# Distances from points to planes 

by<br>P. Birklbauer (Rochester, NY), A. Iosevich (Rochester, NY)<br>and T. Pham (La Jolla, CA)

1. Introduction. The Erdős-Falconer distance problem in $\mathbb{F}_{q}^{d}$ is to determine how large $E \subset \mathbb{F}_{q}^{d}$ needs to be to ensure that the set

$$
\Delta(E)=\{\|x-y\|: x, y \in E\}
$$

with $\|x\|=x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}$, is the whole field $\mathbb{F}_{q}$, or at least a positive proportion thereof. Here and throughout, $\mathbb{F}_{q}$ denotes the field with $q$ elements and $\mathbb{F}_{q}^{d}$ is the $d$-dimensional vector space over this field.

The distance problem in vector spaces over finite fields was introduced by Bourgain, Katz and Tao [1]. In the form described above, it was introduced by the second listed author of the present paper and Misha Rudnev [4], who proved that $\Delta(E)=\mathbb{F}_{q}$ if $|E|>2 q^{(d+1) / 2}$. It was shown in [3] that this exponent is essentially sharp for general fields when $d$ is odd. When $d=2$, it was proved in [2] that if $E \subset \mathbb{F}_{q}^{2}$ with $|E| \geq c q^{4 / 3}$, then $|\Delta(E)| \geq C(c) q$. We do not know if the exponent $(d+1) / 2$ is best possible when $d \geq 4$ is even.

More generally, let $\operatorname{Graff}(k, d)$ denote the set of $k$-dimensional affine planes in $\mathbb{F}_{q}^{d}$. In this paper we shall focus on distances from points in subsets of $\operatorname{Graff}(0, d)=\mathbb{F}_{q}^{d}$ to $(d-1)$-dimensional planes in subsets of $\operatorname{Graff}(d-1, d)$. The set of distances from points to points (see e.g. 4]) can be defined as the set of equivalence classes of two-point configurations where two pairs $(x, y)$ and $\left(x^{\prime}, y^{\prime}\right)$ are equivalent if there exists a translation $\tau \in \mathbb{F}_{q}^{d}$ and a rotation $\theta \in O_{d}\left(\mathbb{F}_{q}^{d}\right)$ that takes one pair to the other. In the case of points and $(d-1)$-dimensional planes in $\mathbb{F}_{q}^{d}$, we may similarly define $(x, h)$ and $\left(x^{\prime}, h^{\prime}\right)$ to be equivalent, where $x$ 's are points and $h$ 's are planes, if after translating $x$ to $x^{\prime}$, there exists a rotation $\theta \in O_{d}\left(\mathbb{F}_{q}\right)$ that takes $h$ to $h^{\prime}$. Denote the resulting set of equivalence classes by $\Delta(E, F)$.

[^0]Before stating our main results, we need to say a few words about the parameterization of $(d-1)$-dimensional planes in $\mathbb{F}_{q}^{d}$. Every $(d-1)$-dimensional plane in $\mathbb{F}_{q}^{d}$ can be expressed in the form

$$
H_{v, t}=\left\{y \in \mathbb{F}_{q}^{d}: y \cdot v=t\right\}
$$

where we should think of $v$ as a normal vector to the plane, and $t$ as the distance to the origin. Note that the notion of distance from a point to a plane described above only makes sense if $\|v\| \neq 0$. We shall henceforth refer to planes with this property as non-degenerate planes. See Lemma 2.1 below.

Definition 1.1. We say that $V \subset \mathbb{F}_{q}^{d}$ is a direction set if given $x \in \mathbb{F}_{q}^{d}$, $x \neq \overrightarrow{0}$, there exist $v \in V$ and $t \in \mathbb{F}_{q}^{*}$ such that $x=t v$.

It is very convenient to work with a "canonical" direction set provided by the following simple observation.

Lemma 1.2. Let $S_{t}=\left\{x \in \mathbb{F}_{q}^{d}:\|x\|=t\right\}$. Let $\gamma \in \mathbb{F}_{q}^{*}$ be a non-square. Define $V_{\gamma}=S_{0} \cup S_{1} \cup S_{\gamma}$. Then $V_{\gamma}$ is a direction set.

Proof. Choose $x$ such that $\|x\|=0$. Then $x \in S_{0}$. Now choose $x$ such that $\|x\|=t^{2}$ for some $t \neq 0$. Then $\left(x_{1} / t\right)^{2}+\left(x_{2} / t\right)^{2}=1$, so $x=t v$ with $v \in S_{1}$. Finally, suppose that $\|x\|=u$ where $u$ is not a square in $\mathbb{F}_{q}^{*}$. To see that $x=t v$ for some $v \in S_{\gamma}$, it is enough to check that $u \gamma^{-1}$ is a square in $\mathbb{F}_{q}$. Moreover, it is enough to prove that a product of two non-squares is a square. To see this, let $\phi: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}$ be given by $\phi(x)=u x$, where $u$ is a non-square. The image of a square is certainly a non-square since otherwise $u$ would be forced to be a square. It follows that an image of a non-square is a square since exactly half the elements of $\mathbb{F}_{q}^{*}$ are squares.

