, » > 0 such that
N(t+s) SC(N@O+N(E)  for  N@O+N(s) >0
(a') N(t+8) <K for N@+N(s) <7
(b) for each w there ezist constants D, > 0, K, > 0, r, > 0 such that
N(ot) <D, N(@) for N(@) =7,

(') N(ot) <K, for N{)<r,.

To prove (a), (a’) let us write M (¢, s) = N ($)+N(s), N(t, 8) = N (t-+s).
As oy (2) < o0, on(y) < oo implies gy (x+y) < oo, it is sufflelent to apply
2.13 to M(t,s), N(¢,s). To prove (b), (b’) let us make use of 2.14 repla-

cing N(f) by N(wt) and M(t) by N(t). Then we take into account that
on (%) < co implies py(wz) < oo for each w.

2.31. Let N satisfy the conditions 2.3 (b) and (b') and let the sequence
N(t,) be bounded; then for every w the sequence N (wt,) is also bounded.
Suppose that N(t,) <L for n=1,2,... If N(,)>r, then
N(owty) < D,L; it N(t,) <r,, then N(wt,) < K,.
2.4. Let N satisfy the conditions (a), (a’), (b), (b') of 2.3; then for every
¢ > 0 there exist positive constants D, F such that
N(ot) SDN(@)  for N =7, el <o,
N(wt) < F for  N({) <7, o] <e.
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Let us suppose that |w,| < @, N (f) - oo as n - oo where N (1,) > 0,
and that N (wyt,)/N(t,) = co as n — co. As in 1.6 we define functiong
forn =1,2,... and |o| <o
N (widty,)

N(t)

It follows from 2.3 (b) that for every o in (—g¢, ¢) the sequence
¢u(w) is bounded. Since N (t,) — oo, it follows from 2.31 for w = 0 that
N(wt,)~ oo and, the functions N (wt,) being measurable, there exists
in (—g, ¢) & measurable set I of measure > <o such that N(wd,) >
for w « B and sufficiently large n. Thus by 2.3 (a) it: follows that for «y, m‘,e]’
and sufficiently large n

Pn(w) =

P01 0g) < C’f%(m ~pn (@) 1,

whence by 1.2 B there is a constant L such that

onlwt,) <L for  |o| < ef/4 and large n;
therefore
N (wt,
l\i(t,:;) <L for |o] <g and large n,

in contradiction to the relation N (w,t,)/N (1,) = co a8 # —~ oo,

To prove the second inequality of our proposition let us suppose
that for certain t,, w, such that |o,| < ¢, N (%) <7, we have N (w,t,)-> co.
Let us define measurable functions for n =1, 2, ...

onlw) = N(wdty).

By 2.31 the sequence ¢,(w) is bounded as we(—g, ¢). The same
argument as in the proof of 1.2, B, with the same notation except that 8
is replaced by g, leads to the representation 1.2 (++), whence by 2.3
(a) there follows 1.2 (*F) (where K is to be replaced by O) if N (w,4%,)+
+N(—w,4t,) =r. On the other hand, if N(wdt,)--N(—wydt,) <7,
then from 2.3 (a’) we deduce

p(0) = N(odt,) <K for o] < o/4;

consequently the sequence N (w4f,) i§ uniformly bounded in (~o/4, o/4),
whence also the sequence N (wt,) in (—g, g), which is contrary to the fact
that N(w,t,) - oo a8 n - oo where |w,| < o.

2.5. Let XV be a linear space different fr;)m the space of all measurable
functions; then N satisfies the condition (o).
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By 2.3 and 2.4 N(w) is bounded in (—p, ¢), whence in every finite
interval. Therefore if N(f,) -~ oo a8 # — co, then |f,| - co ag n — co.
Conversely, suppose that [4,] - co as n — oo, and let » > 0 be given.
If we had N (4,) < rforn =1, 2, ..., then, by 2.4, N(ot,) =X max(D,r, I')
for lw| <1, n =1,2,..., whence N( ) would be bounded in (—oo oo),
which is contrary to 2.2 (b).

2.6. Let N satisfy the condition (o) and let X% be a linear space. Then
there ewists a function M equivalent to N, continuous increasing for t = 0
such that M(t) = M(—1) and satisfying the conditions (0}, ().

Let us observe first that we may suppose that N (f) = N(—1t) for
"LI‘bl‘LI‘&ly t. Indeed, the condition (0) being satisfied by XN, it follows by

3 (b), (b') that N~N where N () = N (|¢l).

