On some classes of linear spaces

þу

S. MAZUR (Warszawa) and W. ORLICZ (Poznań)

Since the fundamental papers of F. Riesz ([5], [6]) the spaces L^a and l^a are reckoned among the classical examples of linear normed spaces in the functional analysis. The space l^a , where a>0, is the space of sequences $\{t_n\}$ such that the series $\sum_{r=1}^{\infty} |t_r|^a$ converges; L^a , where a>0, denotes the space of measurable functions in (a,b) for which the integral

$$\int_{0}^{b}|x(t)|^{\alpha}dt$$

is finite. In the period between the wars and after World War II there appeared several papers dealing with generalizations of the spaces l^a and L^a . The idea of these generalizations is based upon the following. Let N be a non-negative function defined for all real values. One considers the class X^N of sequences for which the series

$$\varrho\left(x
ight) = \sum_{\nu=1}^{\infty} N(t_{\nu}), \quad x = \left\{t_{n}\right\},$$

converges. It may be proved under very general and natural supplementary conditions about the function N that X^N are Banach spaces. In the case $N(u) = |u|^a$, where $a \ge 1$, these conditions are satisfied, and l^a form a particular case of the spaces X^N . An analogous situation holds for the spaces of measurable functions in (a,b). Denoting by X^N the class of measurable functions in (a,b) for which the integral

$$\varrho(x) = \int_{a}^{b} N(x(t)) dt$$

exists and is finite, we may prove under certain hypotheses on N that X^N is a Banach space. The spaces L^a with $a \ge 1$ are a particular case of the spaces X^N corresponding to $N(u) = |u|^a$.

In this paper we are concerned with the examination of the spaces X^N of sequences and those of functions from a very general standpoint. Under very slim hypotheses about the function N we deal with the following problems: a) in which case are the spaces X^{N} -linear? b) which are the necessary and sufficient conditions for the function N in order to make it possible in the linear space X^N to define an F- or B-norm such that the relation $\|x_n\| \to 0$ as $n \to \infty$ be equivalent to $\varrho(x_n) \to 0$ as $n \to \infty$?

The main results of the paper are contained in theorems 3, 6, from which it follows that the well known sufficient conditions on N asserting that X^N is a B-space are in some sense necessary.

The paper consists of two paragraphs. In the first we deal with the spaces of sequences for which the obtained results have a more complete character than for the spaces of functions considered in the second paragraph.

Throughout this paper N, M, \ldots denote non-negative functions defined for all real values; in § 1, x, y, \ldots denote sequences $\{t_n\}, \{s_n\}, \ldots$ with real terms, in § 2, $x(t), y(t), \ldots$ stand for real measurable functions in (0,1). The spaces of sequences X^N and of measurable functions are always understood to be linear under the usual definitions of addition and multiplication by scalars. Equality of the measurable functions x and y means that x(t) = y(t) for almost every t.

1.1. Given a function N, we shall write in this section

$$\varrho_N(x) = \sum_{v=1}^{\infty} N(t_v).$$

We shall also write $\varrho(x)$ instead of $\varrho_N(x)$ if the omission of the subscript will not cause misunderstanding about the involved function N. By X^N we shall denote the set of all sequences for which $\varrho_N(x) < \infty$. We shall frequently suppose that N satisfies the following condition:

(*)
$$N(t_n) \to 0$$
 as $n \to \infty$ if and only if $t_n \to 0$ as $n \to \infty$.

The condition (*) implies in particular N(0) = 0 and $N(t) \neq 0$ for $t \neq 0$.

The functions N and M will be called *equivalent*, in symbols $N \sim M$, if the following property is satisfied:

There are constants A > 0, B > 0, $\varepsilon > 0$ such that $N(t) \leqslant BM(t)$ for $M(t) \leqslant \varepsilon$, $M(t) \leqslant AN(t)$ for $N(t) \leqslant \varepsilon$.

It is easily seen from this definition that

1.12. For N and M satisfying the condition (*), $N \sim M$ if and only if simultaneously $N(t) \leq BM(t)$ and $M(t) \leq AN(t)$ in some neighbourhood of 0.

In the sequel we shall need the following lemmata:

1.13. Let M(t,s) and N(t,s) be non-negative functions defined for all real values of t and s. A necessary and sufficient condition that the convergence of the series $\sum_{\nu=1}^{\infty} M(t_{\nu}, s_{\nu})$ imply the convergence of the series $\sum_{\nu=1}^{\infty} N(t_{\nu}, s_{\nu})$ is the existence of two positive constants C and ε such that

(+)
$$N(t,s) \leqslant CM(t,s)$$
 when $M(t,s) < \varepsilon$.

Sufficiency being obvious, we prove only the necessity. First it is easily seen that M(t,s)=0 implies N(t,s)=0. Suppose (+) is not satisfied, then there must exist t_n , s_n such that $N(t_n,s_n)\geqslant nM(t_n,s_n)$ and $M(t_n,s_n)\leqslant 1/n^2$ for $n=1,2,\ldots$ We may suppose that $M(t_n,s_n)\neq 0$. Let us choose positive integers p_n such that $1/n^2\leqslant p_nM(t_n,s_n)\leqslant 2/n^2$ for $n=1,2,\ldots$ Let $t'_n=t_r,s'_n=s_r$ for $p_0+\ldots+p_{r-1}< n\leqslant p_0+\ldots+p_r$ as $r=1,2,\ldots$ (we set $p_0=0$). Since

$$\sum_{\nu=1}^{\infty} M(t'_{\nu}, s'_{
u}) < \infty, \quad \sum_{\nu=1}^{\infty} N(t'_{
u}, s'_{
u}) = \infty$$

we are led to a contradiction.

Setting M(t, s) = M(t), N(t, s) = N(t) for arbitrary t, s we find from 1.13 that

- **1.14.** A necessary and sufficient condition that $\varrho_M(x) < \infty$ imply $\varrho_N(x) < \infty$ is the existence of two constants B>0, $\varepsilon>0$ such that $N(t) \leqslant BM(t)$ for $M(t) < \varepsilon$.
- **1.2.** Let $\varphi_n(\omega)$ denote for $n=1,2,\ldots$ non-negative measurable functions defined in $(-\delta,\delta)$, satisfying for a certain constant K>0 the inequality

(+)
$$\varphi_n(\omega_1+\omega_2) \leqslant K[\varphi_n(\omega_1)+\varphi_n(\omega_2)] \quad \text{for} \quad \omega_1, \, \omega_2 \in E,$$

E being a measurable set in $(-\delta,\,\delta)$ such that $|E|>\frac{7}{4}\delta.$ Then

A. If $\varphi_n(\omega) \to 0$ as $n \to \infty$ for $|\omega| < \delta$, then for each $\varepsilon > 0$ the following inequality is satisfied for almost all n's:

$$\varphi_n(\omega) \leqslant \varepsilon \quad \text{for} \quad |\omega| < \delta/4.$$

B. If the sequence $\varphi_n(\omega)$ is bounded for each $|\omega| < \delta$, then there is a constant L > 0 such that

$$\varphi_n(\omega) \leqslant L$$
 for $|\omega| < \delta/4$ and $n = 1, 2, ...$

Ad A. Given $\varepsilon > 0$ let us set for k = 1, 2, ...

$$T_k^+ = \{\omega : \varphi_n(\omega) \leqslant \varepsilon \text{ for } n \geqslant k, \omega \epsilon E \cap (0, \delta) \},$$

$$T_k^* = \{\omega : \varphi_n(\omega) \leqslant \varepsilon \text{ for } n \geqslant k, \omega \epsilon E \cap (-\delta, 0) \}.$$

Let us denote by T_k^- the set symmetrical to T_k^+ with respect to the point 0. Since $\lim T_k^+ = (0, \delta) \cap E$, $\lim T_k^* = (-\delta, 0) \cap E$ we infer that $\lim_{k} |T_{k}^{*}| = |(0, \delta) \cap E|, \lim_{k} |T_{k}^{-}| = |(-\delta, 0) \cap E|, \lim_{k} |T_{k}^{*}| = |(-\delta, 0) \cap E|. \text{ It}$ follows that it is possible to choose k_0 so large that for the set $S^- = T_{k_0}^* \cap T_{k_0}^-$ and for the set S^+ symmetrical to it (with respect to 0) the inequalities $|S^-| > \frac{3}{4}\delta$, $|S^+| > \frac{3}{4}\delta$ respectively are satisfied. Every translation S_{ω}^{+} of the set S^{+} by the length ω such that $|\omega| \leq \delta/4$ has common points with S^+ . It follows that

(++) $\omega = \omega_1 - \omega_2$ where $\omega_1 \in S^+ \subset T_{k_0}^+, -\omega_2 \in S^- \subset T_{k_0}^*$ if $|\omega| < \delta/4$. By (+) we have $\varphi_n(\omega) \leqslant K[\varphi_n(\omega_1) + \varphi_n(-\omega_2)] \leqslant K \cdot 2\varepsilon$ for $|\omega| < \delta/4$ and $n \geqslant k_0$.