Our main result is the following.
Theorem 1.3. Let $E \subset \mathbb{F}_{q}^{d}, d \geq 2$, and $F$ be a subset of non-degenerate planes in $\operatorname{Graff}(d-1, d)$. Let $\gamma$ be a non-square in $\mathbb{F}_{q}$. Suppose that $|E||F|$ $>q^{d+1}$. Then $|\Delta(E, F)| \gg q$. More precisely,

$$
|\Delta(E, F)| \geq \frac{|E|^{2}|F|^{2}}{2|E|^{2}|F|^{2} q^{-1}+2 q^{d-1}|E||F| \cdot \max _{\|v\|=1, \gamma} \sum_{t} F(v, t)}
$$

When $d=2$, a better exponent was obtained by Pham, Phuong, Sang, Valculescu and Vinh [5]. They proved that the conclusion of Theorem 1.3 holds in $\mathbb{F}_{q}^{2}$ if $|E||F|>C q^{8 / 3}$.

It is not clear if it is possible to weaken the $|E||F|>q^{d+1}$ assumption in higher dimensions. It is not difficult to see that we cannot do better than assuming $|E||F|>q^{d}$. To see this, take $q=p^{2}$ with $p$ prime, let
$E=\mathbb{F}_{p}^{d}$ and $F$ be the set of all $(d-1)$-dimensional affine planes in $\mathbb{F}_{p}^{d}$. Then $|E| \approx|F| \approx q^{d / 2}$ while $\Delta(E, F)=p$.
2. Proof of Theorem 1.3. We begin with simple algebraic observations that make working with $\Delta(E, F)$ much easier. Parameterize each plane in $\operatorname{Graff}(d-1, d)$ by $(v, t) \in V_{\gamma} \times \mathbb{F}_{q}$, where $V_{\gamma}$ is as in Lemma 1.2, Given $F \subset \operatorname{Graff}(d-1, d)$, we write the indicator function of $F$ in the form $F(v, t)$. For a point $x \in E$ and a plane $F(v, t) \in F$, the distance function between them, denoted by $d[x, F(v, t)]$, is defined by

$$
d[x, F(v, t)]:=\frac{(x \cdot v-t)^{2}}{\|v\|}
$$

In the following lemma, we show that the size of $\Delta(E, F)$ is at least the number of distinct non-zero distances between points in $E$ and planes in $F$.

Lemma 2.1. Let $F \subset \operatorname{Graff}(d-1, d)$ be parameterized as above, with coordinates $(v, t) \in V_{\gamma} \times \mathbb{F}_{q}$, where $\|v\| \neq 0$. Then

$$
|\Delta(E, F)| \geq \#\left\{\frac{(x \cdot v-t)^{2}}{\|v\|} \neq 0: x \in E,(v, t) \in F\right\}
$$

Proof. It is enough to show that for $x, x^{\prime} \in E$ and $(v, t),\left(v^{\prime}, t^{\prime}\right) \in F$, if $d[x, F(v, t)]=d\left[x^{\prime}, F\left(v^{\prime}, t^{\prime}\right)\right]$, then there is a rotation $\theta$ such that the translation from $x$ to $x^{\prime}$ followed by $\theta$ takes the plane $F(v, t)$ to $F\left(v^{\prime}, t^{\prime}\right)$. Indeed, since $d[x, F(v, t)]=d\left[x^{\prime}, F\left(v^{\prime}, t^{\prime}\right)\right]$, we have

$$
\begin{equation*}
\frac{(x \cdot v-t)^{2}}{\|v\|}=\frac{\left(x^{\prime} \cdot v^{\prime}-t^{\prime}\right)^{2}}{\left\|v^{\prime}\right\|} \tag{2.1}
\end{equation*}
$$

This implies that $\|v\| /\left\|v^{\prime}\right\|$ is a square. From this we deduce, just as in the proof of Lemma 1.2 above, that either both $\|v\|$ and $\left\|v^{\prime}\right\|$ are squares or both are non-squares. Since we are only considering $\|v\|$ and $\left\|v^{\prime}\right\|$ that are equal to 1 or $\gamma$, we conclude that $\|v\|=\left\|v^{\prime}\right\|$. From (2.1), we have $x \cdot v-t= \pm\left(x^{\prime} \cdot v^{\prime}-t^{\prime}\right)$. Without loss of generality, we assume that $x^{\prime}=0$. Since $\|v\|=\left\|v^{\prime}\right\| \neq 0$, there exists a rotation $\theta \in O_{d}\left(\mathbb{F}_{q}\right)$ such that $\theta v= \pm v^{\prime}$. Thus

$$
\begin{aligned}
\{\theta(y-x): y \cdot v=t\} & =\left\{z:\left(\theta^{-1} z+x\right) \cdot v=t\right\}=\{z: z \cdot \theta v=t-x \cdot v\} \\
& =\left\{z: \pm z \cdot v^{\prime}= \pm t^{\prime}\right\}=\left\{z: z \cdot v^{\prime}=t^{\prime}\right\}
\end{aligned}
$$

