On a problem of Nathanson

by
Yong-Gao Chen (Nanjing) and Min Tang (Wuhu)

1. Introduction. Let \mathbb{N} denote the set of all nonnegative integers and let h be an integer with $h \geq 2$. For $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let

$$
r_{h}(A, n)=\sharp\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: a_{1}+\cdots+a_{h}=n\right\} .
$$

A set A is called an asymptotic basis of order h if $r_{h}(A, n) \geq 1$ for all sufficiently large integers n. In 1955, Stöhr [13] introduced the concept of minimal asymptotic basis. An asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h. This means that, for any $a \in A$, the set $E_{a}=h A \backslash h(A \backslash\{a\})$ is infinite.

In 1956, Härtter [5 showed that for every $h \geq 2$, there exists a minimal asymptotic basis of order h. Nathanson [10] presented an explicit construction of a minimal asymptotic basis of order 2 by using binary representations. For every $h \geq 2$, Jia and Nathanson 7 gave an explicit construction of a minimal asymptotic basis of order h. Chen and Chen [1] answered some problems of Nathanson on minimal asymptotic bases. For related problems concerning minimal asymptotic bases, see [2]-[4], [6], [8]-[9] and [12].

For any nonempty subset W of \mathbb{N}, denote by $\mathcal{F}^{*}(W)$ the set of all finite, nonempty subsets of W. Let $A(W)$ be the set of all numbers of the form $\sum_{f \in F} 2^{f}$, where $F \in \mathcal{F}^{*}(W)$.

In 1988, Nathanson [11] posed the following problem (see also Jia and Nathanson [7]).

Problem 1.1. Let $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$ be a partition such that $w \in W_{i}$ implies either $w-1 \in W_{i}$ or $w+1 \in W_{i}$. Is

$$
A=A\left(W_{0}\right) \cup \cdots \cup A\left(W_{h-1}\right)
$$

a minimal asymptotic basis of order h ?

[^0]In 2011, Chen and Chen [1] obtained the following result.
Theorem A. Let $h \geq 2$ and t be the least integer with $t>\log h / \log 2$. Let $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$ be a partition such that each W_{i} is infinite and contains t consecutive integers for $i=1, \ldots, h$. Then

$$
A=A\left(W_{0}\right) \cup \cdots \cup A\left(W_{h-1}\right)
$$

is a minimal asymptotic basis of order h.
By Theorem A, the answer to Problem 1.1 is affirmative for $2 \leq h<4$. We prove the following result, which shows that the answer to Problem 1.1 is negative for $h \geq 4$.

Theorem 1.2. Let h and t be integers with $2 \leq t \leq \log h / \log 2$. Then there exists a partition $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$ such that each W_{i} is a union of infinitely many intervals of at least t consecutive integers and

$$
A=A\left(W_{0}\right) \cup \cdots \cup A\left(W_{h-1}\right)
$$

is not a minimal asymptotic basis of order h.
Remark 1.3. For $2 \leq t<\log h / \log 2$, the following stronger result is proved: there exists a partition $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$ such that each set W_{i} is a union of infinitely many intervals of at least t consecutive integers and $n \in h A\left(W_{0}\right)$ for all sufficiently large integers n.
2. Proof of the theorem. Since $t \geq 2$, it follows that $h \geq 2^{t} \geq 4$. For any subset X of \mathbb{N}, let $2^{X}=\left\{2^{x}: x \in X\right\}$. Let $\left\{m_{i}\right\}_{i=1}^{\infty}$ be a sequence of integers with $m_{1}>2^{h+4}$ and $m_{i+1}-m_{i}>2^{h+4}(i \geq 1)$. For $a<b$, let $[a, b]$ denote the set of all integers x with $a \leq x \leq b$. Let

$$
\begin{aligned}
W_{0} & =\left[0, m_{1}\right] \cup \bigcup_{i=1}^{\infty}\left[m_{i}+t+1, m_{i+1}\right], \\
W_{j} & =\bigcup_{\substack{i=1 \\
i \equiv j(\bmod h-1)}}^{\infty}\left[m_{i}+1, m_{i}+t\right], \quad j=1, \ldots, h-1 .
\end{aligned}
$$

