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STUDIA MATHEMATICA, T. XVIL (1958)

Linear functionals on two-norm spaces

by
A. ALEXIEWICZ and Z. SEMADENI (Poznan)

This paper is the sequel to the paper [1] of the first author. That
paper dealt mainly with the problem under what conditions the limit
of a point-wise convergent sequence of y-linear functionals is y-linear.

In the present paper we investigate the behaviour of the y-linear
functionals. We prove a theorem, due to A. Wiweger, stating that there
is a convex linear topology such that convergence y is equivalent to
convergence with respect to that topology, and such that y-linear func-
tionals are identical with the functionals linear with respeet to that
topology. The main result establishes the general form of y-linear
functionals as uniform limits in the sphere S = {m: el < 1} of the func-
tionals linear with respect to the weaker norm || ||* (Theorems 4.2 and
4.3); thus the set &, of y-linear functionals is-equal to the uniform closure
of the set 5% of the functionals continuous with respect to the weaker
norm. This theorem enables us to deduce rapidly (in section 6) the
general form of y-linear functionals in several concrete two-norm spaces
including some known ones.

A section is devoted to counter examples Whlch geem to throw some
light on the problems arising. In particular, it is shown that the y-linear
funectionals do not have the extension property.

The first author is indebted to Mr W. Orlicz for having called his
attention to the fact that proposition 3.1 of the paper [1] is false; we
give the correct version and rectify a consequence deduced in [1] from 3.1.

1. Preliminaries. In this paper we deal with the following case
of two-norm convergence ([1], p. 49). X is a real or complex linear space
provided with a homogeneous norm || ||; X considered as a linear metric
space normed by ||| will be denoted by <X, | ||> — this space is not
supposed to be completel). Let another (homogeneous) norm |f|*
defined in X. A sequence {m,} of elements of X is called y-convergent

*) unlike as in [1]; W. Orliez has noticed that this hypothesis is superfluons
(comp. [17]).
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to z, (in symbols w, 2>z, or y- limx,b_x,,) if sup Hnni|< oo and
n=1,2,

Hm [Jat,— 2] = 0. The space X prowded with the convergence y will
?ogﬁenoted by (X, | ||, > and will be called a two-norm space. Obviously,
(X, I Iy is an £L%-space of Fréchet (see, for instance, [9], p.83);

moreover, the addition of elements and multiplication by scalars are
continuous.
In the sequel we make the following assumptions:

(n,) The norm ||| is finer than | |2),

(m) Tf @, B xy, then [yl < lim [ja[|
‘n—-—&DO 3
The condition (n) is satisfied when the following postulate is satis-
fied (see [16], p. 226):

(n) If. |z} < K and hm IIm),—qu = 0, then there exigts in X an
»,4q
element x, such that hmnmp~m01] =0 and H%H
P00

This postulate implies in turn the y-completeness of (X, ||}, | 1>;
indeed, we have (see [2], p. 207)

1.1. ProOPOSITION. Let (n,) be satisfied; if |w,) is a sequence such
that p, — o0, gy — oo implies y-lim(m,,”——mq") = 0, then there exists in X
: n-so0

V.
an element x, Such that z, — @,.

In his theory of Saks spaces (closely related to the two-norm spaces)
W. Orlicz neither assumes the space (X, || |> to be complete nor postu-
lates (n,); (n,) is postulated only. The above hypothesis, however, does
not increase gemerality. Indeed, the considerations of W. Orlicz ([17],
p. 1) imply

1.2. PROPOSITION. Let only the condition (n,) be satisfied in the space
(XL BSS and let the norm || |° be equivalent on 8 = {@: |lof < 1} to
a homogeneous norm || ||1. Then the norm |||, defined by x|, = Nl - eI
is such that:

1° the space {X, | ||;> s complete,

2° the conditions (ny) and (n,) are satisfied in <X, ||, |l 11>

3° the notion of convergence y is the same in the space (X, | I, I I"> as
di (X, | s 1 I

The situation described above may be generalized. Suppose that
(X, |I™> is a By-space ([12], . 185); this means that in X there is defined

2) This means that [ep]l - 0 implies |jay* — 0.
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. o0
a sequence {[]i} of (homogeneous) pseudonorms such that >'[z]; = 0
i=1
implies » = 0. We set
\ [];
oyt = S e

et 2F 14 (2],

then || |* is an unhomogeneous norm; in the space (X, || |[*> the sequence
{‘tn} is called convergent to x, if |jx,— z,]|" — 0 as n — oo or, what is equi-
valent, if lim[x,—x,]; =0 for 7 = 1,2, ... It may always be assumed

H->00
that [#], < [2], < ...; we shall do this in certain cases. Now we can
introduce the y-convergence and the conditions (n,), (n) and (n,) as above
without any alteration.

It is supposed throughout this paper that || i| is a homogeneous norm,
that (X, || |*> is a B;-space and that the postulates (n,) and (n) are
satisfied; (m;) is not supposed.