Ad B. Let us set for $k=1,2,\ldots$

$$T_k^+ = \{\omega : \varphi_n(\omega) \leqslant k \text{ for } n \geqslant 1, \omega \in E \cap \{0, \delta\}\},$$

$$T_k^* = \{\omega : \varphi_n(\omega) \leqslant k \text{ for } n \geqslant 1, \omega \in E \cap \{-\delta, 0\}\}.$$

Starting with these sets let us define the sets S^+ and S^- as above. Then (++) remains true, whence by (+) it follows

$$\binom{++}{+} \varphi_n(\omega) \leqslant K \lceil \varphi_n(\omega_1) + \varphi_n(-\omega_2) \rceil \leqslant K \cdot 2k_0 \quad \text{for} \quad |\omega| \leqslant \delta/4, \, n \geqslant 1.$$

- **1.3.** (a) We have $X^N = X^M$ if and only if $N \sim M$;
- (b) The space X^N is identical with the space of all sequences if and only if N(t) = 0 for all t.
- (c) The space X^N is identical with the space of the sequences $\{t_n\}$ for which $t_n = 0$ for almost all n if and only if N(0) = 0 and there is $\delta > 0$ such that $N(t) > \delta$ for $t \neq 0$.
- Ad (a). It follows immediately by 1.14 and by the definition of equivalence.
- Ad (b). Sufficiency being trivial, let us suppose that $N(t) \neq 0$; then for the sequence x=(t,t,...) we have $\rho_N(x)=\infty$, whence X^N could not contain all the sequences.
- Ad (c). The sufficiency is trivial. Now let X^N consist only of sequences whose almost all elements are equal to zero; then the sequence $(0, 0, \ldots)$ is in X^N , whence N(0) = 0. Let us now suppose that $N(t_n) \to 0$ where $t_n \neq 0$. Then for a subsequence of t_n we have $\rho_N(x) < \infty$ and X^N contains a sequence with infinitely many terms different from 0.
- 1.4. The following conditions are necessary and sufficient that the space X^N be linear:

(a) There are constants C > 0, $\varepsilon > 0$ such that

$$N(t+s) \leqslant C[N(t)+N(s)]$$
 for $N(t) \leqslant \varepsilon, N(s) \leqslant \varepsilon$;

(b) For each ω there are constants $D_m > 0$, $\varepsilon_m > 0$ such that

$$N(\omega t) \leqslant D_{\omega}N(t)$$
 for $N(t) < \varepsilon_{\omega}$;

(c) N(0) = 0.

To prove (a) let us set M(t,s) = N(t) + N(s), N(t,s) = N(t+s). Since $\rho_N(x) < \infty$, $\rho_N(y) < \infty$ implies $\rho_N(x+y) < \infty$, it is sufficient to apply 1.13 to M(t, s) and N(t, s). To prove (b) we apply 1.14 to the functions $N(\omega t)$ and N(t) considering that from $\rho_N(x) < \infty$ follows $\rho_N(\omega x) < \infty$. (c) follows from the trivial remark that X^N contains the sequence $(0, 0, \ldots)$ if and only if N(0) = 0.

- **1.5.** Let the function N be measurable and let the space X^N be linear. Then one of the following three cases holds:
- N(t) = 0 for every t; (a)
- N(0) = 0, there is a $\delta > 0$ such that $N(t) \ge \delta$ as $t \ne 0$;
- N satisfies the condition (*).

Let us suppose that the cases (a) and (b) are not satisfied. Suppose that for t_n we have $|t_n| \ge \rho > 0$ and $N(t_n) \to 0$. The space X^N being linear, we have by 1.4 (b) $N(\omega t_n) \to 0$. for $|\omega| < 1$. In (-1,1) there is a set E of measure greater than 7/4 such that $N(\omega t_n) < \varepsilon$ for almost all n's for $\omega \in E$. Applying 1.4 (a) and 1.2,A to $\varphi_n(\omega) = N(\omega t_n)$ with n sufficiently large, we get for m sufficiently large

$$N(\omega t_m) < \varepsilon$$
 for $|\omega| < 1/4$,

and since $|t_m| \ge \rho$, we infer that $N(t) < \varepsilon$ for $|t| < \rho/4$, consequently N(t) = 0 for $|t| < \rho/4$. This implies together with 1.4 (b) that N(t) = 0for arbitrary t, which is contrary to the hypothesis. Thus $N(t_n) \to 0$ as $n \to \infty$ implies $t_n \to 0$. To prove that, conversely, $t_n \to 0$ as $n \to \infty$ implies $N(t_n) \to 0$ let us notice that if (b) is not satisfied, then for certain $\bar{t}_n \neq 0$ we have $N(\bar{t}_n) \to 0$ as $n \to \infty$. By the preceding $\bar{t}_n \to 0$ as $n \to \infty$. Applying to $N(\omega t_n)$ the same argument as formerly to $N(\omega t_n)$ we can prove $N(\omega t_m) < \varepsilon$ for $|\omega| < 1/4$ and m sufficiently large. Let $t_n \to 0$ as $n \to \infty$. Then since for almost all n we have $t_n = \omega_n \bar{t}_m$ where $|\omega_n| < 1/4$, we see that $N(t_n) < \varepsilon$.

1.51. The following example shows that without the hypothesis of measurability of N Theorem 1.5 is no longer true. Let f(z) be a complex function of the complex variable discontinuous and satisfying the equations $f(z_1+z_2) = f(z_1)+f(z_2), f(z_1z_2) = f(z_1)f(z_2)$ for arbitrary z_1, z_2 . Let us set N(t) = |f(t)|; for real t. The space X^N is linear, for $N(t+s) \le$ $\leq N(t) + N(s), N(st) = N(s)N(t)$. For the function N none of the conditions (a), (b), (c) of 1.5 is satisfied, whence we can easily show by aid of 1.3 (a) that there exists no measurable function M such that $X^N = X^M$. The condition 1.5 (a) does not hold for N for, if it were so, the function f(z) would vanish along the real axis, whence also for every z, which is evidently impossible. The condition 1.5 (b) is not satisfied for f(t) = at + bti for rational t where a and b are real constants. The condition 1.5 (c) is not satisfied. Indeed, if N satisfies the condition (*), the function f(t) is continuous at 0 and since $f(t_1+t_2)=f(t_1)+f(t_2)$, we infer that f(t)=at+bti for all real t. Hence $f(z)=f(x)\pm f(y)i$ when z=x+iy; therefore t would be continuous.

Theorems 1.3, 1.5 explain the importance of the condition (*): Under the hypothesis of measurability of N, except the two extreme trivial cases of linear sequence spaces listed in 1.3 (a), (b), X^N is a linear space only if the condition (*) is satisfied. If N satisfies the condition (*) (without being measurable), then the cases 1.5 (a), (b) evidently do not hold, whence the condition (*) excludes the above-mentioned extreme cases. The last remarks justify the need of supposing (*) in the sequel.

- 1.6. Let N satisfy the condition (*); if
- (a) there exist constants C>0, $\varepsilon>0$ such that $N(t+s)\leqslant C[N(t)+N(s)]$ for $|t|<\varepsilon$, $|s|<\varepsilon$;
- (b) for every ω there are constants $D_\omega>0$, $\varepsilon_\omega>0$ such that $N(\omega t)\leqslant \leqslant D_\omega N(t)$ for $|t|<\varepsilon_\omega$, then
- (c) for every $\varrho > 0$ there exists D > 0, $\delta > 0$ such that $N(\omega t) \leqslant DN(t)$ for $|t| < \delta$, $|\omega| < \varrho$.

Let us define M as follows:

$$M(t) = egin{cases} rac{ert im}{s o t} N(s) & ext{as} & ert t ert < arepsilon, \ 1 & ext{as} & ert t ert \geqslant arepsilon. \end{cases}$$

Continuity at 0 of the function N implies, together with (a), $M(t) < \infty$ for $|t| < \varepsilon$. M is a measurable function equivalent to N. To prove that $M \sim N$ let us observe that $M(t) \geqslant N(t)$ in some neighbourhood of 0. The inequality $N(s) \leqslant C[N(t)+N(s-t)]$ satisfied for $|t| < \varepsilon$, $|s-t| < \varepsilon$ implies $M(t) = \overline{\lim_{s \to t}} N(s) \leqslant C[N(t) + \lim_{s \to t} N(s-t)] = CN(t)$ for $|t| < \varepsilon$. It is sufficient to apply 1.12.