In other words, the translation from $x$ to $x^{\prime}$ followed by the rotation $\theta$ about $x^{\prime}$ takes the plane $F(v, t)$ to $F\left(v^{\prime}, t^{\prime}\right)$.

Before proving Theorem 1.3, we need to review the Fourier transform of functions on $\mathbb{F}_{q}^{d}$. Let $\chi$ be a non-trivial additive character on $\mathbb{F}_{q}$. For a
function $f: \mathbb{F}_{q} \rightarrow \mathbb{C}$, we define

$$
\widehat{f}(m)=q^{-d} \sum_{x \in \mathbb{F}_{q}^{d}} \chi(-x \cdot m) f(x)
$$

It is clear that

$$
f(x)=\sum_{m \in \mathbb{F}_{q}^{d}} \chi(x \cdot m) \widehat{f}(m) \quad \text { and } \quad \sum_{m \in \mathbb{F}_{q}^{d}}|\widehat{f}(m)|^{2}=q^{-d} \sum_{x \in \mathbb{F}_{q}^{d}}|f(x)|^{2}
$$

Proof of Theorem 1.3. In view of Lemma 2.1 it suffices to prove that

$$
\begin{aligned}
\#\left\{\frac{(x \cdot v-t)^{2}}{\|v\|}: x\right. & \in E,(v, t) \in F\} \\
& \geq \frac{|E|^{2}|F|^{2}}{2 q^{-1}|F|^{2}|E|^{2}+2 q^{d-1} \max _{v \in V_{\gamma}} F(v, t) \cdot|E||F|}
\end{aligned}
$$

For $r \in \mathbb{F}_{q}$, let

$$
\nu(r):=\sum_{(x \cdot v-t)^{2}=r\|v\|} E(x) F(v, t)
$$

By the Cauchy-Schwarz inequality,

$$
|E|^{2}|F|^{2}=\left(\sum_{r} \nu(r)\right)^{2} \leq \sum_{r \in \mathbb{F}_{q}} \nu(r)^{2} \cdot \#\left\{\frac{(x \cdot v-t)^{2}}{\|v\|}: x \in E,(v, t) \in F\right\}
$$

This implies that

$$
\#\left\{\frac{(x \cdot v-t)^{2}}{\|v\|}: x \in E,(v, t) \in F\right\} \geq \frac{|E|^{2}|F|^{2}}{\sum_{r \in \mathbb{F}_{q}} \nu(r)^{2}}
$$

We are now going to show that

$$
\sum_{r \in \mathbb{F}_{q}} \nu(r)^{2} \leq 2 q^{-1}|F|^{2}|E|^{2}+2 q^{d-1}|F||E| \cdot \max _{v \in V} \sum_{t} F(v, t)
$$

Indeed, applying the Cauchy-Schwarz inequality again gives us

$$
\begin{aligned}
\sum_{r \in \mathbb{F}_{q}} \nu(r)^{2} \leq & |F| \sum_{\substack{x, x^{\prime}, v, t \\
d[x, F(v, t)]=d\left[x^{\prime}, F(v, t]\right.}} E(x) E\left(x^{\prime}\right) F(v, t) \\
& =|F|\left(\sum_{x \cdot v-x^{\prime} \cdot v=0} F(v, t) E(x) E\left(x^{\prime}\right)+\sum_{x \cdot v+x^{\prime} \cdot v-2 t=0} F(v, t) E(x) E\left(x^{\prime}\right)\right) \\
& =|F|(\mathrm{I}+\mathrm{II}) .
\end{aligned}
$$