The conjugate spaces to (X, || |[> and (X, || |*> will be denoted by =
and 5, respectively. We shall deal in this paper with the y-linear fune-
tionals in <X, | [I, | II*>, i. e. with the distributive funectionals such that
2, 5> m, implies &(x,) — £(z,); the set of the y-linear functionals will
be denoted by 5,. We obviously have 5* C &,C &5; this proves the
existence of non-trivial y-linear functlonals, for such functionals are
in 5",

In the sequel ||§|| will denote the norm of & in &, that is [|£]] = sup|&(z)|.

<1
1.3. LeMmMA. Let X, be a dense subspace of a normed space <X, |||>
and let || ||* be a pseudonorm in X, coarserd) than || ||, satisfying the eondi-

tion (n) in X,. Then the condition (n) is satisfied in X. If |}|* is a norm
in Xq,. it is a norm in X too.

Proof. Let w,eX, |o,) <K, limle,—ax" = 0. Choose &> 0
N—>00

freely and, then, y,, y,, 2,6 X, so that
“wﬂ_you < €, ”mn“‘“yn” < 1/": ”‘zo“zn” < 1/“"

Then |lyn—2zull” < Il —@ll” -+ llen— 2ol +ll2o—2all";  l2n—yal” and
ku - zn]r tend to 0; whence ”yn - Zn”* - 0. Also ”?/n+ Yo— zn”
< all -l — Yull +- 10— ool +llwo—2ull < K+1/n+e+1/n, which implies
Yn+Yo—2n = Yo. The condition (n) being satisfied in X,, we get

lyoll < lm iy, +yo—2all < Kte, )l < K426,

n—>o0

which obviously implies the condition (n) in X.

) 4. e. the norm || || is finer than i ||*.
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Now, let || || be a norm in X, and let ||27H* = 0 for an x in X. Let
@, € X, be such that |jz,— 2| — 0; then |, — | — 0, whence ||,/ - 0.
Given ¢ >0, choose P such that [z, —a,|| <e for ¢ =p = P. Then for
P<p<g

(22— ) — < lwg—al" 0

= [lagl" = lkwall” —lloll*

ag g—oo; the sequence {wp—mq}q,,lyzn_' being obviously bounded in (X, |||,
#,— 1, > m, a8 g — co. By the condition (n)

floopl| << hmHmp—”qH <eg for p2=P

which implies in turn ,]|w1,][—> 0, ||zl = 0 and @ = 0. Thus || II* is @ norm in X.

The space <X, || |[> is not supposed to be complete; this, however,
may be assumed im many important cases, for the process of completion
leads again to a two—norm space satisfying the assumed postulates and
such that the spaces 57, uv , and 5§ remain, roughly speaking, unaltered.
The completxon, X, of X is the set of all equivalence classes of Cauchy
sequences & = {w,) in (X, |||}, under the equivalence relation {n} ~ [@n}
if and only if lim ||z, — ;]| = 0. For every T = {wn] eX, hmenH exists and

N> 00

ig defined as the norm ||#] of & It is well known that ’ohe space (X, |||[>
is a Banach space. Now the condition (n,) implies that every Cauchy
sequence in <X, [ | is also a Cauchy sequence in (X, || [*>, whence for
every zeX there exists [7|" = limjz,|" independent of the representa-

tion & = {w,} of the element &.

1.4. ProposrioN. <X, | ||, | I"> is @ two-norm space satisfying the
conditions (n,) and (n). The space (X, || |> is complete. Every linear func-
tional on (X, |||> may be wuniquely extended to o linear functional on
(X, 1D, and the same properties are possessed by the y-linear functionals
on X and by the linear functionals on <X, || |*>.

Proof. The first part of the theorem follows by Lemma 1.3. To
prove the second part it is sufficient to notice that for every Cauchy
sequence & = {z,} in <X, || [> and every linear functional & on (X, || ||>
there exists the limit lim £(2,) = £(#) which is linear on <X, | |>. This

fn—00

extension is easily seen to preserve the y-linearity and the linearity on
Xy -
1.5. PrOPOSITION. The set ¥ =
in the space F; more precisely
el = sup{Z(z): LX)

4) A symmetric convex set I'C F is called norming in (X, | |> if the norm
ol = sup{&(=): €T, & < 1} is equivalent to the norm ||\

{¢:ceE |iL] = 1) is morming®)

for each  x.

icm
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Proof. Let |z, = 1 and ¢ > 0. The set § = {x el < 1} is convex,
symmetric and closed in the space (X, | |[*> by the condition (n). The
element (1-4-¢)z, is not in S, whence ([13], p. 156) there is a functional
ZeZ* such that

<1 for xzef,
{(x)
=1 for = (1+e)ry;
thus |jz|| <1 implies |{(x)| < 1, whence |[C]] < 1, i. e. {eY; on the other
hand, {(m,) = [@oll/(1+e). ThlS leads to the (‘011011151011 of the propo-

sition, ¢ > 0 being arbitrary.
In the paper [1] the following example of a two-norm space was
considered: X was the space LI’ = L*(0,1),

llell = ([ loi*@)”,

Theorem 3.1 of this paper is to be read as follows:
1.6. PROPOSITION. The general form of y-linear

KL T s

lell” = [ l(8)l .

functionals in

1
Ew) = [z(t)g(t)at,
0
.where g(:)eL?.
Proof. Every functional of this form being in 5, only the suffi-

ciency is to be proved. Let x, > 0; thus
1

[lz@Fdt <E, [ |ea(0)]dt— 0.

