On the degree of regularity of a particular linear equation

by

S. D. Adhikari (Howrah), R. Balasubramanian (Chennai),
S. Eliahou (Calais) and D. J. Grynkiewicz (Memphis, TN)

To Robert Tijdeman on his 75th birthday

1. Introduction. For given a_{1}, \ldots, a_{k} and b in the set \mathbb{Z} of integers, we consider the linear Diophantine equation L :

$$
\sum_{i=1}^{k} a_{i} x_{i}=b
$$

Following [6], given $n \in \mathbb{N}_{+}$, the set of positive integers, equation L is said to be n-regular if, for every n-coloring of \mathbb{N}_{+}, there exists a monochromatic solution $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}_{+}^{k}$ to L.

The degree of regularity of L is the largest integer $n \geq 0$, if any, such that L is n-regular. This (possibly infinite) number is denoted by $\operatorname{dor}(L)$. If $\operatorname{dor}(L)=\infty$, then L is said to be regular.

A well-known and challenging conjecture (known as Rado's Boundedness Conjecture) due to Rado [6] states that there is a function $r: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$ such that, given any $n \in \mathbb{N}_{+}$and any equation $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}=0$ with integer coefficients, if this equation is not regular over \mathbb{N}_{+}, then it fails to be $r(n)$-regular. Even though there is a more general version, we state it here for a single homogeneous equation, as it has been proved by Rado [6] that if the conjecture is true for a single equation, then it is true for a system of finitely many linear equations, and as Fox and Kleitman (5) have shown, if the conjecture is true for a linear homogeneous equation, then it is true for any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [5] by establishing the bound $r(3) \leq 24$. In the same paper, the

[^0]authors made the following conjecture for a very specific linear Diophantine equation.

Conjecture 1.1. Let $k \geq 1$. There exists an integer $b_{k} \geq 1$ such that the degree of regularity of the $2 k$-variable equation $L_{k}\left(b_{k}\right)$ given by

$$
x_{1}+\cdots+x_{k}-y_{1}-\cdots-y_{k}=b_{k}
$$

is exactly $2 k-1$.
Fox and Kleitman 5 had proved the following.
Proposition 1.2. For any $b \in \mathbb{N}_{+}$, the equation $L_{k}(b)$ is not $2 k$-regular.
After some initial results [2], [1 for small values of k, the full conjecture of Fox and Kleitman has very recently been established by Schoen and Taczała [7] by generalizing a theorem of Eberhard et al. [4].

In [3], Bialostocki et al. considered equation L, that is, $\sum_{i=1}^{k} a_{i} x_{i}=b$, where $\sum_{i=1}^{k} a_{i}=0$ and $b \neq 0$. Among other things, they computed $\operatorname{dor}\left(x_{1}+x_{2}-2 y_{1}=b\right)$ under the condition $x_{1}<y_{1}<x_{2}$. Here in Section 2 , following some arguments in [2], we furnish a somewhat different proof for the result on $\operatorname{dor}\left(x_{1}+x_{2}-2 y_{1}=b\right)$; because of Proposition 1.2 , the result here is unconditional.
2. The equation $x_{1}+x_{2}-2 y_{1}=b$. As mentioned in the introduction, Bialostocki et al. [3] computed $\operatorname{dor}\left(x_{1}+x_{2}-2 y_{1}=b\right)$ under the condition $x_{1}<y_{1}<x_{2}$. Here, following the line of arguments in [2], we give a proof of the following.

Theorem 2.1. Consider the equation $L^{\prime}(b)$:

$$
x_{1}+x_{2}-2 y_{1}=b
$$

For all positive integers b, we have

$$
\operatorname{dor}\left(L^{\prime}(b)\right)= \begin{cases}1 & \text { if } b \equiv 1(\bmod 2) \\ 2 & \text { if } b \equiv 2,4(\bmod 6) \\ 3 & \text { if } b \equiv 0(\bmod 6)\end{cases}
$$