It is clear that $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$. If $w \in \mathbb{N} \backslash W_{0}$, then, by the definition of W_{i}, we have $w>m_{1}>2^{h+4}$ and $w-t \in W_{0}$. Write

$$
A=A\left(W_{0}\right) \cup \cdots \cup A\left(W_{h-1}\right) .
$$

For any positive integer, let its binary expansion be

$$
\begin{equation*}
n=\sum_{f \in F_{n}} 2^{f} . \tag{2.1}
\end{equation*}
$$

We will distinguish two cases: $h>2^{t}$ and $h=2^{t}$.

CASE 1: $h>2^{t}$. In this case, we will prove that all integers n with $n \geq h 2^{h(2 t+1)}$ are in $h A\left(W_{0}\right)$. Thus A is not a minimal asymptotic basis of order h.

Let $n \geq h 2^{h(2 t+1)}$. Now we split some terms of the sum in (2.1) into sums. First, we split all 2^{f} with $f \in F_{n} \backslash W_{0}$ into 2^{t} terms 2^{f-t}. Then all terms are in $2^{W_{0}}$ and each term repeats at most $2^{t}+1$ times in the summation. We continue to split terms in the summation. For any term 2^{w} in the summation, if $w>2 t+1$ and none of $2^{w-i}(1 \leq i \leq 2 t+1)$ appears in the summation, we split 2^{w} (split one of 2^{w} if there are several such terms) as follows:
(a) $2^{w}=2^{w-1}+2^{w-1}$ if $w-1 \in W_{0}$;
(b) $2^{w}=\left(2^{t}+1\right) 2^{w-t-1}+\cdots+\left(2^{t}+1\right) 2^{w-2 t+1}+\left(2^{t}+1\right) 2^{w-2 t}+2 \times 2^{w-2 t-1}$
if $w-1 \notin W_{0}$.
In case (b), by the definition of W_{0} and $w \in W_{0}$, we know that the integers $w-t-i(1 \leq i \leq t+1)$ are all in W_{0}.

Since each split increases the number of terms by at least 1 , the splitting procedure must terminate in finitely many steps. In the final summation, all terms are in $2^{W_{0}}$ and each term repeats at most $2^{t}+1$ times. If 2^{w} $(w>2 t+1)$ appears, then at least one of $2^{w-i}(1 \leq i \leq 2 t+1)$ appears. Let the final summation be

$$
n=\sum_{j=1}^{s} 2^{w_{j}}
$$

with $0 \leq w_{1} \leq \cdots \leq w_{s}$. Let $w_{0}=0$. Thus

$$
0 \leq w_{i+1}-w_{i} \leq w_{i+1}-\left(w_{i+1}-2 t-1\right)=2 t+1, \quad i=0,1, \ldots, s-1
$$

Since

$$
h 2^{h(2 t+1)} \leq n=\sum_{j=1}^{s} 2^{w_{j}} \leq\left(2^{t}+1\right) \sum_{w=0}^{w_{s}} 2^{w}=\left(2^{t}+1\right)\left(2^{w_{s}+1}-1\right)<h 2^{w_{s}+1}
$$

it follows that $w_{s} \geq h(2 t+1)$. On the other hand,

$$
w_{s}=\sum_{i=0}^{s-1}\left(w_{i+1}-w_{i}\right) \leq s(2 t+1)
$$

Hence $s \geq h$. Noting that $2^{t}+1 \leq h$ and $s \geq h$, we can split the final summation into h nonempty sums such that all terms in each sum are distinct. So $n \in h A\left(W_{0}\right)$.

Case 2: $h=2^{t}$. It is clear that $4 \in A\left(W_{0}\right)$. Now we prove that $E_{4}=$ $h A \backslash h(A \backslash\{4\})$ is a finite set. Thus A is not a minimal asymptotic basis of order h.