Let m be the smallest positive mtegel such that supN(s) > 0. Let

ocsgm

us set M (n) = e, sSup N (s) for n > m where 0 < &, < 1 are chosen to form
[BA< )

an increasing sequence. We define M (f) as a linear function taking on
the value 0 at t = 0, in the inferval 0 < < m; for n <t < n41 with
n = m, the function M (t) is equal to the linear funection, M (t) = M (—t)
for ¢t < 0. M obviously satisfies the condition (x); the condition (o) being
satistied by N, it follows that sup N (s) - oo as % — oo, which implies

ocsn
that M satisfies the condition (o) too. For n <t < n+1 where n = m
we have
M) < M(n41) =&,y sup N(s) = g1 SUp  N(ot) <
08N +1 I<os(nt1)/t

< &pqq SUP N (),
<0<
= M(n) 2 eaN(n) 2 em N (n).

And sinee by 2.4 and the condition (o) for N the inequalities

sup N (wt) < DN(t) for ¢ sufficiently large,
[IE"E]
N({#) =N (1 n) < DN (n) for n sufficiently large, n <t <n-1,
"
are satisfied, we can chooge » so great that for N(t) =», M () >

W) > M) > N ).

The functions N, M satisfy the condition (o), whence for N (7} < r
or M(t) < r we have M(¢)'< K or N(t) < K, K being a constant, which
gives N~M.

Studia Mathematiea T. XVIT 8
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2.7. TEEOREM 4. A. Suppose that N is nol bounded. Then X~ forms
a linear space if and only if:

(a) N satisfies the condition (0);

(b) there are constants C > 0,7 > 0 such that N (t-+s) < O(N t+N(s)
for 1t]+1s1> 7 '

(c) for each o> 0 there ewist constants D > 0,7, > 0 such that
N(wt) < DN (@) for |o| <o, [t| > 7o.

B. If N is not bounded and XV is a linear space, we may replace N by
a continuous even function M increasing for t = 0, satisfying the condition
(%) and equivalent to N, i.e. such that XM = XV,

Ad A. Necessity. (a) follows by 2.2 (b) and (2.5); (b), (c) follow
from 2.3, 2.4, and (a).

Sufficieney. The set X~ is non-empty, ¢. g. #(t) = 0 for every t be-
longs to XV, it is sufficient to apply the condition (o) and 2.3.

Ad B. Since N must satisty the condition (o), we may apply 2.6.

2.71. If N is non-decreasing for t = 0, N(t) = N(—1) for all t, and N
satisfies the condition (o), then the conditions 2.7 (b), (¢) are equivalent o
the following one:

(+) N(@2t) < KN ()

for sufficiently large |t, K being o constant.
The proof is analogous to that in 1.62.

2.8, Let XV be a linear space; as in 1.8, we introduce the notion of
the p-convergence. The sequence @, ¢ X is called g-converyent to the element
2, XY if o (@, —) - 0 a8 n — oo; we shall write this: a, L g, a8 n > oo,

2.81. Let XV be a linear space and let N not vanish identically. Then
o necessary condition that the product o be continuous with respect to the
g-convergence is that the condition (x) be satisfied.

Under the supplemeniary hypothesis that N satisfies the condition (0),
(%) is a sufficient condition for the continuity of wa.

Necessity. Leti, =0 agn —> 00,2, (s) = 1for se(0,1), n = 0,1,2,.
obviously mni 2, a8 n - 0o, whence 1, 4 0, i. e o(lyity) = 0(lyy) =
= N(t,) -0 as n - oo. Let N(t,) =0 ag n — oo; we may guppose that
t, ~1, ot |t,| - co. Let us suppose also, for example, that N (1) % 0.
Assuming ¢, % 0 we may suppose that all.t, = 0. Setting ®,(8) =
for se(0,1) n =1,2,..7 we get xn/tn—t; 0 a8 n — oo, whence o(®,fty) =
= N(1) - 0 which is contradictory. Similarly we are led to a contra-
diction in the case |t,| - co; thus @, - 0. We omit here the proof of
sufficiency, for it follows immediately from 2.84.
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Theorem 2.81 justifies the necessity of supposing the condition (x)
when introducing in XV a norm such that the convergence with respect
to the norm is equivalent to the p-convergence (this equivalence is under-
stood in the same sense as in 1.8). :

2.82. Let N satisfy the conditions (), (0), and let X% be a linear space.
Under these hypotheses the statements 1.81 (a), (b) are saiisfied.