Choose ¢ > 0; then there is a 6 >0 such that |H| < 6 implies [|g(t)]*d¢
i

<& I B, =(t:|za() <e}, then [By = [0, 1\B,| >0,
| By < & for n > N. Thus

whence

& (@)l = | f an(B)g (1)t | <| fwn(t)g(t)
<e Jlo@nas  [imwPaf™( [lgora)”
5,

e (f ]g(t)]dt+K1/2).

dt| + [Elfmn(t)g(t)dt(

The above example shows that it may happen that E,=5 In [1]
it was deduced from the false theorem 3.1 that it is possible to have
= We shall show in section 2 that this can only happen in the

5, = 5"
trivial case, viz. when the norms ||| and || ||* are equivalent.
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2. The theorem of Wiweger. In this section we shall topologize the
convergence y; such topologization (even in & more gencral case) is due
to A. Wiweger [20]. We shall construct another linear convex Hausdorff
topology generating the y-convergence. The idea of our procedure is de-
rived from a paper of J. Ma¥ik [11] and is based upon the following lemma
contained implicitly in Ma¥ik’s paper:

2.1. LEMMA. Let F be a family of functions defined on an arbitrary
set Q amd such that sup{if ):feF} < oo for every qeQ, and let {g,) be
a sequence of elements of Q. The follnving propositions are equivalent:

) for each sequence of positive numbers {“nl tending 1o oo and for
each sequence {]‘n} of elements of T there is an M such that

n(gm)] < an for
(b) sup sup{lf g)l:f €T} < oo and for each fe'F we have Himf(q,) =

-r 00

oomo > M

Proof. ( )=>(b). Choose ¢ > 0 and fe 7 arbitrarily and write f, = f,
. =ne for n =1,2,...; by (a) we deduce |f,(g,)] < ne for m > M
and # =1, 2, ..., which gives, for n = 1, |f(gn)| < & for m = M. Thus
Bmf(g,) = 0.

n—+00

Suppose now that
sup sup {|f(gn)| :feF} = oo;

=12,
then for each k there must exist an n, and an fye 7 such thatb |fx(gn,)| > .
Let us write a; = k; then 0 < a; — oo and |fx(gn,)| > ax. The sequence
{nk} cannot contain any integer, say I, infinitely many times, for
sup |Ifx(q)] < co. Thus n; must tend to oo, whence the inequality

=1,2,...

Ifx(gm)| < o is not satisfied by an infinite multitude of indices m.

(b) > (a). Let 0 < a, - oo and let f,e%. By (b) there is an N such
that |f,(gn)l <N for n,m=1,2,... Since N <a, for n >4,
ifalgn)] < an for n>4. For n=1,2, ey 4, lim 4, (g) = 0, whence

M—>00

there is an M such that [f,(gs)| < a, for m > M andn =1, 2, ...
consequently |f,(gn)| < a, for m > M, n = 1,2, ...

Remark. The lemmma remains true if we suppose the sequence {a,)
to be increasing. .

Suppose that (X, > is a topological space, v being its topology.
The sequence {x,} of elements of X is called v-convergent to z, (in symbols
T, > ®,) if every neighbourhood of @, containy almost all the elements
of the sequence.

Let fnesy; [all <

Vim, e, (&}, {anl) =

y 4

1, 0 < ay—> oo; let us write

{$ [Zli+. A+ (ol < 3 {.Z' [&a (@)} < “n}-

iom
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It is easily proved that if {£,} and {«,} run through all the possible
sequences (satisfying the above conditions) and if m are arbitrary positive
integers and & >0, then the sets V(m,e, {£,}, {a,}) compose the basis
of neighbourhoods of zero of a convex linear Hausdorff topology on X,
which will be denoted by u.

2.2. THROREM. The topology u is such that m, >, is equivalent to
T, 5 . .

Proof. Let @, % 0; then [a,|* — 0 implies [@,),+...+ [@alm > 0
for each m, whence aye{w:[2],+...+[2.] < e} for n > N,. If te&,,
then Hmé(w,) = 0 and for each &e0 = [£:£65,, €] = 1} we have

>0

sup sup {1&

n=12.

@):6e2) < sup ]| < oo

n=12 .

Now &,¢0 and 0 < a, —> oo implies |&,(z,)] < a, for p > N, by Lemma, 2.1,
and it follows that each neighbourhood of zero for the topology u containg

almost all the elements of {x,}, whence x, 5 0. Suppose now, conversely,

that x, % 0. For each m and ¢ >0 we have [2p)i 4.+ [2p]m < & for

p > P, which gives ]]acpu — 0. Arguing as in the first part of this proof
we infer that

sup sup {|&(,)|: £ 2} < o0

n=13_..