Let $n>m_{2}$. We will show that $n \in h(A \backslash\{4\})$, that is, $n \notin E_{4}$. Consider the following subcases:

Subcase 2.1: $F_{n} \cap W_{0} \neq\{2\}$.
Subcase 2.1.1: $F_{n} \cap W_{0} \neq \emptyset$ and $\left|F_{n} \backslash W_{0}\right| \geq h-1$. Then $F_{n} \backslash W_{0}$ has a partition

$$
F_{n} \backslash W_{0}=L_{1} \cup \cdots \cup L_{h-1}
$$

where $L_{i} \neq \emptyset(1 \leq i \leq h-1)$ and for every L_{i} there exists a $W_{j}(j \geq 1)$ with $L_{i} \subseteq W_{j}$. Let $L_{0}=F_{n} \cap W_{0}$ and

$$
a_{i}=\sum_{l \in L_{i}} 2^{l}, \quad 0 \leq i \leq h-1
$$

Then

$$
a_{i} \in A \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1}
$$

Hence $n \in h(A \backslash\{4\})$.
Subcase 2.1.2: $F_{n} \cap W_{0} \neq \emptyset$ and $1 \leq\left|F_{n} \backslash W_{0}\right| \leq h-2$. Let

$$
F_{n} \backslash W_{0}=\left\{f_{0}, \ldots, f_{l-1}\right\}
$$

with $f_{0}>\cdots>f_{l-1}$. Then $f_{0} \geq m_{1}+1>2^{h+4}$. Let

$$
f_{i}=f_{0}-(i-l+1), \quad l \leq i \leq h-2
$$

and $f_{h-1}=f_{h-2}$. Set

$$
a_{0}=\sum_{f \in F_{n} \cap W_{0}} 2^{f}, \quad a_{i}=2^{f_{i}}, \quad 1 \leq i \leq h-1
$$

Since
$f_{l}>f_{l+1}>\cdots>f_{h-2}=f_{h-1}>2^{h+4}-(h-2-l+1) \geq 2^{h+4}-(h-2)>2$,
it follows that

$$
a_{i} \in A \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1}
$$

Hence $n \in h(A \backslash\{4\})$.
Subcase 2.1.3: $F_{n} \cap W_{0} \neq \emptyset$ and $F_{n} \backslash W_{0}=\emptyset$. That is, $F_{n} \subseteq W_{0}$. Let

$$
F_{n}=\left\{g_{0}, \ldots, g_{k-1}\right\}
$$

with $g_{0}>\cdots>g_{k-1}$. Since

$$
n>m_{2}>2^{h+4}>1+2+2^{2}+\cdots+2^{h+3}
$$

we have $g_{0} \geq h+4$.
If $k=1$, then $F_{n}=\left\{g_{0}\right\}$. Let

$$
a_{i}=2^{g_{0}-i-1}, \quad 0 \leq i \leq h-2
$$

and $a_{h-1}=a_{h-2}$. Since

$$
a_{0}>a_{1}>\cdots>a_{h-2}=a_{h-1}=2^{g_{0}-h+1}>4
$$

it follows that

$$
a_{i} \in A \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1}
$$

Hence $n \in h(A \backslash\{4\})$.
If $k \geq 2$ and $2^{g_{1}}+\cdots+2^{g_{k-1}} \neq 4$, then we take

$$
a_{0}=2^{g_{1}}+\cdots+2^{g_{k-1}}, \quad a_{i}=2^{g_{0}-i}, \quad 1 \leq i \leq h-2
$$

and $a_{h-1}=a_{h-2}$. Since

$$
a_{1}>\cdots>a_{h-2}=a_{h-1}=2^{g_{0}-h+2}>4
$$

it follows that

$$
a_{i} \in A \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1}
$$

Hence $n \in h(A \backslash\{4\})$.
If $k \geq 2$ and $2^{g_{1}}+\cdots+2^{g_{k-1}}=4$, then we take $a_{0}=a_{1}=2$,

