
ACTA ARITHMETICA

186.3 (2018)

Distances from points to planes
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1. Introduction. The Erdős–Falconer distance problem in Fdq is to de-

termine how large E ⊂ Fdq needs to be to ensure that the set

∆(E) = {‖x− y‖ : x, y ∈ E},
with ‖x‖ = x21+x22+ · · ·+x2d, is the whole field Fq, or at least a positive pro-
portion thereof. Here and throughout, Fq denotes the field with q elements
and Fdq is the d-dimensional vector space over this field.

The distance problem in vector spaces over finite fields was introduced by
Bourgain, Katz and Tao [1]. In the form described above, it was introduced
by the second listed author of the present paper and Misha Rudnev [4], who
proved that ∆(E) = Fq if |E| > 2q(d+1)/2. It was shown in [3] that this ex-
ponent is essentially sharp for general fields when d is odd. When d = 2, it
was proved in [2] that if E ⊂ F2

q with |E| ≥ cq4/3, then |∆(E)| ≥ C(c)q. We
do not know if the exponent (d+ 1)/2 is best possible when d ≥ 4 is even.

More generally, let Graff(k, d) denote the set of k-dimensional affine
planes in Fdq . In this paper we shall focus on distances from points in subsets

of Graff(0, d) = Fdq to (d−1)-dimensional planes in subsets of Graff(d−1, d).
The set of distances from points to points (see e.g. [4]) can be defined as the
set of equivalence classes of two-point configurations where two pairs (x, y)
and (x′, y′) are equivalent if there exists a translation τ ∈ Fdq and a rota-

tion θ ∈ Od(Fdq) that takes one pair to the other. In the case of points and

(d− 1)-dimensional planes in Fdq , we may similarly define (x, h) and (x′, h′)
to be equivalent, where x’s are points and h’s are planes, if after translating
x to x′, there exists a rotation θ ∈ Od(Fq) that takes h to h′. Denote the
resulting set of equivalence classes by ∆(E,F ).
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Before stating our main results, we need to say a few words about the pa-
rameterization of (d−1)-dimensional planes in Fdq . Every (d−1)-dimensional

plane in Fdq can be expressed in the form

Hv,t = {y ∈ Fdq : y · v = t},

where we should think of v as a normal vector to the plane, and t as the
distance to the origin. Note that the notion of distance from a point to a
plane described above only makes sense if ‖v‖ 6= 0. We shall henceforth
refer to planes with this property as non-degenerate planes. See Lemma 2.1
below.

Definition 1.1. We say that V ⊂ Fdq is a direction set if given x ∈ Fdq ,
x 6= ~0, there exist v ∈ V and t ∈ F∗q such that x = tv.

It is very convenient to work with a “canonical” direction set provided
by the following simple observation.

Lemma 1.2. Let St = {x ∈ Fdq : ‖x‖ = t}. Let γ ∈ F∗q be a non-square.
Define Vγ = S0 ∪ S1 ∪ Sγ. Then Vγ is a direction set.

Proof. Choose x such that ‖x‖ = 0. Then x ∈ S0. Now choose x such
that ‖x‖ = t2 for some t 6= 0. Then (x1/t)

2 + (x2/t)
2 = 1, so x = tv with

v ∈ S1. Finally, suppose that ‖x‖ = u where u is not a square in F∗q . To see

that x = tv for some v ∈ Sγ , it is enough to check that uγ−1 is a square
in Fq. Moreover, it is enough to prove that a product of two non-squares is
a square. To see this, let φ : F∗q → F∗q be given by φ(x) = ux, where u is a
non-square. The image of a square is certainly a non-square since otherwise
u would be forced to be a square. It follows that an image of a non-square
is a square since exactly half the elements of F∗q are squares.

Our main result is the following.

Theorem 1.3. Let E ⊂ Fdq , d ≥ 2, and F be a subset of non-degenerate
planes in Graff(d− 1, d). Let γ be a non-square in Fq. Suppose that |E| |F |
> qd+1. Then |∆(E,F )| � q. More precisely,

|∆(E,F )| ≥ |E|2|F |2

2|E|2|F |2q−1 + 2qd−1|E| |F | ·max‖v‖=1,γ

∑
t F (v, t)

.

When d = 2, a better exponent was obtained by Pham, Phuong, Sang,
Valculescu and Vinh [5]. They proved that the conclusion of Theorem 1.3
holds in F2

q if |E| |F | > Cq8/3.