Therefore sup |z, << oo in virtue of the Proposition 1.5.

n=12,..
Now let & be a y-linear functional. Set &, = &(1+|&)~" and «, =
= n(1+]|&])7"; then

]7 == Ir(l, 1, (én}a {an}) c {w'lf(m); < 1}7
and thus xeV implies |&(x)] < 1. Hence every v-linear fune‘tiona;l is conti-

nuous in the topology x. The converse being obvious, we may state

2.3. THEOREM. The y-linear functionals are identical with the functionals
linear with respect to the fopology u.

We shall see in section 5 that the requirements that the topology
be such that the conclusions of the theorems 2.2 and 2.3 be satisfied
do not determine uniquely the topology.

Now we are able to answer in which case we have 5° = g,

2.4, THROREM. If B = 5,, then the norms || || and || |* are equivalent.

Proof. By Proposition 1.4 the space (X, |||> may be supposed to
be complete. Let us suppose first that the norm || |* is homogeneous.
We may suppose freely that |lv|* < |jo|. It is well known that between
all the convex linear topologies on X for which the conjugate space is
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= E, there is a coarsest one, o(X, 8% ([5], p-109), and a finest,
7(X, 8%) (called the Mackey-Arens topology, see [10], p. 523, [3], p. 790,
[6], p. 323). The basis.of closed neighbourhoods of zero for (X, 5%
consists of all the sets of form

Nfe:1¢ (@) < 1,

Eed

where @ runs through all subsets of 5 compact in the topology o (5", X).
In the -case considered now the set @ must be bounded for the norm

)" = sup |[&(=): " < 1).

Tndeed, the topology o (5", X) is identical with the induced topology
by o(&, X) into &*; the compactness of @ for the topology o(5* X)
implies the same for the topology o(5, X), whieh, in turn, implies the
boundedness of @ in o(&, X), and finally the boundedness of ¢ in
(B, 1 I>. The set §° = &, is closed in <&, || > ([19], p. 7), whence 5*
is complete with respect to both norms, ||| and | |*. Obviously €]l
< ||€|*, whence by Banach’s theorem ([4], p.41) the spaces (& |||
and (&% || |"> are isomorphical. This implies the boundedness of ¢ in
<& 'S, 4.e. @ is contained in a sphere X, = {&:]€]" < 7}, whence

C(; [w:i2(2) < 1) DEQ {m:10(0)] <1} = {a:]l]* < v,
the last identity being obvious. Thus the topology =(X, 8*) iz coarser
than the topology of the norm | ||*. The converse follows by the Mackey-
-Arens theorem.

Suppose now that (X, | |"> is a Bj-space with the sequence [[ ],,}
of pseudonorms defining its topology. Since every pseudonorm [ ], is
coarser than || ||, there exist constants K, > 1 such that [x], < K,|ja|
for e X, n =1,2,... ([12], p. 194). Let us write

s 1
lwlle = 2 S [z,
=1 -

The norm || [ is finer than || [|* and |2/} < |lz]l, moreover both norms
are equivalent on bounded subsets of (X, || [>; thus the y-convergences
in <X, |1, 1" and (X, | H |15y are identical. Let 5. stand for the
conjugate space of <X,| ||D>, then 5*C &; CE,.

Now 5* = E, implies 55 = &,, which glves by the firgt part of this
proof, the eqmvalence of the norms [l and || |7, whence the yp-conver-
gence iy metrical, which leads to the conclusion of the proposition by
1.2 and 1.3 of [1].

icm
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2.5. Remark. Theorem 2.4 in no longer true if the space (X, | |*>
is supposed to be only an F-space (in the sense of Banach). Indeed,
let X be the space L of integrable functions in [0,1] and let

1

llell = f w(t)d, ot = i—’-;i(mt—)(lt)[

Then 5* and Z, , consist only of the trivial functional 0 ([1], p. 54),
the norms || || and ][ %, however, are non-equivalent.

3. Null-sets of linear functionals. Let a be the notion of conver-
gence in a linear space X such that (X, > is an .C-space of Fréchet and
such that addition and multiplication by scalars are continuous. If the
sequence {w,,] converges to @, in the space (X, a>, we shall write, according
to the practice adopted hitherto, #, > x, or a-limz, = ®,. The a-closure

n

of the set Y is the set of all a-limits of elements of ¥; every set containing
its a-closure will be called a-closed. The functional £ on X will be called
a-linear if it is distributive and if @, > », implies £(x,) = &(z,).

3.1. LiemmA. Let X, be a linear subset of X and suppose that z, is not
in the a-closure of X,;. Let X, be the set of all the elements of form © = 2+ A,
where ze X, and A = A(x) is a scalar. Then the functional A is a-linear on
Xy, o

Proof. It is well known that the set X, is linear and that the
functional A is uniquely determined, whence it is distributive. It suffices
to prove that w, > 0 implies A(x,) — 0. Suppose that it is not so; then
for a subsequence, say {w], there is a § > 0 such that |4 (,)|.> . There
is a subsequence {ay,} of {#,} such that [A(w,)]~* converges to & limit .
Let us write #y, = 2,+ A(a},)@,, Where zje X,; then 2+ A(x))w, > 0 and

1
2

I(“;;T)H" Su0 =0,
whence z, i3 the o-limit of the elements —z, [A(xy)]™" belonging to X,,
contrary to the hypothesis.
3.2. THuOREM. The set H C X is the null-set of a non-trivial a-linear
functional if and only if it is a-closed, Uinear and of deficiency 1.
Proof. The necessity iz obvious. The sufficiency results from
Lemma 3.1.
Theorem 3.2 holds for the y- convergenee in any two-norm space.