Let us suppose that our theorem does not hold. Then there exist $t_n \neq 0$, $t_n \to 0$ as $n \to \infty$ and ω_n such that $|\omega_n| < \varrho$, $N(\omega_n t_n)/N(t_n) \to \infty$ as $n \to \infty$. Let us observe that the condition (*) implies $N(t_n) \neq 0$, since $t_n \neq 0$. Let us define for $n = 1, 2, \ldots$ and $|\omega| < \varrho$ the functions

$$\varphi_n(\omega) = M(\omega t_n)/M(t_n).$$

$$N(\omega_n t_n)/N(t_n) < L'$$

with some constant L' > 0, which leads to a contradiction.

1.61. Concerning 1.6 let us notice that there exist non-measurable functions satisfying the conditions (*), 1.6, (a), (c). As an example we may take an arbitrary non-measurable function N satisfying the conditions $at \leq N(t) \leq bt$ for $t \geq 0$ where 0 < a < b, N(t) = N(-t) for t < 0. The non-measurable functions N, however, may always be eliminated in the investigation of linear spaces X^N provided that the condition (*) be satisfied. Indeed,

Let the function N satisfy the condition (*) and 1.6 (a), (b); then there exists a function M equivalent to N continuous and increasing for $t \ge 0$ and such that M(t) = M(-t).

To prove this let us choose a positive integer m so that $N(t) \leq 1$ for $0 \leq t \leq 1/m$ and let ε_n be a decreasing sequence such that $0 < \varepsilon_n \leq \sup_{0 \leq s \leq 1/n} N(s)$ for n > m. This is possible, for N(t) is continuous at 0 and $N(t) \neq 0$ for $t \neq 0$. Let us define first M(t) for $t \geq 0$ as follows:

$$M(0) = 0,$$

 $M(1/n) = \sup_{0 \le s \le 1/n} N(s) + \varepsilon_n,$

M(t) is equal to the linear function for $1/(n+1) \le t \le 1/n$, if $n \ge m$, M(t) is equal to an arbitrary continuous function increasing for t > 1/m provided that it is chosen so that the continuity of M is pre-

served at the point t = 1/m.

For t < 0 we set M(t) = M(-t). The equivalence of M and N results from the following inequalities, which result from 1.6 (c):

$$\begin{split} \sup_{0\leqslant s\leqslant 1/n} N(s) \leqslant DN(t), \quad N\bigg(\frac{1}{n+1}\bigg) \geqslant \frac{N(t)}{D} \quad &\text{for} \quad \frac{1}{n+1} < t < \frac{1}{n}, \\ M(t) \leqslant M\bigg(\frac{1}{n}\bigg) \leqslant 2 \sup_{0\leqslant s\leqslant 1/n} N(s) \leqslant 2DN(t), \\ M(t) \geqslant M\bigg(\frac{1}{n+1}\bigg) \geqslant \sup_{0\leqslant s\leqslant 1/(n+1)} N(s) \geqslant N\bigg(\frac{1}{n+1}\bigg) \geqslant \frac{N(t)}{D} \end{split}$$

for $1/(n+1) \leqslant t < 1/n$. In all these inequalities $n \geqslant m, n > 1/\delta$ and δ , D are constants involved in 1.6 (c) when $\varrho = 2$. We can suppose beforehand about N that N(-t) = N(t) for t > 0, for every function N satisfying the condition 1.6 (b) is equivalent to $\overline{N}(t) = N(|t|)$; consequently $M \sim N$.

1.62. Let N be non-decreasing for $t \ge 0$ and let N(t) = N(-t) for all t; then the conditions 1.6 (a), (b) are equivalent to

(+) $N(2t) \leqslant KN(t)$ for some K in a neighbourhood of 0.

Setting t=s in 1.6 (a) we get (+). Conversely let the condition (+) be satisfied. The function N being monotone and even, we have for sufficiently small t,s

$$N(|t+s|) \le N(|t|+|s|) \le N(2\max(|t|,|s|))$$

\$\le KN(\max(|t|,|s|)) \le K[N(|t|)+N(|s|)].\$

If $|\omega| \leq 1$, then 1.6 (b) is satisfied with $D_{\omega} = 1$ and arbitrary ε_{ω} . Let $|\omega| > 1$; choose a positive integer n so that $2^{n-1} \leq |\omega| < 2^n$. It follows from (+) that in some neighbourhood of 0

$$N(|\omega|\,|t|)\leqslant N\left(2^n\,\frac{|\omega|}{2^n}\,\,|t|\right)\leqslant K^nN\left(\frac{|\omega|}{2^n}\,\,|t|\right)\leqslant K^nN(|t|)\,.$$

- **1.7.** THEOREM 1. Let N satisfy the condition (*). The necessary and sufficient condition that X^N be a linear space is that the conditions 1.6 (a), (c) be satisfied. The function N may always be replaced by a continuous even function M increasing for $t \geqslant 0$ and equivalent to N, i. e. such that $X^M = X^N$.
- 1.8. Now we shall discuss the possibility of introducing the norm in the linear spaces X^N . We remember that, in a linear space, the norm of type F is a functional $\| \|$ satisfying the conditions 1) $\|x\| \ge 0$, 2) $\|x\| = 0$ if and only if x = 0, 3) $\|x + y\| \le \|x\| + \|y\|$, 4) $\|x\| = \|-x\|$, 5) the product ωx where ω is real is continuous with respect to the norm in both variables jointly. A linear space provided with an F-norm will be called the F^* -space; if, moreover, the axiom of completeness is satisfied it will be called the F-space.

Let the space X^N be linear; we shall say that the sequence x_n of elements of X^N is ϱ -convergent to x_0 (in symbols $x_n \stackrel{\varrho}{\to} x_0$ as $n \to \infty$) if $\varrho(x_n - x_0) \to 0$ for $n \to \infty$. Suppose that an F-norm $\| \ \|$ is defined in X^N ; the convergence with respect to the norm $\| \ \|$ will be called equivalent to the convergence ϱ if the relation $\|x_n - x_0\| \to 0$ as $n \to \infty$ implies $\varrho(x_n - x_0) \to 0$ for $n \to \infty$, and conversely. Let us observe that if the convergence with respect to the norm is equivalent to the convergence ϱ , then $\|x\| = 0$ if and only if $\varrho(x) = 0$.

1.81. Let N satisfy the condition (*) and let the space X^N be linear.

(a) $x \in X^N$, $\omega_n \to 0$, then $\omega_n x \stackrel{\varrho}{\to} 0$ as $n \to \infty$,

(b) $x_n \in X^N$, the sequence ω_n is bounded and $x_n \stackrel{\varrho}{\to} 0$ as $n \to \infty$, then $\omega_n x_n \stackrel{\varrho}{\to} 0$.

For the proof let us notice that if $x = \{t_n\} \in X^N$, then, by 1.6 (c),

$$\sum_{n=p}^{\infty} N(\omega t_n) \leqslant D \sum_{n=p}^{\infty} N(t_n) \quad \text{ when } \quad \sum_{n=p}^{\infty} N(t_n) \leqslant \delta, \, |\omega| < r,$$

$$\varrho(\omega x) \leqslant D\varrho(x)$$
 when $\varrho(x) < \delta, |\omega| < r$,

where D, δ are constants of 1.6 (c) and the constant ϱ appearing in 1.6 (c) is denoted by r. The first of these inequalities and the continuity of N at 0 imply (a), the second inequality implies (b).

1.811. Let $M \sim N$; then $\varrho_M(x_n) \to 0$ as $n \to \infty$ implies $\varrho_N(x_n) \to 0$ as $n \to \infty$, and conversely.

This follows immediately from the definition of equivalent functions.

1.82. Let the function N be non-decreasing for $t \ge 0$, N(t) = N(-t) for all t and let it satisfy the condition (*); let the space X^N be linear. One can define in X^N an F-norm so that convergence with respect to the norm is equivalent to the convergence ϱ . With this definition of norm X^N is an F-space.