Let us observe at first that ¥ (0) = 0 and that N is continuous at 0.
It tollows by 2.7, A, that for 2« X" the inequality

(+) [ Nlos(h)ds <D [No@)d  when o <o
E E

is satisfied where B = {t:|(t)] > ro,1¢(0,1)}, D, 7o, ¢ are constants
as in 2.7, A. Let @, > 0; then ¥ (2 (2)) converges in measure to 0; thus
it follows from (%) that ,(f) tends in measure to 0. Let ¢, denote the
characteristic function of the set E, = {t:[mn(t)[ > 7y, te(O,l)}. As
(1—q, (£))#, (1) tends in measure to 0 and |(1—g, ()@, (8) <7, for

1

n=1,2,..., we have [N(w(l—@.(0)@,(0))d >0 a5 n = co|w,l <o.
0

By (+)

1 1

[ ¥ (pn(t) 0nma(t) &t < D [ N {gn(t)za(t)) dt < Do (2n)

0 0
a8 |w,| < o for n =1, 2,..., whence

1 1

0(wnt) = [F{(1—pu() onn() &+ [N (pa() onza(D) di >0 a8 7> oo.
0

0
The proof of 1.81, (a) is analogous.
2.83. Let N and M satisfy the condition (%) and let N~DM, 4. e.
XY = XM, Then on(m,) >0 as n —> oo implies pa(®,) >0 as n - oo

and conversely.

Tt is sufficient to prove that gy (a,) — 0, z,e X~ implies gy (w,) — 0.
According to 2.1 (+) we have M(¢) << BN(t) for N(t) = and M(}) < K
for N(t) < r. Let B, = {:N(.(8)) =7, 1e(0,1)} for » =1,2,... and leb
@, denote the characteristic function of the set E,. We have

1 1 .
[ M((@n(0) pu(t) @t < B [ N (@, () pn ()@t < Bow (@,) 0.
[} 0
Now Mz, () (L—p,(t) < K, M(5,(t)) tends in measure to 0 in
(0,1), for N(,(t)) tends in measure to 0 and the condition (x) is satisfied.
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Thus

1
[ Mfm ) (t—gu()dt =0 as

0

T - OO,
whence

1
oarlm) = [ M{ma())dt >0 as  n oo
0

2.84. Let N satisfy the conditions (x), (0), let N be non-decreasing for
120, N({{) = N(—1) for all i, and let XV be a linear space. One can define
in XV an F-norm such that the convergence with respect to the norm is equi-
valent to the g-comvergence. With this morm, XY is an F-space.

The set of the ¢ > 0 satisfying the inequality 1.82 (+) is non-empty,
as follows by 2.82. Let us define the norm as in 1.82, 4. e. |l = infe,
the infimum being taken over the set of those & > 0 which satisfy 1.82
(+). Arguing as in 1.82 and taking into account the lemmata 2.82 we can
verify that || | satisties the axioms of F-norm and that the convergence
with respect to the norm is equivalent to the g-convergence. Let us call
attention here to the role of the condition (x), considering, for example,
the axiom: o =0 if and only @ = 0. If [jaf = 0, then g(2) =0, for
the convergence with respect to the norm implies the g-convergence,
and since (x) implies N (t) 5% 0 for ¢ 3= 0 we have #(t) = 0 alinost every-
where, i.e. @ = 0. Conversely, if «(f) =0 almost everywhere, then
N(lm(t)i/a) = 0 almost everywhere, ¢(z/¢) =0, 4.e |lz[ = 0. To prove
the axiom of completeness?) let M be a continnous even function sabis-
fying the condition (), equivalent to ¥; such a function exigts in virtue
of 2.6. Let |z, — | —~ 0as p, ¢ - co; by 2.83 o (®p—axy) = 028 P, ¢ - oo,
Let us choose ¢, > 0 so that Y, [ M (1/n*)]™" < oo and then an inereasing

n
sequence p, of indices such that o (wp, ~y,,,) < &, for n = 1,2,...
Let B, = {t: |1, () —ap, . (0] =10, bc(0,1)}, Fyy = (0,1)—H,,  for

n=1,2,... The series ) |E,| converges, for oz (#y, —~%p, ) = | Hl| M (107,
therefore ﬁi_rﬁEn\ = On :- |11_i1111“n| =1, whence it follows that the series
b |0, (t)—wq;n_u(t)l convegges almost everywhere, i. e. @, (¢) -» @, (1) almost
gverywhere. Let ¢ > 0 be fixed; for sufficiently large ¢ and almost all »
we have fl M(wpn(t)—wq(t))alt < e, 'which implies together with the con-
tinuity o(if M that

li%n Ofl M@y, () — o, (8)) d > Ofl M (4 (t) —a, (3)) it

2) For the quoted proof of the completeness of M gompare [1].
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i.e. on(we—a,) <e for large ¢. It follows that @,eX”™, o (wn—,) >0,
whence ||, —%,/| -0 as n - co.

Taking into account 2.6, 2.84, and 2.83 we deduce

TuEorREM 5. Every linear space of functions X~ forms an F-space if N
satisfies the conditions (0) and (x); the F-norm may be defined so that the
g-convergence s equivalent to ﬂ’w convergence with respect to the norm.

