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1. Introduction. For given a1, . . . , ak and b in the set Z of integers, we
consider the linear Diophantine equation L:

k∑
i=1

aixi = b.

Following [6], given n ∈ N+, the set of positive integers, equation L is said
to be n-regular if, for every n-coloring of N+, there exists a monochromatic
solution x = (x1, . . . , xk) ∈ Nk

+ to L.
The degree of regularity of L is the largest integer n ≥ 0, if any, such

that L is n-regular. This (possibly infinite) number is denoted by dor(L). If
dor(L) =∞, then L is said to be regular.

A well-known and challenging conjecture (known as Rado’s Boundedness
Conjecture) due to Rado [6] states that there is a function r : N+ → N+

such that, given any n ∈ N+ and any equation α1x1 + · · ·+ αnxn = 0 with
integer coefficients, if this equation is not regular over N+, then it fails to be
r(n)-regular. Even though there is a more general version, we state it here
for a single homogeneous equation, as it has been proved by Rado [6] that
if the conjecture is true for a single equation, then it is true for a system of
finitely many linear equations, and as Fox and Kleitman [5] have shown, if
the conjecture is true for a linear homogeneous equation, then it is true for
any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and
Kleitman [5] by establishing the bound r(3) ≤ 24. In the same paper, the
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authors made the following conjecture for a very specific linear Diophantine
equation.

Conjecture 1.1. Let k ≥ 1. There exists an integer bk ≥ 1 such that
the degree of regularity of the 2k-variable equation Lk(bk) given by

x1 + · · ·+ xk − y1 − · · · − yk = bk

is exactly 2k − 1.

Fox and Kleitman [5] had proved the following.

Proposition 1.2. For any b ∈ N+, the equation Lk(b) is not 2k-regular.

After some initial results [2], [1] for small values of k, the full conjec-
ture of Fox and Kleitman has very recently been established by Schoen and
Taczała [7] by generalizing a theorem of Eberhard et al. [4].

In [3], Bialostocki et al. considered equation L, that is,
∑k

i=1 aixi = b,
where

∑k
i=1 ai = 0 and b 6= 0. Among other things, they computed

dor(x1 + x2 − 2y1 = b) under the condition x1 < y1 < x2. Here in Sec-
tion 2, following some arguments in [2], we furnish a somewhat different
proof for the result on dor(x1 + x2 − 2y1 = b); because of Proposition 1.2,
the result here is unconditional.

2. The equation x1 + x2 − 2y1 = b. As mentioned in the introduction,
Bialostocki et al. [3] computed dor(x1 + x2 − 2y1 = b) under the condition
x1 < y1 < x2. Here, following the line of arguments in [2], we give a proof of
the following.

Theorem 2.1. Consider the equation L′(b):

x1 + x2 − 2y1 = b.

For all positive integers b, we have

dor(L′(b)) =


1 if b ≡ 1 (mod 2),

2 if b ≡ 2, 4 (mod 6),

3 if b ≡ 0 (mod 6).

Proof. Because of Proposition 1.2, dor(L′(b)) ≤ dor(L2(b)) ≤ 3. Again,
since L′(b) is solvable in N+, we have 1 ≤ dor(L′(b)). Thus,

1 ≤ dor(L′(b)) ≤ 3.

The proof will be complete with the following observations.

Observation 1. Consider the 2-coloring of N+ given by coloring each in-
teger according to its residue class modulo 2. Let (λ1, λ2, λ3) be a monochro-
matic solution to L′(b) under this coloring. This will imply

λ1 + λ2 − 2λ3 ≡ 0 (mod 2).
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Therefore, if b is odd, there cannot be a monochromatic solution in N3
+, and

hence
dor(L′(b)) = 1

in this case.

Observation 2. Let b be even and write h = b/2 with h ∈ N+. The
following three vectors in N3

+ are solutions to L′(b):

(b+ 1, 1, 1),

(h+ 1, h+ 1, 1),

(b+ 1, b+ 1, h+ 1).