By 1.6 (c) and 1.81 (a) we have $\varrho(x/\varepsilon) \to 0$ as $0 < \varepsilon \to \infty$, whence there exist $\varepsilon > 0$ satisfying the inequality

$$(+) \varrho(x/\varepsilon) < \varepsilon.$$

Let us define the norm $||x|| = \inf \varepsilon$, the infimum being extended over the set of the $\varepsilon > 0$ satisfying (+). We shall verify that $||\cdot|$ satisfies all the axioms of F-norms. Let us observe first that $\varrho(x) \leq \varrho(x/\varepsilon) \leq \varepsilon$ when $\varrho(x/\varepsilon) \leq \varepsilon$, $0 < \varepsilon \leq 1$. We shall prove that

 $(++) \quad \|x_n\| \to 0 \quad as \quad n \to \infty \quad implies \quad \varrho\left(x_n\right) \to 0 \quad as \quad n \to \infty, \quad and \quad conversely.$

Indeed, if $||x_n|| \to 0$ as $n \to \infty$, then $\varrho(x_n/\varepsilon) < \varepsilon$ for $0 < \varepsilon < 1$ and large n, whence $\varrho(x_n) < \varepsilon$. Conversely let $\varrho(x_n) \to 0$ as $n \to \infty$: then in virtue of 1.81 (b) we have $\varrho(x_n/\varepsilon) < \varepsilon$ for large n, whence $||x_n|| < \varepsilon$ for large n. The symmetry ||x|| = ||-x|| follows directly from the fact that N is even; ||0|| = 0 is obvious. If ||x|| = 0, then applying (++) to the sequence x, x, \ldots we get $\varrho(x) = 0$, i. e. x = 0. To prove the triangle inequality we may suppose that ||x|| > 0 ||y|| > 0. Given $\delta > 0$, there exist $\varepsilon > 0$, $\eta > 0$, satisfying (+) and $\varrho(y/\eta) < \eta$ respectively, such that $\varepsilon < ||x|| + \delta$, $\eta < ||y|| + \delta$. Then

$$\begin{split} N\left(\frac{t_n+s_n}{\varepsilon+\eta}\right) &= N\left(\frac{|t_n+s_n|}{\varepsilon+\eta}\right) \leqslant N\left(\frac{|t_n|+|s_n|}{\varepsilon+\eta}\right) \leqslant N\left(\frac{|t_n|}{\varepsilon}\frac{\varepsilon}{\varepsilon+\eta} + \frac{|s_n|}{\eta}\frac{\eta}{\varepsilon+\eta}\right) \\ &\leqslant \sup\left(N\left(\frac{|t_n|}{\varepsilon}\right), \ N\left(\frac{|s_n|}{\eta}\right)\right) \leqslant N\left(\frac{|t_n|}{\varepsilon}\right) + N\left(\frac{|s_n|}{\eta}\right), \end{split}$$

whence

$$\varrho\left(\frac{x+y}{\varepsilon+\eta}\right)\leqslant\varrho\left(\frac{x}{\varepsilon}\right)+\varrho\left(\frac{y}{\eta}\right)<\varepsilon+\eta<\|x\|+\|y\|+2\delta\,,$$

which implies $||x+y|| \leq ||x|| + ||y|| + 2\delta$.

The continuity of ωx with respect to the variables ω , x follows by 1.81 and (++). Finally, (++) implies the equivalence of the ϱ -convergence to the convergence with respect to the norm. To prove the axiom of completeness let us choose a continuous function M satisfying (*) equivalent to N (this is possible in virtue of 1.61). Let $\|x_p-x_q\|\to 0$ as $p,q\to\infty$, whence because of 1.811 $\varrho_M(x_p-x_q)\to 0$ as $p,q\to\infty$. It follows $t_n^{(r)}\to t_n^{(0)}$ as $r\to\infty$ for $n=1,2,\ldots$ (we have set here $x_r=\{t_n^{(r)}\}$). For sufficiently large p,q we have $\varrho_M(x_p-x_q)<\varepsilon$, whence by the continuity of M

$$\varrho_M(x_p-x_0)\leqslant \varepsilon,$$

where $x_0 = \{t_n^{(0)}\}$, i. e. $\varrho_M(x_p - x_0) \to 0$ as $p \to \infty$ and consequently $||x_p - x_0|| \to 0$ as $p \to \infty$. Since $x_p - x_0 \epsilon X^N$ for large p, $x_p \epsilon X^N$, whence $x_0 \epsilon X^N$. Putting together 1.82 and 1.61 and taking into account 1.811 we get

THEOREM 2. Each X^N linear sequence space forms an F-space if N satisfies the condition (*); the F-norm may be defined so that the ϱ -convergence is equivalent to the convergence with respect to the norm.

1.9. If X^N is a locally convex F-space, N satisfies the condition (*) and norm-convergence implies ϱ -convergence, then N is equivalent to a continuous even convex function satisfying the condition (*).

By a known theorem of Banach the norm in X^N is equivalent to the norm of theorem 2, whence the convergence with respect to the norm is equivalent to the convergence ϱ . We may suppose by 1.61 that N is continuous, even and increasing for $t \ge 0$. The local convexity of X^N implies the existence of $\varepsilon > 0$ such that $\varrho(x_k) < \varepsilon$ for k = 1, 2, ..., n implies $\varrho(x_1 + x_2 + ... + x_n)/n > 1$. Let us denote by e_m the sequence $\{t_k^m\}$, $t_k^m = 1$ for k = m, = 0 for $k \ne m$. Writing for any positive integer p, $x_k = t(e_k + e_{k+n} + ... + e_{k+(n-1)n})$, we get $\varrho(x_k) = pN(t)$,

$$\varrho\left(\frac{x_1+x_2+\ldots+x_n}{n}\right)=pnN\left(\frac{t}{n}\right),$$

(+)
$$N(qt) \leqslant D_q N(t)$$
 for $|t| \leqslant \varrho$.

Indeed, this inequality is true with some constant for $|t| < \delta_q$ in virtue of 1.6 (c), and since $\inf N(t) > 0$, $\sup N(qt) < \infty$ in $\langle \delta_q, \varrho \rangle$, we may choose $D_q > 0$ so that (+) is satisfied in the whole of the interval $|t| \leq \varrho$. By the inequality proved previously

$$N\left(\frac{t}{n}\right) = N\left(q\frac{|t|}{qn}\right) \leqslant D_q N\left(\frac{|t|}{qn}\right) \leqslant \frac{1}{n}\,\frac{2}{\varepsilon}\,\,D_q N\left(t\right) \quad \text{ as } \quad |t| \leqslant \varrho\,.$$

If $0 < \omega \le 1$ let us choose n so that $1/(n+1) < \omega \le 1/n$. As $1/n \le 2\omega$, setting $K_a = 4D_a/\varepsilon$ we get

(++)
$$N(\omega t) \leqslant K_o \omega N(t)$$
 for $0 \leqslant \omega \leqslant 1, |t| \leqslant \varrho$.

Let us write

$$P(t) = \sup_{0 < m \le 1} \frac{N(\omega t)}{\omega}.$$

By (++) it follows that $0 \le P(t) < \infty$ for each t; moreover, $P(at) \le aP(t)$ for $0 \le a \le 1$. By (++) $P(t) \le K_1N(t)$ for $|t| \le 1$; moreover $P(t) \ge N(t)$, whence $P \sim N$. Let us set Q(t) = P(t)/t for t > 0; this function is non-decreasing on the half axis t > 0, for we have for 0 < t' < t''

$$Q(t') = \frac{P(t')}{t'} = \frac{P\left(\frac{t'}{t'}t''\right)}{t'} \leqslant \frac{\frac{t'}{t''}P(t'')}{t'} = \frac{P(t'')}{t''} = Q(t'').$$

Let us now define

$$M(t) = \int\limits_0^t Q(s) \, ds \quad ext{ for } \quad t \geqslant 0, \quad M(t) = M(-t) \quad ext{ for } \quad t < 0 \, .$$

The function M is evidently convex, moreover $N \sim M$. The equivalence follows by the inequalities

$$M\left(t
ight)\leqslant tQ\left(t
ight)=P\left(t
ight),\hspace{0.5cm}M\left(t
ight)\geqslant\int\limits_{t/2}^{t}Q\left(s
ight)ds=rac{t}{2}\;Q\left(rac{t}{2}
ight)=P\left(rac{t}{2}
ight)\;\; ext{for}\;\;t\geqslant0\,,$$

$$P\left(\frac{t}{2}\right)\geqslant N\left(\frac{t}{2}\right)\geqslant \frac{1}{D}N(t)$$
 in a neighbourhood of 0.

1.91. Let the space X^N be linear. If the function N satisfies the condition (*) and N is equivalent to a convex function, then X^N is a B-space with norm-convergence equivalent to ϱ -convergence.