2.9, If X¥ is a locally convex F-space, N satisfies the conditions (0),
() and norm-convergence implies g-convergence, then N is equivalent to
continuous convex even function satisfying the conditions (x), (0).

Suppose that XV is a locally convex F-gpace; by the theorem of Ba-
nach and theorem 5 the convergence with respect to the norm is equi-
valent to the p-convergence; by 2.6, 2.83 we may suppose that ¥ is conti-
nuous and increasing for ¢ > 0, N(f) = N (—t) for all 2. The local conve-
xity of X¥ implies the existence of & > 0 such that from the inequality
olmg) <& for k=1,2,...,n there follows o((#+wa+...~a.)/n) <1
For positive integers ¢, p, n such that p < n and real ¢ let us define the
functions , for &k = 1,2,..., n as follows:
tepgoregy  TOT  d/mg < s < (i41) [ng, i=0,1,2,...,n—1,
(0,1) '

where ¢, = 1 form = 0,1, ..., p—1, &, = 0 for m = p and r(m) denotes
the residue of m modulo n. Now

ut@nt . tow) 1 o
4 7 '—q wllh

(8) ={

0 elsewhere in

1p
o(mg) = 7n N,
whence

1 1
~N(£t)<1 for “Z (@) <e.
g \n qn
The continuity of N, p, n being arbitrary, implies that ¢ ' N{(ot) < 1 for
0ot if g 'oN(E) <e. If oN(@)=e and & < oN() <e(g+1)
for positive integer ¢, then .
1

—

1 @) <e,

whence

gt+1 oy < ng(t).
3 e

1
mN(wt) <1, Nw)<g+l= w0

Setting ¢ = 2/¢ we have

(+) N(wt) <CoN(@) for  oN(@) >e.
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We shall prove that

Nt
im 28 < .
{00

In the contrary case there exist ¢, such that #, — oo, N(t,)/t, -0
as n - co. Now N(t,) = oo, since NV satisfies the condition (o) and we
may suppose that w, = ¢/N(t,) <1. As @, N (%) = ¢ we infer from
(+) that :

t
g1 ) < (e
N(L ,N(tn)) < Ce,

which contradicts the condition (o), for &l,/N(t,) - oo as » — oo, Let
us choose § > 0 and 7 > 0 so that

Njt=06 for
Thenforwt =T,0< 0 <1, >0
N
AU

t=T

and 67 = ¢,

wN(t) = w =16 >e,

for wt > T' imples ¢ > T'; therefore, by (+),

(+4) N(ot) < CoN(@) for wt>T,0<w<l.
Let us set
N(ot)
sup ———  for =17,
P(1) = {°5e5 ®
N(t) for 0<t<T.

From (++) and the continuity of N it follows that P(t) < oo for
every ¢. The following inequality is satisfied:

Plat) <eP(t) a8 O<e<<l,atz=l

for
N(wat N (watb N (el
Pat) = sup gm—«) = sup_vgm-—-)- £ asup () = alP (1);
o<wgl w o<ogl OO o<agl O
wutzT wd>T - wlml

it follows that the function P(#)/t is non-decreasing as ¢ > 1', since for
T < t! < t/l

¥ v
Pl r /t
P(t') _ (t"t ) t’IP(t ) _P(t”) t' ¥ , )
' - ¥ < v = P for ;,—,t =t =1T.
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Let us now write

P(t)/t for
tP(T)/T*  for

i>T,
1) =
eu) { 0<t<T,

1

M(t) = [Q(s)ds  for

0

t>0, M@#)=M(—t) for 1<0.

The function M is convex and, as in 1.91, one can prove that N~

2.91. If X~ is o linear space, N satisfies the conditions (o), (x) and N
i equivalent to a convem function, then XV is a B-space with norm-con-
vergence equivalent to o-convergence.

Let the function M be convex and equivalent to N; this, together
with (o), implies that M is continuous. We may assume that M is even;
the condition (o) is satisfied by M, for it is satisfied by . It is easily seen
that modifying suitably M in a neighbourhood of 0 we may obtain a con-
vex function equivalent to M satifying the condition (x); thus we can
suppose that M satisfies (x). Using 2.84 and arguing as in 1.91%) we can
prove that the norm described in lemama 2.84 is equivalent to a B-norm.

2.92. As a corollary to 2.9, 2.91 and applying 2.71 we get

THEOREM 6. (a) Let N satisfy the conditions (o) and (x). Then XV
48 a Banach space if and only if N is equivalent fo a continuous even convex
function vanishing only at 0 and satifying the inequality 2.7L (+).

(b) If XV is a By-space, then XY is a B-space.

Here norm-conwvergence 1is always to wunderstand as equivalent to
g-convergence.
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