Proof. Because of Proposition 1.2, $\operatorname{dor}\left(L^{\prime}(b)\right) \leq \operatorname{dor}\left(L_{2}(b)\right) \leq 3$. Again, since $L^{\prime}(b)$ is solvable in \mathbb{N}_{+}, we have $1 \leq \operatorname{dor}\left(L^{\prime}(b)\right)$. Thus,

$$
1 \leq \operatorname{dor}\left(L^{\prime}(b)\right) \leq 3
$$

The proof will be complete with the following observations.
Observation 1 . Consider the 2 -coloring of \mathbb{N}_{+}given by coloring each integer according to its residue class modulo 2 . Let $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ be a monochromatic solution to $L^{\prime}(b)$ under this coloring. This will imply

$$
\lambda_{1}+\lambda_{2}-2 \lambda_{3} \equiv 0(\bmod 2)
$$

Therefore, if b is odd, there cannot be a monochromatic solution in \mathbb{N}_{+}^{3}, and hence

$$
\operatorname{dor}\left(L^{\prime}(b)\right)=1
$$

in this case.
ObSERVATION 2. Let b be even and write $h=b / 2$ with $h \in \mathbb{N}_{+}$. The following three vectors in \mathbb{N}_{+}^{3} are solutions to $L^{\prime}(b)$:

$$
\begin{aligned}
& (b+1,1,1) \\
& (h+1, h+1,1) \\
& (b+1, b+1, h+1)
\end{aligned}
$$

Since, for any 2 -coloring of \mathbb{N}_{+}, at least two elements in the set $\{b+1, h+1,1\}$ must be of the same color, at least one of the above three solutions must be monochromatic, and hence $\operatorname{dor}\left(L^{\prime}(b)\right) \geq 2$ when b is even.

ObSERVATION 3. If $b \not \equiv 0(\bmod 3)$, then coloring each integer according to its residue class modulo 3 gives a coloring of \mathbb{N}_{+}for which there cannot be any monochromatic solution to $L^{\prime}(b)$, and hence $\operatorname{dor}\left(L^{\prime}(b)\right) \leq 2$ in this case.

Observation 4. Here we consider the case $b \equiv 0(\bmod 6)$. Since the sum of the coefficients in $L^{\prime}(b)$ is zero, it is easy to see that if $L^{\prime}(6)$ is proved to be 3-regular, then so is $L^{\prime}(b)$.

Let $c: \mathbb{N}_{+} \rightarrow\{0,1,2\}$ be an arbitrary 3-coloring of \mathbb{N}_{+}. Consider the following families of special solutions to $L^{\prime}(6)$ parametrized by $a \in \mathbb{N}_{+}$:

$$
\begin{array}{ll}
(a+6, a, a), & (a+3, a+3, a) \\
(a+5, a+1, a), & (a+8, a, a+1) \\
(a+4, a+2, a), & (a+1, a+9, a+2)
\end{array}
$$

The underlying sets for each of these solutions can be assumed to be multichromatic, and thus all sets from

$$
\begin{aligned}
\mathcal{E}=\{\{a, a+3\},\{a, a+6\}, & \{a, a+2, a+4\}, \\
& \{a, a+1, a+5\} \\
& \{a, a+1, a+8\},\{a+1, a+9, a+2\}\},
\end{aligned}
$$

where a ranges through \mathbb{N}_{+}, are multichromatic sets under c.
As just observed, the integer a must be colored distinctly from both $a+3$ and $a+6$. Moreover, if $c(a+6)=c(a+3)$, then we would obtain the monochromatic solution $(a+6, a+6, a+3)$. It follows that

$$
\{c(a), c(a+3), c(a+6)\}=\{0,1,2\}=\{c(a+3), c(a+6), c(a+9)\}
$$

with the second equality justified by the same argument used for the first,
only replacing a by $a+3$. Hence

$$
c(a)=c(a+9)
$$

Thus the color of an integer only depends on its residue class modulo 9. So, denoting the elements of $\mathbb{Z} / 9 \mathbb{Z}$ by $0,1, \ldots, 8$ and their respective colors under c by $c_{0}, c_{1}, \ldots, c_{8}$ (with indices modulo 9), we may depict the distribution of colors by the following table:

Table 1. The color table C

c_{0}	c_{1}	c_{2}
c_{3}	c_{4}	c_{5}
c_{6}	c_{7}	c_{8}

Since the sets $\{a, a+2, a+4\},\{a, a+1, a+5\}$ and $\{a+1, a+2, a+9\}$ belong to \mathcal{E} for all $a \in \mathbb{N}_{+}$, and are assumed to be multichromatic under c, for all $i \in \mathbb{Z} / 9 \mathbb{Z}$ we have

$$
\begin{align*}
\left|\left\{c_{i}, c_{i+2}, c_{i+4}\right\}\right| & \geq 2 \tag{1}\\
\left|\left\{c_{i}, c_{i+1}, c_{i+5}\right\}\right| & \geq 2 \tag{2}\\
\left|\left\{c_{i}, c_{i+1}, c_{i+2}\right\}\right| & \geq 2 \tag{3}
\end{align*}
$$