Let the function M be convex and equivalent to N. The continuity of N at 0 implies the same for the function M, whence M is continuous everywhere. We may suppose that M(t) = M(-t) for $t \ge 0$; moreover M(0) = 0 for N(0) = 0 and $M \sim N$. The function M satisfies the condition (*). Indeed, if $t_n \to 0$ as $n \to \infty$, then $M(t_n) \to 0$; if $M(t_n) \to 0$, then $t_n \to 0$ as $n \to \infty$. In the contrary case we would infer from the continuity and convexity of M that M(t) = 0 in some neighbourhood of 0, whence also N(t) in a neighbourhood of 0, which is impossible, for N satisfies the condition (*). Let W denote the set of the elements x satisfying the condition $\rho_M(x) \leq 1$. From the properties of M it follows that the set W is convex and symmetric with respect to 0. By 1.82 there exists in $X^N = X^M$ an F-norm, say $\| \|^*$, such that ϱ_M -convergence is equivalent to the convergence with respect to $\| \|^*$. Thus choosing a sufficiently small r > 0we deduce from $||x||^* \leqslant r$ that $\varrho_M(x) \leqslant 1$, i. e. 0 is an inner point of W in the $\|\cdot\|^*$ -normed space X^N . The set W is also bounded; in fact $M(\omega t) =$ $= M(|\omega||t|) \leqslant |\omega|M(|t|)$ as $|\omega| \leqslant 1$, whence $\varrho_M(\omega x) \leqslant |\omega| \varrho_M(x)$ for $|\omega| \leqslant 1$. From the above properties of W it follows by a known theorem that the norm $\| \|^*$ is equivalent to a B-norm. Let us observe that the corresponding B-norm may be obtained as follows. Let us set $||x|| = \inf k$, the infimum being taken over the set of the k>0 satisfying the inequality $\rho_M(x/k) \leq 1^{1}$). The axioms of the norm are easily verified. One can also prove directly the equivalence of the convergence ϱ_M and the convergence with respect to | | |, which implies in turn the axiom of completeness.

1.92. As a corollary to 1.9 and 1.91 and taking into account that for even functions M non-decreasing for $M \ge 0$ the condition 1.6 (a) is equivalent to 1.62 (+), we deduce

THEOREM 3. Let the function N satisfy the condition (*), then

- (a) X^N is a Banach space if and only if the function N is equivalent to a continuous convex even function M vanishing only at 0 and satisfying the inequality 1.62 (+),
 - (b) if X^N is a B_0 -space, X^N is a B-space.

Here norm-convergence is always to understand as equivalent to ϱ -convergence.

2.1. Throughout this section we suppose that N and M are Baire functions; this hypothesis will not be mentioned in the subsequent considerations. We shall use the notation

$$\varrho_N(x) = \int\limits_0^1 N(x(t)) dt;$$

moreover, the subscript N will be omitted when there is no doubt about the considered function N. Since N is a Baire function, the function N(x(t)) is measurable when x(t) is measurable. The set of those x for which $\varrho_N(x) < \infty$ will be denoted by X^N . Saying "N satisfies the condition (*)" we shall always mean the condition 1.1 (*). We shall also often need the following condition:

(0) $N(t_n) \to \infty$ as $n \to \infty$ if and only if $|t_n| \to \infty$ as $n \to \infty$.

The condition (o) obviously implies that N is bounded in every finite interval.

The functions N and M will be said to be *equivalent* if they have the following properties:

There exist constants A>0, B>0, K>0, r>0 such that the following inequalities are satisfied:

(+)
$$N(t) \leqslant BM(t)$$
 for $M(t) \geqslant r$, $M(t) \leqslant AN(t)$ for $N(t) \geqslant r$,

$$(++)$$
 $N(t) \leqslant K$ for $M(t) < r$, $M(t) \leqslant K$ for $N(t) < r$.

For this definition of equivalence we shall use the same notation as in section 1 to denote the equivalent functions: $N \sim M$.

- **2.12.** Let N and M satisfy the condition (0); then N \sim M if and only if simultaneously $N(t) \leq BM(t)$, $M(t) \leq AN(t)$ for sufficiently large |t|.
- **2.13.** Let M(t, s) and N(t, s) be two non-negative Baire functions of the variables t, s, defined for all real t, s. A necessary and sufficient condition that for arbitrary functions x, y the inequality

$$\int_{0}^{1} M(x(t), y(t)) dt < \infty$$

imply

$$\int_{0}^{1} N(x(t), y(t)) dt < \infty$$

is that for certain constants C > 0, K > 0, r > 0 the following inequalities be satisfied:

(+)
$$N(t,s) \leqslant CM(t,s)$$
 as $M(t,s) \geqslant r$,

$$(++) N(t,s) \leqslant K as M(t,s) < r.$$

Sufficiency is evident.

¹⁾ This method of the introduction of the norm in X^N is known (see [2]).

Necessity. Let us suppose that (+) is not satisfied. Then there exist t_n, s_n such that

$$\sum_{n=1}^{\infty} \frac{1}{M(t_n, s_n)} \leqslant 1, \quad N(t_n, s_n) \geqslant n M(t_n, s_n) \quad \text{for} \quad n = 1, 2, \dots$$

Let $\delta_1, \delta_2, \ldots$ denote disjoint intervals in (0,1) with lengths

$$\frac{1}{1^2M(t_1,s_1)}, \frac{1}{2^2M(t_2,s_2)}, \dots$$

Let

(++)

$$x(s) = \left\{ egin{array}{ll} t_n & ext{for} & s \in \delta_n, \, n = 1, \, 2, \, \ldots, \\ 0 & ext{for} & s \in (0, 1) - igcup_1^\infty \delta_n, \\ y(s) = \left\{ egin{array}{ll} s_n & ext{for} & s \in \delta_n, \, n = 1, \, 2, \, \ldots, \\ 0 & ext{for} & s \in (0, 1) - igcup_1^\infty \delta_n. \end{array}
ight.$$

Then

$$\int\limits_{0}^{1}M\big(x(s)\,,\,y(s)\big)\,ds\,=\,\sum\limits_{n=1}^{\infty}\frac{1}{n^{2}},\qquad \int\limits_{0}^{1}N\big(x(s)\,,y(s)\big)\,ds\,\geqslant\,\sum\limits_{n=1}^{\infty}\frac{1}{n}\,=\,\infty,$$

contrary to hypothesis. Let us now suppose that (++) is not satisfied. There exist t_n , s_n such that $N(t_n, s_n) \to \infty$ for $n \to \infty$, $M(t_n, s_n) \leqslant r$. Let us choose positive a_n so that

$$\sum_{n=1}^{\infty} a_n \leqslant 1, \quad \sum_{n=1}^{\infty} a_n N(t_n, s_n) = \infty,$$

and then disjoint intervals δ_n in (0,1) with lengths a_n ; next we define the functions x, y by aid of (+,+). We obtain

$$\int_{0}^{1} M(x(s), y(s)) ds < \infty, \quad \int_{0}^{1} N(x(s), y(s)) ds = \infty,$$

which leads to a contradiction.

Setting M(t,s)=M(t), N(t,s)=N(t) for arbitrary t,s we deduce from 2.13 that

2.14. A necessary and sufficient condition that the inequality $\varrho_M(x) < \infty$ imply $\varrho_N(x) < \infty$ is the existence of constants B > 0, K > 0, r > 0 such that

$$N(t) \leqslant BM(t)$$
 for $M(t) \geqslant r$,
 $N(t) \leqslant K$ for $M(t) < r$.

2.2. (a) $X^N = X^M$ if and only if $N \sim M$;

(b) X^N is identical with the space of all measurable functions if and only if M is bounded in $(-\infty, \infty)$.

Ad (a). It immediately follows from 2.14 and the definition of equivalence.

Ad (b). Sufficiency is trivial.

Necessity. If N is unbounded, then there exist t_n such that

$$N(t_n) o \infty$$
 as $n o \infty$, $\sum_{n=1}^\infty rac{1}{N(t_n)} \leqslant 1$.

Let us choose disjoint intervals δ_n in (0,1) with lengths $1/N\left(t_n\right)$ and let us set

$$x(s) = \begin{cases} t_n & \text{for} \quad s \in \delta_n, \ n = 1, 2, \dots, \\ 0 & \text{for} \quad s \in (0, 1) - \bigcup_{n=1}^{\infty} \delta_n. \end{cases}$$

Obviously $\varrho_N(x) = \infty$ and X^N does not contain all measurable functions.

2.3. The following conditions are necessary and sufficient that X^N be a linear space:

(a) There exist constants C > 0, K > 0, r > 0 such that

$$N(t+s) \leqslant C(N(t)+N(s))$$
 for $N(t)+N(s) \geqslant r$;

(a') $N(t+s) \leqslant K$ for N(t)+N(s) < r;

(b) for each ω there exist constants $D_{\omega}>0$, $K_{\omega}>0$, $r_{\omega}>0$ such that

$$N(\omega t) \leqslant D_{\omega} N(t) \quad \textit{ for } \quad N(t) \geqslant r_{\omega};$$

(b')
$$N(\omega t) \leqslant K_{\omega}$$
 for $N(t) < r_{\omega}$.