Given any set A C X, write AT = U A A8, where 8, = [z:]z]| < n}

Studia Mathematica XVIT Q
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and B* is the closure of the set B in the space (X, |||*>. The following
proposition is true for the y-closed sets:

3.3. PROPOSITION The set H C X is y-closed if and only if H = H',
Proof. Neeesswy. By (n) the set HA S,, is conmmed in H, whence

H D H. On the other hand H A~ 8, CH ~ HAR, implies H = UlHn 8,C HL
o=

Sufficiency. H = H' implies HD Hr\S,,;* for any n. Let wz,eH,
%, > xp; then @pe8y, for some n,, whence llaep — &o||* — 0 implies @, eH.

4. Representation of y-linear functionals. In this section we shall
represent the yp-linear functionals as limits of convergent sequences of
functionals of 5*. We need the following

4.1. LEMMA, Let H be o linear closed subset of the space (X, || |> and
let mo¢ H. There ewists a constant A such that heH, |xo+-h| <1 imply
]l < A.

Proof. Let X, be the linear set spanned upon the set Hwu {a,),
1. ¢. the set of the elements of the form h+-Az,, he H. Every element of X,
may be uniquely represented as x = h(x)- A(x)z,, where h(x)eH, and
. the functional 2 is linear on {Xy, | ||, for its null-set is closed in (X, || ).
Hence

Rl = (@) = lle— A(@)@oll < llvll+ (1Al el lwoll < 114 o] = 4
4.2. THREOREM. The general form of y-linear functionals in
LI s
£(x) = lim £, (x),

n—>00
where L,e 8" and ||E—E,) — 0.

Proof. It suffices to consider only non-trivial functionals & Let H
be the null-set of & and let &(x,) = 1. By Theorem 3.2 and Proposition 3.3
the set Z, = H ~ 8, is closed in the space (X, || |*>; this set is convex,
symmetric and x,¢Z,, whence there exists a functional Lne 8" wuch that

<1 for weZ,,
Ln(x)

=1 for @ =um,.
This implies {£,(#)| < 1/n for zeH A 8, = 7z, .
Now seb &,(») = &(w)—L,(a); then

<1l/n  for zeZ,

=0 for @ = x,.

!En(W)[‘
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Let © be an arbitrary element such that |z < 1. Then # = h+ iz,
with he H, and, by Lemma 4.1, ||h]| < 4, whence kf4¢Z,. It follows that
[En(@)] = [&a(R)] = 4|8, (R]A)] < A/n,
.6 |I&ll < Afn. This evidently yields &(®) = lim Z,(x) for every «.

It remains to prove the sufficiency of the representation. Let z, > 0:

then sup [l = K < oo and Jjz,[* - 0, whence
p=12,...

@) < (6 @)+ 12— &) (@,)] < 1on(@p)|+Elin— €l
Lm [£(2,)] < K5 — £,
Psc0
the functionals {, belonging to 5*. Now let n tend to oo; then
Iim [&(z,)] = 0.
P00
Theorem 4.2 shows that the space 5, is identical with the closure
of the subspa.ce F* in the space (&, || [I>. Let us notice that this is not

the ease when the norm is supposed to be an F-norm. Indeed, let X be
the space L™ of essentially bounded functions in [0, 1], and let

) . _ [l
= el [

Then the set 5 consists only of the trivial functional 0; there are,
however, non-trivial functionals in Z,, for the norm |zl = f | (2)] dt,

as a starred norm | ||*, leads to the same y-convergence.
Theorem 4.2 shows that the functional & is y-linear if and only if
for each & >0 it may be represented in the form

&(@) = L@+ 7 (@),

where e 5%, neB, and |y < e. The sufficiency part of this theorem has
been proved by Orlicz ([18], p. 274).

If Y, is a linear subset of a linear normed space (¥, || ||> and if y,
is the limit of a sequence of elements of ¥, then, as can be immediately
shown, there exist elements y,eY, such that

Yo=D'yn and Zuunn< oo;
n=1

=1

moreover, for any s > 0, this representation may be chosen so that
Zlnynu < |lyoll+&. This proposition yields the following alternative formu-
e

lation of Theorem 4.2:


GUEST


A. Alexiewicz and Z. Semadeni

132
4.3. THEOREM. The general form of y-linear functionals in (X, |, | ">
18
[e)
Ew) = D tal),:
n=1
. .
where t,eE" and Y [Cull < co. For amy &> 0 this representation may be
n=1

1&ll+e.
Let us suppdse that the pseudonorms [ ]; form a non-increasing

o0
U &" where 5™ ig the
M=l
set of all distributive functionals on X satisfying the condition |{(»)]|
< k[z], with % independent of x ([13], p.139). Then we have

4.4. PrOPOSITION. The functionals £, in 4.3 may be chosen so that
Lne B,

Proof. S0 CE9C...
and & <k, <... We get

iy ®
bn =

chosen so that > |0l <
n=1

e . P
sequence; then the space 5* is the union §* =

implies that there are &, such that ¢,e5%)

for n=k,i=1,2,...,

0 elsewhere;

£= 31, is the desired representation.
n=1

Theorems 2.4 and 4.2 imply the following proposition, not involving
the notion of the two-norm convergence:

4.5. PROPOSITION. Let the topology of the B*-space (X, | |> be finer
than that of the Bj-space <X, | |, and let 5 and 5* denote the conjugate
spaces of these spaces. If 5* is closed in B, then the norms || || and || |* are
equivalent. The condition (n) s, of course, supposed.