We may assume that the first column $\left(c_{0}, c_{3}, c_{6}\right)$ of C is equal to $(0,1,2)$ and the table is as follows:

Table 2

0	c_{1}	c_{2}
1	c_{4}	c_{5}
2	c_{7}	c_{8}

The second and third columns of C being permutations of its first column, there are nine possible pairs holding the remaining two 0's in C :

$$
\begin{align*}
& \left(c_{1}, c_{2}\right),\left(c_{1}, c_{5}\right),\left(c_{1}, c_{8}\right) \\
& \left(c_{4}, c_{2}\right),\left(c_{4}, c_{5}\right),\left(c_{4}, c_{8}\right) \tag{4}\\
& \left(c_{7}, c_{2}\right),\left(c_{7}, c_{5}\right),\left(c_{7}, c_{8}\right)
\end{align*}
$$

However, recalling that $c_{0}=0$, we have
$\left|\left\{c_{0}, c_{1}, c_{2}\right\}\right| \geq 2$ by (3), $\left|\left\{c_{0}, c_{1}, c_{5}\right\}\right| \geq 2$ by (2), $\left|\left\{c_{8}, c_{0}, c_{1}\right\}\right| \geq 2$ by (3); $\left|\left\{c_{0}, c_{2}, c_{4}\right\}\right| \geq 2$ by (1), $\left|\left\{c_{4}, c_{5}, c_{0}\right\}\right| \geq 2$ by (2), $\left|\left\{c_{8}, c_{0}, c_{4}\right\}\right| \geq 2$ by (2); $\left|\left\{c_{7}, c_{0}, c_{2}\right\}\right| \geq 2$ by (1), $\left|\left\{c_{5}, c_{7}, c_{0}\right\}\right| \geq 2$ by (1), $\left|\left\{c_{7}, c_{8}, c_{0}\right\}\right| \geq 2$ by (3). Hence none of the pairs from (4) can equal (0,0), contradicting the fact that the two remaining 0 's in C must lie in one of the pairs from (4).

References

[1] S. D. Adhikari, L. Boza, S. Eliahou, M. P. Revuelta and M. I. Sanz, Equation-regular sets and the Fox-Kleitman conjecture, Discrete Math. 341 (2018), 287-298.
[2] S. D. Adhikari and S. Eliahou, On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation, in: Combinatorial and Additive Number Theory II, Springer Proc. Math. Statist. 220, Springer, Cham, 2017, 1-8.
[3] A. Bialostocki, H. Lefmann and T. Meerdink, On the degree of regularity of some equations, Discrete Math. 150 (1996), 49-60.
[4] S. Eberhard, B. Green and F. Manners, Sets of integers with no large sum-free subset, Ann. of Math. 180 (2014), 621-652.
[5] J. Fox and D. J. Kleitman, On Rado's boundedness conjecture, J. Combin. Theory Ser. A 113 (2006), 84-100.
[6] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 424-480.
[7] T. Schoen and K. Taczała, The degree of regularity of the equation $\sum_{i=1}^{n} x_{i}=$ $\sum_{i=1}^{n} y_{i}+b$, Moscow J. Combin. Number Theory 7 (2017), no. 2, 74-93 [162-181].
S. D. Adhikari
(formerly at HRI, Allahabad)
Department of Mathematics
Ramakrishna Mission Vivekananda University
Belur Math, Howrah 711202, W.B., India
E-mail: adhikari@hri.res.in
S. Eliahou

Univ. Littoral Côte d'Opale
EA 2597 - LMPA - Laboratoire de Mathématiques
Pures et Appliquées Joseph Liouville
F-62228 Calais, France
and
CNRS, FR 2956, France
E-mail: eliahou@univ-littoral.fr
R. Balasubramanian

Institute of Mathematical Sciences
CIT Campus
Taramani, Chennai 600113, India
E-mail: balu@imsc.res.in
D. J. Grynkiewicz

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, U.S.A.
E-mail: djgrynkw@memphis.edu

[^0]: 2010 Mathematics Subject Classification: Primary 05D10.
 Key words and phrases: degree of regularity, coloring, linear equation.
 Received 6 October 2017; revised 7 February 2018.
 Published online 15 June 2018.