To prove (a), (a') let us write M(t,s) = N(t) + N(s), N(t,s) = N(t+s). As $\varrho_N(x) < \infty$, $\varrho_N(y) < \infty$ implies $\varrho_N(x+y) < \infty$, it is sufficient to apply 2.13 to M(t,s), N(t,s). To prove (b), (b') let us make use of 2.14 replacing N(t) by $N(\omega t)$ and M(t) by N(t). Then we take into account that $\varrho_N(x) < \infty$ implies $\varrho_N(\omega x) < \infty$ for each ω .

2.31. Let N satisfy the conditions 2.3 (b) and (b') and let the sequence $N(t_n)$ be bounded; then for every ω the sequence $N(\omega t_n)$ is also bounded.

Suppose that $N(t_n) \leq L$ for n = 1, 2, ... If $N(t_n) \geq r_{\omega}$ then $N(\omega t_n) \leq D_{\omega} L$; if $N(t_n) < r_{\omega}$, then $N(\omega t_n) \leq K_{\omega}$.

2.4. Let N satisfy the conditions (a), (a'), (b), (b') of 2.3; then for every $\rho > 0$ there exist positive constants D, F such that

$$egin{aligned} N(\omega t) \leqslant DN(t) & ext{ for } N(t) \geqslant r_{arrho}, |\omega| < arrho, \ N(\omega t) \leqslant F & ext{ for } N(t) < r_{oldsymbol{o}}, |\omega| < arrho. \end{aligned}$$

Let us suppose that $|\omega_n| < \varrho$, $N(t_n) \to \infty$ as $n \to \infty$ where $N(t_n) > 0$, and that $N(\omega_n t_n)/N(t_n) \to \infty$ as $n \to \infty$. As in 1.6 we define functions for $n = 1, 2, \ldots$ and $|\omega| < \varrho$

$$arphi_n(\omega) = rac{N(\omega 4t_n)}{N(t_n)}.$$

It follows from 2.3 (b) that for every ω in $(-\varrho, \varrho)$ the sequence $\varphi_n(\omega)$ is bounded. Since $N(t_n) \to \infty$, it follows from 2.31 for $\omega \neq 0$ that $N(\omega t_n) \to \infty$ and, the functions $N(\omega t_n)$ being measurable, there exists in $(-\varrho, \varrho)$ a measurable set E of measure $> \frac{7}{4}\varrho$ such that $N(\omega 4t_n) \geqslant r$ for $\omega \in E$ and sufficiently large n. Thus by 2.3 (a) it follows that for $\omega_1, \omega_2 \in E$ and sufficiently large n

$$\varphi_n(\omega_1+\omega_2) \leqslant C[\varphi_n(\omega_1)+\varphi_n(\omega_2)],$$

whence by 1.2 B there is a constant L such that

$$\varphi_n(\omega t_n) \leqslant L$$
 for $|\omega| < \varrho/4$ and large n;

therefore

$$rac{N(\omega t_n)}{N(t_n)} \leqslant L \quad ext{ for } \quad |\omega| < arrho \ ext{and large } n \, ,$$

in contradiction to the relation $N(\omega_n t_n)/N(t_n) \to \infty$ as $n \to \infty$.

To prove the second inequality of our proposition let us suppose that for certain t_n , ω_n such that $|\omega_n| < \varrho$, $N(t_n) < r_\varrho$ we have $N(\omega_n t_n) \to \infty$. Let us define measurable functions for n = 1, 2, ...

$$\varphi_n(\omega) = N(\omega 4t_n).$$

By 2.31 the sequence $\varphi_n(\omega)$ is bounded as $\omega \in (-\varrho, \varrho)$. The same argument as in the proof of 1.2, B, with the same notation except that δ is replaced by ϱ , leads to the representation 1.2 (++), whence by 2.3 (a) there follows 1.2 (++) (where K is to be replaced by C) if $N(\omega_1 4 t_n) + N(-\omega_2 4 t_n) \ge r$. On the other hand, if $N(\omega_1 4 t_n) + N(-\omega_2 4 t_n) < r$, then from 2.3 (a') we deduce

$$\varphi_n(\omega) = N(\omega 4t_n) \leqslant K \quad \text{for} \quad |\omega| < \varrho/4;$$

consequently the sequence $N(\omega 4t_n)$ is uniformly bounded in $(-\varrho/4, \varrho/4)$, whence also the sequence $N(\omega t_n)$ in $(-\varrho, \varrho)$, which is contrary to the fact that $N(\omega_n t_n) \to \infty$ as $n \to \infty$ where $|\omega_n| < \varrho$.

2.5. Let X^N be a linear space different from the space of all measurable functions; then N satisfies the condition (a).

By 2.3 and 2.4 $N(\omega)$ is bounded in $(-\varrho, \varrho)$, whence in every finite interval. Therefore if $N(t_n) \to \infty$ as $n \to \infty$, then $|t_n| \to \infty$ as $n \to \infty$. Conversely, suppose that $|t_n| \to \infty$ as $n \to \infty$, and let r > 0 be given. If we had $N(t_n) < r$ for $n = 1, 2, \ldots$, then, by 2.4, $N(\omega t_n) \le \max(D_{r_1} r, F)$ for $|\omega| < 1$, $n = 1, 2, \ldots$, whence N(t) would be bounded in $(-\infty, \infty)$, which is contrary to 2.2 (b).

2.6. Let N satisfy the condition (o) and let X^N be a linear space. Then there exists a function M equivalent to N, continuous increasing for $t \ge 0$ such that M(t) = M(-t) and satisfying the conditions (o), (*).

Let us observe first that we may suppose that N(t) = N(-t) for arbitrary t. Indeed, the condition (o) being satisfied by N, it follows by 2.3 (b), (b') that $N \sim \overline{N}$ where $\overline{N}(t) = N(|t|)$.

Let m be the smallest positive integer such that $\sup_{0 \le s \le m} N(s) > 0$. Let us set $M(n) = \varepsilon_n \sup_{0 \le s \le n} N(s)$ for $n \ge m$ where $0 < \varepsilon_n < 1$ are chosen to form an increasing sequence. We define M(t) as a linear function taking on the value 0 at t = 0, in the interval $0 \le t \le m$; for $n \le t \le n+1$ with $n \ge m$, the function M(t) is equal to the linear function, M(t) = M(-t) for t < 0. M obviously satisfies the condition (*); the condition (0) being satisfied by N, it follows that $\sup_{0 \le s \le n} N(s) \to \infty$ as $n \to \infty$, which implies that M satisfies the condition (0) too. For $n \le t \le n+1$ where $n \ge m$ we have

$$\begin{split} M(t) \leqslant M(n+1) &= \varepsilon_{n+1} \sup_{0 \leqslant s \leqslant n+1} N(s) = \varepsilon_{n+1} \sup_{0 \leqslant \omega \leqslant (n+1)/t} N(\omega t) \leqslant \\ &\leqslant \varepsilon_{n+1} \sup_{0 \leqslant \omega \leqslant 2} N(\omega t), \end{split}$$

$$M(t) \geqslant M(n) \geqslant \varepsilon_n N(n) \geqslant \varepsilon_m N(n)$$
.

And since by 2.4 and the condition (o) for N the inequalities

$$N(t) = N\left(\frac{t}{n}n\right) \leqslant DN(n)$$
 for n sufficiently large, $n \leqslant t \leqslant n+1$,

are satisfied, we can choose r so great that for $N(t) \ge r$, $M(t) \ge r$

$$DN(t)\geqslant M(t)\geqslant rac{arepsilon_m}{D}\ N(t).$$

The functions N, M satisfy the condition (o), whence for N(t) < r or M(t) < r we have $M(t) \le K$ or $N(t) \le K$, K being a constant, which gives $N \sim M$.

- **2.7.** Theorem 4. A. Suppose that N is not bounded. Then X^N forms a linear space if and only if:
 - (a) N satisfies the condition (o);
- (b) there are constants C>0, r>0 such that $N(t+s)\leqslant C\big(N(t)+N(s)\big)$ for |t|+|s|>r,

(c) for each $\varrho > 0$ there exist constants D > 0, $r_0 > 0$ such that $N(\omega t) \leq DN(t)$ for $|\omega| < \varrho$, $|t| > r_0$.

B. If N is not bounded and X^N is a linear space, we may replace N by a continuous even function M increasing for $t \ge 0$, satisfying the condition (*) and equivalent to N, i. e. such that $X^M = X^N$.

Ad A. Necessity. (a) follows by 2.2 (b) and (2.5); (b), (c) follow from 2.3, 2.4, and (a).

Sufficiency. The set X^N is non-empty, $e.\ g.\ x(t)=0$ for every t belongs to X^N , it is sufficient to apply the condition (c) and 2.3.