Since, for any 2-coloring of N+, at least two elements in the set {b+1, h+1, 1}
must be of the same color, at least one of the above three solutions must be
monochromatic, and hence dor(L′(b)) ≥ 2 when b is even.

Observation 3. If b 6≡ 0 (mod 3), then coloring each integer according
to its residue class modulo 3 gives a coloring of N+ for which there cannot
be any monochromatic solution to L′(b), and hence dor(L′(b)) ≤ 2 in this
case.

Observation 4. Here we consider the case b ≡ 0 (mod 6). Since the
sum of the coefficients in L′(b) is zero, it is easy to see that if L′(6) is proved
to be 3-regular, then so is L′(b).

Let c : N+ → {0, 1, 2} be an arbitrary 3-coloring of N+. Consider the
following families of special solutions to L′(6) parametrized by a ∈ N+:

(a+ 6, a, a),

(a+ 5, a+ 1, a),

(a+ 4, a+ 2, a),

(a+ 3, a+ 3, a),

(a+ 8, a, a+ 1),

(a+ 1, a+ 9, a+ 2).

The underlying sets for each of these solutions can be assumed to be multi-
chromatic, and thus all sets from

E =
{
{a, a+ 3}, {a, a+ 6}, {a, a+ 2, a+ 4}, {a, a+ 1, a+ 5},

{a, a+ 1, a+ 8}, {a+ 1, a+ 9, a+ 2}
}
,

where a ranges through N+, are multichromatic sets under c.
As just observed, the integer a must be colored distinctly from both

a+ 3 and a+ 6. Moreover, if c(a+ 6) = c(a+ 3), then we would obtain the
monochromatic solution (a+ 6, a+ 6, a+ 3). It follows that

{c(a), c(a+ 3), c(a+ 6)} = {0, 1, 2} = {c(a+ 3), c(a+ 6), c(a+ 9)},

with the second equality justified by the same argument used for the first,
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only replacing a by a+ 3. Hence

c(a) = c(a+ 9).

Thus the color of an integer only depends on its residue class modulo 9. So,
denoting the elements of Z/9Z by 0, 1, . . . , 8 and their respective colors under
c by c0, c1, . . . , c8 (with indices modulo 9), we may depict the distribution of
colors by the following table:

Table 1. The color table C

c0 c1 c2

c3 c4 c5

c6 c7 c8

Since the sets {a, a+ 2, a+ 4}, {a, a+ 1, a+ 5} and {a+ 1, a+ 2, a+ 9}
belong to E for all a ∈ N+, and are assumed to be multichromatic under c,
for all i ∈ Z/9Z we have

|{ci, ci+2, ci+4}| ≥ 2,(1)
|{ci, ci+1, ci+5}| ≥ 2,(2)
|{ci, ci+1, ci+2}| ≥ 2.(3)

We may assume that the first column (c0, c3, c6) of C is equal to (0, 1, 2)
and the table is as follows:

Table 2

0 c1 c2

1 c4 c5

2 c7 c8

The second and third columns of C being permutations of its first column,
there are nine possible pairs holding the remaining two 0’s in C:

(4)
(c1, c2), (c1, c5), (c1, c8);

(c4, c2), (c4, c5), (c4, c8);

(c7, c2), (c7, c5), (c7, c8).

However, recalling that c0 = 0, we have

|{c0, c1, c2}| ≥ 2 by (3), |{c0, c1, c5}| ≥ 2 by (2), |{c8, c0, c1}| ≥ 2 by (3);

|{c0, c2, c4}| ≥ 2 by (1), |{c4, c5, c0}| ≥ 2 by (2), |{c8, c0, c4}| ≥ 2 by (2);

|{c7, c0, c2}| ≥ 2 by (1), |{c5, c7, c0}| ≥ 2 by (1), |{c7, c8, c0}| ≥ 2 by (3).

Hence none of the pairs from (4) can equal (0, 0), contradicting the fact that
the two remaining 0’s in C must lie in one of the pairs from (4).
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