$$
a_{i}=2^{g_{0}-i+1}, \quad 2 \leq i \leq h-2
$$

and $a_{h-1}=a_{h-2}$. Since

$$
a_{2}>\cdots>a_{h-2}=a_{h-1}=2^{g_{0}-h+3}>4
$$

it follows that

$$
a_{i} \in A \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1} .
$$

Hence $n \in h(A \backslash\{4\})$.
Subcase 2.1.4: $F_{n} \cap W_{0}=\emptyset$. If $\left|F_{n}\right| \geq h$, then as in Subcase 2.1.1 we have $n \in h(A \backslash\{4\})$. If $\left|F_{n}\right| \leq h-1$, then as in Subcase 2.1.2 we have $n \in h(A \backslash\{4\})$.

Subcase 2.2: $F_{n} \cap W_{0}=\{2\}$. As $n>m_{2}$, we have $F_{n} \backslash W_{0} \neq \emptyset$. If $f \in F \backslash W_{0}$, then $f>m_{1}>2^{h+4}$ and $f-t \in W_{0}$ (see the arguments before Case 1). Let

$$
a_{0}=2^{2}+\sum_{f \in F_{n} \backslash\{2\}} 2^{f-t}, \quad a_{1}=\cdots=a_{h-1}=\sum_{f \in F_{n} \backslash\{2\}} 2^{f-t}
$$

Then

$$
a_{i} \in A\left(W_{0}\right) \backslash\{4\}, \quad 0 \leq i \leq h-1, \quad \text { and } \quad n=a_{0}+\cdots+a_{h-1}
$$

as $h=2^{t}$. Hence $n \in h\left(A\left(W_{0}\right) \backslash\{4\}\right)$.
This completes the proof of Theorem 1.2 .
Acknowledgements. We would like to thank the referee for his/her comments. The authors are supported by the National Natural Science Foundation of China, Nos. 11771211 and 11471017 . The first author is also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

[1] F. J. Chen and Y. G. Chen, On minimal asymptotic bases, Eur. J. Combin. 32 (2011), 1329-1335.
[2] P. Erdős and M. B. Nathanson, Sets of natural numbers with no minimal asymptotic bases, Proc. Amer. Math. Soc. 70 (1978), 100-102.
[3] P. Erdős and M. B. Nathanson, Minimal asymptotic bases for the natural numbers, J. Number Theory 12 (1980), 154-159.
[4] P. Erdős and M. B. Nathanson, Minimal asymptotic bases with prescribed densities, Illinois J. Math. 32 (1988), 562-574.
[5] E. Härtter, Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math. 196 (1956), 170-204.
[6] M. Jańczak and T. Schoen, Dense minimal asymptotic bases of order two, J. Number Theory 130 (2010), 580-585.
[7] X. D. Jia and M. B. Nathanson, A simple construction of minimal asymptotic bases, Acta Arith. 52 (1989), 95-101.
[8] J. B. Lee, A construction of minimal asymptotic bases, Period. Math. Hungar. 26 (1993), 211-218.
[9] D. R. Ling and M. Tang, On minimal asymptotic g-adic bases, Bull. Austral. Math. Soc. 92 (2015), 374-379.
[10] M. B. Nathanson, Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.
[11] M. B. Nathanson, Minimal bases and powers of 2, Acta Arith. 49 (1988), 525-532.
[12] M. B. Nathanson and A. Sárközy, On the maximum density of minimal asymptotic bases, Proc. Amer. Math. Soc. 105 (1989), 31-33.
[13] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe II, J. Reine Angew. Math. 194 (1955), 111-140.

Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University
Nanjing 210023, P.R. China
E-mail: ygchen@njnu.edu.cn

Min Tang
School of Mathematics and Statistics
Anhui Normal University Wuhu 241002, P.R. China E-mail: tmzzz2000@163.com

[^0]: 2010 Mathematics Subject Classification: Primary 11B13; Secondary 11B75.
 Key words and phrases: minimal asymptotic basis, partition, Nathanson's problem, binary expansion.
 Received 31 October 2017; revised 28 March 2018.
 Published online 29 June 2018.