Ad B. Since N must satisfy the condition (o), we may apply 2.6.

2.71. If N is non-decreasing for $t \ge 0$, N(t) = N(-t) for all t, and N satisfies the condition (0), then the conditions 2.7 (b), (c) are equivalent to the following one:

$$(+) N(2t) \leqslant KN(t)$$

for sufficiently large |t|, K being a constant.

The proof is analogous to that in 1.62.

- **2.8.** Let X^N be a linear space; as in 1.8, we introduce the notion of the ϱ -convergence. The sequence $x_n \in X$ is called ϱ -convergent to the element $x_0 \in X^N$ if $\varrho(x_n x_0) \to 0$ as $n \to \infty$; we shall write this: $x_n \stackrel{\varrho}{\to} x_0$ as $n \to \infty$.
- **2.81.** Let X^N be a linear space and let N not vanish identically. Then a necessary condition that the product ωx be continuous with respect to the ρ -convergence is that the condition (*) be satisfied.

Under the supplementary hypothesis that N satisfies the condition (o), (*) is a sufficient condition for the continuity of ωx .

Necessity. Let $t_n \to 0$ as $n \to \infty$, $x_n(s) = 1$ for $s \in (0,1)$, $n = 0, 1, 2, \ldots$ obviously $x_n \overset{\varrho}{\to} x_0$ as $n \to \infty$, whence $t_n x_n \overset{\varrho}{\to} 0$, i. e. $\varrho(t_n x_n) = \varrho(t_n x_0) = 0$ as $n \to \infty$. Let $N(t_n) \to 0$ as $n \to \infty$; we may suppose that $t_n \to t_0$ or $|t_n| \to \infty$. Let us suppose also, for example, that $N(1) \neq 0$. Assuming $t_0 \neq 0$ we may suppose that all $t_n \neq 0$. Setting $t_n(s) = t_n$ for $t_n(s) = 1, 2, \ldots$ we get $t_n(t_n) \overset{\varrho}{\to} 0$ as $t_n(s) = 1, 2, \ldots$ we get $t_n(t_n) \overset{\varrho}{\to} 0$ as $t_n(s) = 1, 3, \ldots$ whence $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) \overset{\varrho}{\to} 0$ as $t_n(t_n) = 1, 3, \ldots$ whence $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ we get $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ where $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$ of $t_n(t_n) = 1, 3, \ldots$ is the $t_n(t_n) = 1, 3, \ldots$

2.82. Let N satisfy the conditions (*), (0), and let X^N be a linear space. Under these hypotheses the statements 1.81 (a), (b) are satisfied.

Let us observe at first that N(0)=0 and that N is continuous at 0. It follows by 2.7, A, that for $x \in X^N$ the inequality

$$(+) \qquad \int\limits_{\mathbb{R}} N(\omega x(t)) dt \leqslant D\int\limits_{\mathbb{R}} N(x(t)) dt \quad \text{ when } \quad |\omega| < \varrho$$

is satisfied where $E=\left\{t:|x(t)|>r_0,t\,\epsilon(0,1)\right\},\ D,\,r_0,\,\varrho$ are constants as in 2.7, A. Let $x_n\overset{\varrho}{\to}0$; then $N(x_n(t))$ converges in measure to 0; thus it follows from (*) that $x_n(t)$ tends in measure to 0. Let φ_n denote the characteristic function of the set $E_n=\left\{t:|x_n(t)|>r_0,t\,\epsilon(0,1)\right\}$. As $(1-\varphi_n(t))x_n(t)$ tends in measure to 0 and $|(1-\varphi_n(t))x_n(t)|\leqslant r_0$ for $n=1,2,\ldots$, we have $\int\limits_0^1 N(\omega_n(1-\varphi_n(t))x_n(t))\,dt\to 0$ as $n\to\infty$ $|\omega_n|<\varrho$. By (+)

$$\int\limits_{0}^{1} N\left(\varphi_{n}(t)\,\omega_{n}x_{n}(t)\right)dt \leqslant D\int\limits_{0}^{1} N\left(\varphi_{n}(t)x_{n}(t)\right)dt \leqslant D\varrho\left(x_{n}\right)$$

as $|\omega_n| < \varrho$ for n = 1, 2, ..., whence

$$\varrho\left(\omega_{n}x_{n}\right)=\int\limits_{0}^{1}N\left(\left(1-\varphi_{n}(t)\right)\omega_{n}x_{n}(t)\right)dt+\int\limits_{0}^{1}N\left(\varphi_{n}(t)\,\omega_{n}x_{n}(t)\right)dt\rightarrow0\quad\text{as}\quad n\rightarrow\infty\,.$$

The proof of 1.81, (a) is analogous.

2.83. Let N and M satisfy the condition (*) and let $N \sim M$, i.e. $X^N = X^M$. Then $\varrho_N(x_n) \to 0$ as $n \to \infty$ implies $\varrho_M(x_n) \to 0$ as $n \to \infty$ and conversely.

It is sufficient to prove that $\varrho_N(x_n) \to 0$, $x_n \epsilon X^N$ implies $\varrho_M(x_n) \to 0$. According to 2.1 (+) we have $M(t) \leqslant BN(t)$ for $N(t) \geqslant r$ and $M(t) \leqslant K$ for N(t) < r. Let $E_n = \{t \colon N(x_n(t)) \geqslant r, t \epsilon(0, 1)\}$ for $n = 1, 2, \ldots$ and let φ_n denote the characteristic function of the set E_n . We have

$$\int\limits_0^1 M\big((x_n(t)\big)\varphi_n(t)\,dt\leqslant B\int\limits_0^1 N\big(x_n(t)\big)\varphi_n(t)\,dt\leqslant B\varrho_N(x_n)\to 0\,.$$

Now $M(x_n(t))(1-\varphi_n(t)) \leqslant K$, $M(x_n(t))$ tends in measure to 0 in (0,1), for $N(x_n(t))$ tends in measure to 0 and the condition (*) is satisfied.

Thus

$$\int_{0}^{1} M(x_{n}(t)) (1 - \varphi_{n}(t)) dt \to 0 \quad \text{as} \quad n \to \infty,$$

whence

$$\varrho_M(x_n) = \int_0^1 M(x_n(t)) dt \to 0 \quad \text{as} \quad n \to \infty.$$

2.84. Let N satisfy the conditions (*), (o), let N be non-decreasing for $t \ge 0$, N(t) = N(-t) for all t, and let X^N be a linear space. One can define in X^N an F-norm such that the convergence with respect to the norm is equivalent to the ϱ -convergence. With this norm, X^N is an F-space.

The set of the $\varepsilon > 0$ satisfying the inequality 1.82 (+) is non-empty. as follows by 2.82. Let us define the norm as in 1.82, i. e. $||x|| = \inf \varepsilon$, the infimum being taken over the set of those $\varepsilon > 0$ which satisfy 1.82 (+). Arguing as in 1.82 and taking into account the lemmata 2.82 we can verify that $\| \ \|$ satisfies the axioms of F-norm and that the convergence with respect to the norm is equivalent to the ϱ -convergence. Let us call attention here to the role of the condition (*), considering, for example, the axiom: ||x|| = 0 if and only x = 0. If ||x|| = 0, then $\varrho(x) = 0$, for the convergence with respect to the norm implies the ϱ -convergence, and since (*) implies $N(t) \neq 0$ for $t \neq 0$ we have x(t) = 0 almost everywhere, i. e. x = 0. Conversely, if x(t) = 0 almost everywhere, then $N(|x(t)|/\varepsilon)=0$ almost everywhere, $\varrho(x/\varepsilon)=0$, i. e. ||x||=0. To prove the axiom of completeness²) let M be a continuous even function satisfying the condition (*), equivalent to N; such a function exists in virtue of 2.6. Let $||x_p-x_q|| \to 0$ as $p, q \to \infty$; by 2.83 $\varrho_M(x_p-x_q) \to 0$ as $p, q \to \infty$. Let us choose $\varepsilon_n > 0$ so that $\sum \varepsilon_n [M(1/n^2)]^{-1} < \infty$ and then an increasing sequence p_n of indices such that $\varrho_M(x_{p_n}-x_{p_{n+1}})\leqslant \varepsilon_n$ for $n=1,2,\ldots$ $E_n = \{t: |x_{p_n}(t) - x_{p_{n+1}}(t)| \ge 1/n^2, t \in (0,1)\}, F_n = (0,1) - E_n$ $n=1,2,\ldots$ The series $\sum\limits_{n=1}^{\infty}|E_n|$ converges, for $\varrho_M(x_{p_n}-x_{p_{n+1}})\geqslant |E_n|M(1/n^2),$ therefore $\overline{|\lim E_n|} = 0$, $|\lim F_n| = 1$, whence it follows that the series $\sum |x_{p_n}(t)-x_{p_{n+1}}(t)|$ converges almost everywhere, $i.~e.~x_{p_n}(t) \to x_0(t)$ almost everywhere. Let $\varepsilon > 0$ be fixed; for sufficiently large q and almost all nwe have $\int M(x_{p_n}(t)-x_q(t))dt \leqslant \varepsilon$, which implies together with the continuity of M that

$$\underset{n}{\underset{n}{\varinjlim}} \int\limits_{0}^{1} M \big(x_{n_n}(t) - x_q(t) \big) \, dt \, \geqslant \int\limits_{0}^{1} M \left(x_0(t) - x_q(t) \right) dt \, ,$$

Taking into account 2.6, 2.84, and 2.83 we deduce

THEOREM 5. Every linear space of functions X^N forms an F-space if N satisfies the conditions (0) and (*); the F-norm may be defined so that the ρ -convergence is equivalent to the convergence with respect to the norm.