Proof. By Theorem 4.2 5" = 5,, which implies by 2.4 the equi-
valence of the norms.

5. Counter examples. We shall prove first that the extengion theorem
is in general not true for y-linear functionals.

Let X be the gpace I' of the sequences # = {mw} such that [l
= Z’ [tt,] < oo, and let us set

o0

ol = ol

=1
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~ The convergence y in (I, || ||, || |*> may be characterized as follows:
let , = = {®0,},12,.; then @, >z, if and only if

sup |jm,|| < oo and ]me , =2, for v=1,2,...
N=12

The space {1, || ]]} is conjugate to the space ¢, of null-convergent
sequences. We immediately observe that the y-convergence is identical
with the *-weak convergence in I' (called also the weak comwergence as
functionals), this convergence is in turn equivalent to the convergence
with respect to the topology o(l, ¢,).

Mazurkiewiez [14] has constructed an important example of & linear
set in I'. Let e, denote the n-th unit vector in I, let us arrange all the
pairs (¢, k) of positive integers in a single sequence, and let N (7, k) be the
place occupied there by the pair (4, k). Set

..‘L»—

'Emkz—'+ -+

+ 16an (i, 1y

The set M of Mazurkiewicz is the linear span of the set of all the
elements xy (i, k =1,2,...). Let us write

[ 1 €sj 1
£y = S 2j— - E -1
1

Mazurkiewicz has shown that x, > x, and that «, but not x, are
in the y-closure of the set ON.

Let H be the set of all elements of the form z =y iz, with y e MN;
this set is linear. The space (H, ||, || satisfies the condition (n).
The element , is not in the y-closure of the set: I, whence by Lemma 3.1
there exists a y-linear funectional A(z) on H such that A(z) =0 for xeM
and (o) = 1. There exists, however, no extension £ of 1 onto I!, which
is y-linear. For if such a functional existed, we should have &(z,) = O,
whence from =, %z, it would follow that &(z,) = 0 5 A(x,). Thus we
have proved

5.1. PROPOSITION. In the space (I |||, || II*> there exist o Uinear
subset 0 and a y-linear functional on (H, || I, || I*> which cannot be extended
to the whole of I with the preservation of y-linearity.

Let us modify the topology x by assuming that the functionals &,
belong to 5*. The (coarser) topology obtained in this fashion will be
denoted by u*. It is easily verified that x” is such that @, > z, is equi-
valent to a, “ »4. The topology »* depends only on the set 5, whence
for every linear subset Z the topology u* constructed for the space
KZ, U, ™ is identical with the induced u*-topology for the whole
of <X, Il I*- We deduce
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5.2. PRrOPOSITION. The fopology u™ in |1 1™ is such that
Ty, > @, 15 equivalent to a:,,i:wo. The y-linear functionals, however, are
not identical with the u*-linear ones.

Proof. If every y-linear functional were u*-linear, then the y-linear
functionals might be extended from arbitrary linear subsets of I (by the
above properties of the topology x*).

The topology v on the space (X, | ||, | II*>S will be called appropriate
if it is convex, linear, Hausdorff, if for sequences y-convergence is equi-
valent to r-convergence, and if the class 5, is identical with the class of
functionals linear in the topology .

5.3. PROPOSITION. There may ewxist different appropriate topologies
for the space <X, | ||, | II")-

Proof. In the space <, |||, | I*> let us consider the topologies u
and ¢ = o(I', ¢,); both are appropriate for this space; however, u is
strictly finer than o. Evidently o is coarser than u; on the other hand
there are neighbourhoods of zero in u containing no neighbourhood of
zero in o. Indeed, for o = {@,}, let £,(#) = @,, and write a, = n; then

V= V(la 1, {En}y {an,]) = {W3 H$||* < 1} mq[z {‘T ] < “’}

is a neighbourhood of zero in u. Suppose that a neighbourhood W of
zero in ¢ is contained in V. W is of form

W =N {o:m@) <1},

oo
where 7;(x) = Y 6,2, and lime,; = 0 for i =1,2,...,m. Every finite
»=1 »—>00

set of linear functionals on I' is not total, whence there is a constant %
such that #;(ex) = 0 for i = 1,2, ..., m; then ke, eW but K e,¢V, becanse
the %-th coordinate of this element is greater than %.
Let us consider on ' another starred norm |juf; = sup |w,), and let
9 2

2250ee

=1
us denote the y-convergence in (X, |||, || [I> by y;. The y,-convergence
implies the y-convergence but not conversely. Indeed, the sequence {en}
is y-convergent to zero but is not y,-convergent.
It is easily seen that the general form of y-linear functionals in

A I T and in By |1, || 5> s the same:
&z) = Z @n,, - where lima, = 0.
=1 . Te—>00
Thus y-convergences in the spaces (X, 1, 11" and <X, ||, >

may be different and may produce the same set of y-linear functionals.
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In (X, ||l | ]I"> pointwise limits of y-linear functionals may not be
y-linear. We know certain sufficient conditions for the limit of each
pointwise convergent sequence of y-linear funetionals on (X, |, I II*>
to be again y-linear ([1], p. 55, [16], p. 267). In general, pointwise limits
of y-linear functionals form a larger set than &5,; for example, in
A, T every element of 5 is the pointwise limit of functionals
of 5, but £ # &,.