We now bound I and II as follows:

$$
\begin{align*}
\mathrm{I} & =\sum_{x \cdot v-x^{\prime} \cdot v=0} F(v, t) E(x) E\left(x^{\prime}\right)  \tag{2.2}\\
& =q^{-1}|F||E|^{2}+q^{-1} \sum_{s \neq 0} \sum_{v, t, x, x^{\prime}} \chi\left(s v \cdot\left(x-x^{\prime}\right)\right) F(v, t) E(x) E\left(x^{\prime}\right) \\
& =q^{-1}|F||E|^{2}+q^{-1} \sum_{s \neq 0} \sum_{v, t, x, x^{\prime}} \chi\left(s v \cdot\left(x-x^{\prime}\right)\right) F(v, t) E(x) E\left(x^{\prime}\right) \\
& =q^{-1}|F||E|^{2}+q^{3} \sum_{s \neq 0} \sum_{v, t}|\widehat{E}(s v)|^{2} F(v, t) \\
& \leq q^{-1}|F||E|^{2}+q^{2 d-1} \cdot \max _{v \in V} \sum_{t} F(v, t) \cdot \sum_{z \in \mathbb{F}_{q}^{d}}|\widehat{E}(z)|^{2} \\
& =q^{-1}|F||E|^{2}+q^{d-1}|E| \cdot \max _{v \in V} \sum_{t} F(v, t)
\end{align*}
$$

where we have used $\sum_{z \in \mathbb{F}_{q}^{d}}|\widehat{E}(z)|^{2}=q^{-d}|E|$, and

$$
\begin{align*}
\mathrm{II}= & \sum_{x \cdot v-x^{\prime} \cdot v=2 t} F(v, t) E(x) E\left(x^{\prime}\right)  \tag{2.3}\\
= & q^{-1}|F||E|^{2} \\
& +q^{-1} \sum_{s \neq 0} \sum_{v, t, x, x^{\prime}} \chi\left(s v \cdot\left(x+x^{\prime}\right)\right) \chi(2 s t) F(v, t) E(x) E\left(x^{\prime}\right) \\
= & q^{-1}|F||E|^{2}+q^{3} \sum_{s \neq 0} \sum_{v, t} \widehat{E}(s v) \widehat{E}(s v) \chi(s t+s t) F(v, t) \\
\leq & q^{-1}|F||E|^{2}+q^{2 d-1} \sum_{s \neq 0} \sum_{v, t}|\widehat{E}(s v)|^{2} F(v, t) \\
\leq & q^{-1}|F||E|^{2}+q^{2 d-1} \cdot \max _{v \in V} \sum_{t} F(v, t) \cdot \sum_{z \in \mathbb{F}_{q}^{d}}|\widehat{E}(z)|^{2} \\
= & q^{-1}|F||E|^{2}+q^{d-1}|E| \cdot \max _{v \in V} \sum_{t} F(v, t) .
\end{align*}
$$

Putting (2.2) and (2.3) together, we obtain

$$
\sum_{r \in \mathbb{F}_{q}} \nu(r)^{2} \leq 2 q^{-1}|F|^{2}|E|^{2}+2 q^{d-1}|F||E| \cdot \max _{v \in V} \sum_{t} F(v, t)
$$

We conclude that

$$
\begin{aligned}
\#\left\{\frac{(x \cdot v-t)^{2}}{\|v\|}: x\right. & \in E,(v, t) \in F\} \\
& \geq \frac{|E|^{2}|F|^{2}}{2 q^{-1}|F|^{2}|E|^{2}+2 q^{d-1} \max _{v \in V_{\gamma}} F(v, t) \cdot|E||F|}
\end{aligned}
$$

Hence,

$$
|\Delta(E, F)| \geq \frac{|E|^{2}|F|^{2}}{2 q^{-1}|F|^{2}|E|^{2}+2 q^{d-1} \max _{v \in V_{\gamma}} F(v, t) \cdot|E||F|}
$$

This concludes the proof once we note that

$$
\max _{v \in V_{\gamma}} F(v, t) \leq q
$$

Acknowledgements. The second listed author was partially supported by the NSA Grant H98230-15-1-0319. The third listed author was supported by Swiss National Science Foundation grant P2ELP2-175050.

## References

[1] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57.
[2] J. Chapman, M. B. Erdoğan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, $k$-simplices, Wolff's exponent in finite fields and sum-product estimates, Math Z. 271 (2012), 63-93.
[3] D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), 3255-3275.
[4] A. Iosevich and M. Rudnev, Erdős distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007), 6127-6142.
[5] T. Pham, N. D. Phuong, N. M. Sang, C. Valculescu, and L. A. Vinh, Distinct distances between points and lines in $\mathbb{F}_{q}^{2}$, Forum Math. 30 (2018), 799-808.
P. Birklbauer, A. Iosevich

Department of Mathematics
University of Rochester
Rochester, NY 14627, U.S.A.
E-mail: philipp.birklbauer@rochester.edu iosevich@math.rochester.edu

T. Pham<br>Department of Mathematics University of California, San Diego<br>La Jolla, CA 92093, U.S.A.<br>E-mail: v9pham@ucsd.edu


[^0]:    2010 Mathematics Subject Classification: Primary 52C10.
    Key words and phrases: finite fields, Erdős distance problem.
    Received 10 November 2017; revised 10 April 2018.
    Published online 5 November 2018.