2.9. If X^N is a locally convex F-space, N satisfies the conditions (0), (*) and norm-convergence implies ϱ -convergence, then N is equivalent to continuous convex even function satisfying the conditions (*), (0).

Suppose that X^N is a locally convex F-space; by the theorem of Banach and theorem 5 the convergence with respect to the norm is equivalent to the ϱ -convergence; by 2.6, 2.83 we may suppose that N is continuous and increasing for $t \ge 0$, N(t) = N(-t) for all t. The local convexity of X^N implies the existence of $\varepsilon > 0$ such that from the inequality $\varrho(x_k) < \varepsilon$ for k = 1, 2, ..., n there follows $\varrho((x_1 + x_2 + ... + x_n)/n) < 1$. For positive integers q, p, n such that $p \le n$ and real t let us define the functions x_k for k = 1, 2, ..., n as follows:

$$x_k(s) = egin{cases} tarepsilon_{r(k-1+i)} & ext{for} & i/nq < s < (i+1)/nq, & i = 0, 1, 2, ..., n-1, \ 0 & ext{elsewhere in} & (0, 1), \end{cases}$$

where $\varepsilon_m = 1$ for m = 0, 1, ..., p-1, $\varepsilon_m = 0$ for $m \ge p$ and r(m) denotes the residue of m modulo n. Now

$$\varrho\left(x_{k}
ight) = rac{1}{q}rac{p}{n}N(t), \qquad \varrho\left(rac{x_{1}+x_{2}+\ldots+x_{n}}{n}
ight) = rac{1}{q}N\left(rac{p}{n}t
ight),$$

whence

$$\frac{1}{q} N\left(\frac{p}{n} t\right) < 1$$
 for $\frac{1}{q} \frac{p}{n} N(t) < \varepsilon$.

The continuity of N, p, n being arbitrary, implies that $q^{-1}N(\omega t) \leq 1$ for $0 \leq \omega \leq 1$ if $q^{-1}\omega N(t) \leq \varepsilon$. If $\omega N(t) \geqslant \varepsilon$ and $\varepsilon q \leq \omega N(t) \leq \varepsilon (q+1)$ for positive integer q, then

$$\frac{1}{q+1} \omega N(t) \leqslant \varepsilon,$$

whence

$$\frac{1}{q+1} N(\omega t) \leqslant 1, \quad N(\omega t) \leqslant q+1 = \frac{q+1}{\epsilon q} \epsilon q \leqslant \frac{2}{\epsilon} \omega N(t).$$

Setting $C = 2/\varepsilon$ we have

(+)
$$N(\omega t) \leqslant C \omega N(t)$$
 for $\omega N(t) \geqslant \varepsilon$.

²) For the quoted proof of the completeness of X^M compare [1].

We shall prove that

$$\lim_{t\to\infty}\frac{N(t)}{t}>0.$$

In the contrary case there exist t_n such that $t_n \to \infty$, $N(t_n)/t_n \to 0$ as $n \to \infty$. Now $N(t_n) \to \infty$, since N satisfies the condition (0) and we may suppose that $\omega_n = \varepsilon/N(t_n) \leqslant 1$. As $\omega_n N(t_n) = \varepsilon$ we infer from (+) that

$$N\left(\varepsilon \frac{t_n}{N(t_n)}\right) \leqslant C\varepsilon$$

which contradicts the condition (0), for $\varepsilon t_n/N(t_n) \to \infty$ as $n \to \infty$. Let us choose $\delta > 0$ and T > 0 so that

$$N(t)/t \geqslant \delta$$
 for $t \geqslant T$ and $\delta T \geqslant \varepsilon$.

Then for $\omega t \geqslant T$, $0 < \omega \leqslant 1$, t > 0

$$\omega N(t) = \omega t \frac{N(t)}{t} \geqslant T\delta \geqslant \varepsilon,$$

for $\omega t \geqslant T$ implies $t \geqslant T$; therefore, by (+),

(++)
$$N(\omega t) \leqslant C\omega N(t)$$
 for $\omega t \geqslant T$, $0 < \omega \leqslant 1$.

Let us set

$$P(t) = egin{cases} \sup rac{N\left(\omega t
ight)}{\omega} & ext{for} \quad t\geqslant T, \ \sup_{\substack{0<\omega\leqslant 1 \ \omega t\geqslant T}} N(t) & ext{for} \quad 0\leqslant t < T. \end{cases}$$

From (++) and the continuity of N it follows that $P(t) < \infty$ for every t. The following inequality is satisfied:

$$P(at) \leqslant aP(t)$$
 as $0 < a \leqslant 1$, $at \geqslant T$

for

$$P(at) = \sup_{\substack{0 < \omega \leqslant 1 \\ \alpha d \geqslant T}} \frac{N(\omega at)}{\omega} = a \sup_{\substack{0 < \omega \leqslant 1 \\ \omega d \geqslant T}} \frac{N(\omega at)}{\omega a} \leqslant a \sup_{\substack{0 < \omega \leqslant 1 \\ \omega \geqslant T}} \frac{N(\omega t)}{\omega} = aP(t);$$

it follows that the function P(t)/t is non-decreasing as $t\geqslant T,$ since for $T\leqslant t'< t''$

$$\frac{P(t')}{t'} = \frac{P\left(\frac{t'}{t''}t''\right)}{t'} \leqslant \frac{\frac{t'}{t''}P(t'')}{t'} = \frac{P(t'')}{t''}, \quad \text{for} \quad \frac{t'}{t''}t'' = t' \geqslant T.$$

Let us now write

$$Q(t) = egin{cases} P(t)/t & ext{for} & t \geqslant T, \ tP(T)/T^2 & ext{for} & 0 \leqslant t \leqslant T, \end{cases}$$

$$M(t) = \int\limits_0^t Q(s)\,ds \quad ext{ for } \quad t\geqslant 0\,, \quad M(t) = M(-t) \quad ext{ for } \quad t\leqslant 0\,.$$

The function M is convex and, as in 1.91, one can prove that $N \sim M$.

2.91. If X^N is a linear space, N satisfies the conditions (o), (*) and N is equivalent to a convex function, then X^N is a B-space with norm-convergence equivalent to ρ -convergence.

Let the function M be convex and equivalent to N; this, together with (0), implies that M is continuous. We may assume that M is even; the condition (0) is satisfied by M, for it is satisfied by N. It is easily seen that modifying suitably M in a neighbourhood of 0 we may obtain a convex function equivalent to M satisfying the condition (*); thus we can suppose that M satisfies (*). Using 2.84 and arguing as in 1.91 3) we can prove that the norm described in lemma 2.84 is equivalent to a B-norm.

2.92. As a corollary to 2.9, 2.91 and applying 2.71 we get

THEOREM 6. (a) Let N satisfy the conditions (o) and (*). Then X^N is a Banach space if and only if N is equivalent to a continuous even convex function vanishing only at 0 and satisfying the inequality 2.71 (+).

(b) If X^N is a B_0 -space, then X^N is a B-space.

Here norm-convergence is always to understand as equivalent to ϱ -convergence.

References

- [1] S. Kaczmarz et L. Nikliborc, Sur les suites des fonctions convergentes en moyenne, Fundamenta Mathem. 11 (1928), p. 151-168.
 - [2] W. A. J. Luxembourg, Banach function spaces, thesis, Delft 1955.
- [3] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Ac. Pol. (1932), p. 207-220.
 - [4] Über Räume (LM), Bull. Ac. Pol. (1936), p. 93-107.
- [5] F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. 69 (1910), p. 449-497.
- [6] Les systèmes d'équations linéaires à une infinité d'inconnues, Collection Borel, Paris 1913.

Recu par la Rédaction le 21. 9. 1957

s) Compare the footnote on p. 105.