6. General form of y-linear functionals. Now we shall show that
Theorem 4.3 easily yields the general form of y-linear funectionals in
several concrete spaces.

A. Let X be the space C{_, . of continuous and bounded functions
2 = () in (—oo, co) and set

1‘”(7;”: [z], = max |z(i)].

ol = sup
i —nglgn

—oo<i<oo

The set 5™ (see section 4) consists of the functionals of the form
{@) = [ a(t)dgt),
where ¢ is a function of finite variation, continuous on the right, vanishing
for t = 0, and constant in each of the intervals (—oo, —n] and [n, co).
The norm of ¢ is
var g(i).

—oo<t<on

By Theorem 4.3 each functional of &, is of the form

Ieh =

=]

Ex) = Z f.r(t)dg,b(t) where

=1

E var ¢, (f) < co.

=1 —oo<i<oo

This implies the uniform convergence of the series »'¢,(f) = y(1);
moreover n=1

gu () < oo.

[‘48

var g(t) <

yar
—oo<idoo I <

var
1 —oo<i<oo

Conversely, let g be of finite variation in (—oo, co). Let us write
W

[ ewdgv)y, ula) = [a@dy();

o —T
then £ef, (,e5" and
?

lCn— &< [ var

—~oo<t<n

g+ var g(1)] — 0.

ngi<oo
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Thus we have proved the following theorem of J. Musielak and
W. Orlicz [15]:

The general form of y-linear functionals in (C(*ww’w), I WIS ds
Ew) = [ a()dy(t),

where g 1is a function of fimite variation in (—oo, co),
B. Let 2 be a completely regular o-compact Hausdorff space, and
let 2 = | 2, be its representation as a union of compact sets such that

=1

2,C02,C... Let us denote by C*(2) the space of all bounded real
functions # = #(f) continuous on 2. Let us set

[2]n = max [ ()]

fleoll = sup |as ()],
16 tefy

Then the sequence {w,} is y-convergent to #, if and only if it is uniformly
bounded on £ and converges uniformly to z,(t) on every set £2,, and
#,(t) i8 continuous. The condition (n) is satisfied, the condition (n,),
however, is not necessarily fulfilled (it is satisfied when 2 is locally
compact). .

The set 5™ consists of the functionals of the form

Le) = [o(yy,

where p is & signed measure defined on all Borel subsets of 2, vanishing
for subsets of @\ £2,, and (| = varx ([8], p. 1008-1012). An argument
2

quite similar to that used in the proof of A immediately gives the follow-
ing theorem of J. Ma¥ik5):
The general form of y-linear fumctionals in (C*(2), 11, | I*> is

E) = [y,

where p is a signed measure defined on Borel subsets of 2 and such that
varu << oo. .

C. Let X = L*(—oco, co) be the space of the functions m = @ ()
bounded and measurable on (—oo, co); set

o]l = esssup 2(2)|,  [2], = esssup | (z)].
—oo<i<oo —nln
f) [11], p.90; it was conjectured by C. Ryll-Nardzewski, May 1lth 1955,
at the meeting of the Toruh Section of the Polish Mathematioal Society.
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The set 5™ consists of the functionals of the form

o) = [ o(t)du,

-0

where u is a finitely additive set function of finite variation defined on
all Lebesgue measurable sets, vanishing for sets lying outside the
interval [—n,n] and for any set of measure zero. The norm is

e = var u.

(-00,00)

Arguing similarly as in A we can state that
" The general form of y-linear functionals in L s NI Y ds

@) = [ ot)du,

where u is o findtely additive set function of finite variation, defined for all
Lebesgue measurable sets, vanishing for sets of measure zero and such that

lim( var g+ varu) = 0.

N—>00 (—00, ~1) (7, )

(The last condition follows by the passage to the limit from the fact
that it is fulfilled for every set function u,; the condition is essential,
for u is finitely additive).

D. Let 1<ﬁ<a<oo, X = L7

loll = llelle,  llol™ = Jloll

where, generally, [ll, = ( fl |l#(2)°dt)”. Marking the conjugate exponent
by an apostrophe we ha,v‘e]s

-,

Since I C L¥ and L” is dense in (L¥, || ||,>, We obtain

5, =L¥=5.

5=1LI"

In the limit case & = oo, f = 1 we have 5, = L*; this has been proved
by Fichtenholz ([7], p. 199).
E. Analogous arguments for the space I* and 1 < a < § < oo give

also 5, = I = &.
F. Let 1 <a<{oo, X =L f, #a(f,>1),

el = lolle,  [2)n = l@llg,-
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Then 5® = If4, § = L¥; the set B = U LA iy evidently dense in
(L7, | o> Thus again &, = LY = 5. =t
G. The same result holds for the space I* with 1 < a < oo, f,, ™\ «.

H. Let X be the space CV, of continuous functions of finite va-

riation in [0, 1], vanishing for f = 0. Let us set

| = var x(f),
t

LRSS

[le]* = max |z()
0i<l

Any functional {e5* may be represented in the form

L) = [a(t)dh(),

where the funetion % is of finite variation, continuous on the right in
(0,1) and h(1) = 0. Write

, h(1) for 0<i<1,
YO =\ imaw) for t=o0;
he0t

then
[oagt) = [a@dr() for weX.
0 [

To find the norm ||| let us notice first that

— [9dot) = = [ g dn(t) < suplg (t) ol

=il

whence {|{|| << sup |g(#)] = @. On the other hand, for ¢ > 0, there is a %,
0gi1

such that 0 <1, <1 and |g(t,)] = G—e. Setb

1 for  te[ty+1/n,1],
() = {0 for  ¢e[0, t,),
linear for  te[ly, to--1/n]
(@, are defined for sufficiently large m); then
{g+1mn
L) = —n f () dt — —g(t,),
-which finally gives ||| = sup [g(t)]
[E<79]
Let £e&,; then, by Theorem 4.3, there exist a gn such that
o 1
=D [oultydot) and 2 sup |g, ()] < oo,
f=1 0 n=1 0<I<1
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Write ¢(t) = S’g,n(t ; then g is obviously 1° bounded, 2° continuous -

on the right for 0 t<<1, 3° vanishing at f =1, 4° having only
discontinuities of the flI‘S‘b kind, and 5° for every ¢ > 0 the set

{0 <t <1, lg)—g(t—0)] >¢)
is finite.
Conversely, it is easily seen that every function satisfying 1°-5° is the

sum of a uniformly convergent series of step functions vanishing at ¢ = 1.
Hence we can state that

The general form of y-linear functionals in (CV, | |, | "> is

1
= [gar()
0
where the function g satisfies the conditions 1°-5°,
J. Let (4,€,u> be a measure space with a o-finite measure u.
Suppose that 4 = (J 4, with measurable 4, such that 4,C 4,C...;

n=1

" suppose, moreover, that si(4,) >0. L*(4, €, x) will denote the space

of functions & = x(t), u-integrable on A. Let us write

el = [le@lde, (@1 = [lw(t)]da.
4 Ay
Every linear functional of 5 is of the form

£(@) = f () du,

where ¢ is an essentia.]ly bounded function, u-measurable on 4 and
liEl = esssup lp(f)]. The functional & belongs to 5™ if and only if

p(t) = O for tsA\A,L Hence if £¢5,, then

§a) = Zw(f)dql,,,m, D esssup|pn (1)) < oo.

N=1 'nl

This implies the essentially uniform convergence of the series Z‘qn,
it follows also that lim esssup |g(f)| = 0. Thus

n—oote ANy

The yeneral form of y-l’inem‘ functionals on <LA, &, ), |l, | I"> is
= [eWotdp,
A

where @ 98 a p-measurable function essentially bownded on A such that
h.messsup lp(?)] = 0.

>0 b6 AN Ay

The sufﬁclency of such representation is obvious.

I
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Zu linearen Limitierungsverfahren

‘von

W. TSCHOBANOW und G. PASKALEW (Sofia)

In der vorliegenden Mitteilung werden die notwendigen und hin-
reichenden Bedingungen dafiir angegeben, daf aus der 4-Summierbarkeit

o0 Lo
der Reihe Y'a, die A-Summierbarkeit der Reihe Y'a, folgt und umge-
»=0 : r=1

kehrt. Bs wird der Zusammenhang zwischen den verallgemeinerten

Summen A— 3'a, und A - Y'a, festgestells. Dabei bedeutet 4 —

=0 . y=

eine normale Matrix, fiir die

. lle,l
der Grenzwert

1

existiert.

Bei den Betrachtungen wird wesentlich ein bemerkenswerter Satz
von Mazur verwendet, der in seiner Arbeit Uber lineare Limitierungs-
verfahren (Mathematische Zeitschrift 928 (1928), S. 599-611) bewiesen
worden ist.

Fiir jede normale Matrix 4 — lle,| besitzt das unendliche Glei-
chungssystem

"
. Al
lim 5 a,

100 1T

.
Vu= D0, (p=0,1,..)

v=90

eine einzige Losung. By sei

»

&=, fir y, =1 (pyv =0,1,...),
. 1 bei »=pg,
Gp=2a, (u,v=0,1,...) fir Y, = .
. ] 0 Dbei vs£u.

Wenn B = |lb,|| eine beliebige Matrix ist, und falls 4 und B die
Konvergenzfelder von 4 und B bedeuten, so gilt folgender

SATz 1 (von Magzur). Die notwendingen und hinreichenden Bedingungen
dafiir, dap A C B, sind:
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