It is not clear if it is possible to weaken the |E| |F | > qd+1 assumption
in higher dimensions. It is not difficult to see that we cannot do better
than assuming |E| |F | > qd. To see this, take q = p2 with p prime, let
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E = Fdp and F be the set of all (d−1)-dimensional affine planes in Fdp. Then

|E| ≈ |F | ≈ qd/2 while ∆(E,F ) = p.

2. Proof of Theorem 1.3. We begin with simple algebraic observa-
tions that make working with ∆(E,F ) much easier. Parameterize each plane
in Graff(d − 1, d) by (v, t) ∈ Vγ × Fq, where Vγ is as in Lemma 1.2. Given
F ⊂ Graff(d−1, d), we write the indicator function of F in the form F (v, t).
For a point x ∈ E and a plane F (v, t) ∈ F , the distance function between
them, denoted by d[x, F (v, t)], is defined by

d[x, F (v, t)] :=
(x · v − t)2

‖v‖
.

In the following lemma, we show that the size of ∆(E,F ) is at least the
number of distinct non-zero distances between points in E and planes in F .

Lemma 2.1. Let F ⊂ Graff(d − 1, d) be parameterized as above, with
coordinates (v, t) ∈ Vγ × Fq, where ‖v‖ 6= 0. Then

|∆(E,F )| ≥ #

{
(x · v − t)2

‖v‖
6= 0 : x ∈ E, (v, t) ∈ F

}
.

Proof. It is enough to show that for x, x′ ∈ E and (v, t), (v′, t′) ∈ F ,
if d[x, F (v, t)] = d[x′, F (v′, t′)], then there is a rotation θ such that the
translation from x to x′ followed by θ takes the plane F (v, t) to F (v′, t′).
Indeed, since d[x, F (v, t)] = d[x′, F (v′, t′)], we have

(2.1)
(x · v − t)2

‖v‖
=

(x′ · v′ − t′)2

‖v′‖
.

This implies that ‖v‖/‖v′‖ is a square. From this we deduce, just as in
the proof of Lemma 1.2 above, that either both ‖v‖ and ‖v′‖ are squares
or both are non-squares. Since we are only considering ‖v‖ and ‖v′‖ that
are equal to 1 or γ, we conclude that ‖v‖ = ‖v′‖. From (2.1), we have
x · v − t = ±(x′ · v′ − t′). Without loss of generality, we assume that x′ = 0.
Since ‖v‖ = ‖v′‖ 6= 0, there exists a rotation θ ∈ Od(Fq) such that θv = ±v′.
Thus

{θ(y − x) : y · v = t} = {z : (θ−1z + x) · v = t} = {z : z · θv = t− x · v}
= {z : ±z · v′ = ±t′} = {z : z · v′ = t′}.

In other words, the translation from x to x′ followed by the rotation θ about
x′ takes the plane F (v, t) to F (v′, t′).

Before proving Theorem 1.3, we need to review the Fourier transform
of functions on Fdq . Let χ be a non-trivial additive character on Fq. For a
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function f : Fq → C, we define

f̂(m) = q−d
∑
x∈Fdq

χ(−x ·m)f(x).

It is clear that

f(x) =
∑
m∈Fdq

χ(x ·m)f̂(m) and
∑
m∈Fdq

|f̂(m)|2 = q−d
∑
x∈Fdq

|f(x)|2.

Proof of Theorem 1.3. In view of Lemma 2.1 it suffices to prove that

#

{
(x · v − t)2

‖v‖
: x ∈ E, (v, t) ∈ F

}
≥ |E|2|F |2

2q−1|F |2|E|2 + 2qd−1 maxv∈Vγ F (v, t) · |E| |F |
.

For r ∈ Fq, let

ν(r) :=
∑

(x·v−t)2=r‖v‖

E(x)F (v, t).

By the Cauchy–Schwarz inequality,

|E|2|F |2 =
(∑

r

ν(r)
)2
≤
∑
r∈Fq

ν(r)2 ·#
{

(x · v − t)2

‖v‖
: x ∈ E, (v, t) ∈ F

}
.

This implies that

#

{
(x · v − t)2

‖v‖
: x ∈ E, (v, t) ∈ F

}
≥ |E|2|F |2∑

r∈Fq ν(r)2
.

We are now going to show that∑
r∈Fq

ν(r)2 ≤ 2q−1|F |2|E|2 + 2qd−1|F | |E| ·max
v∈V

∑
t

F (v, t).

Indeed, applying the Cauchy–Schwarz inequality again gives us∑
r∈Fq

ν(r)2 ≤ |F |
∑
x,x′,v,t

d[x,F (v,t)]=d[x′,F (v,t]

E(x)E(x′)F (v, t)

= |F |
( ∑
x·v−x′·v=0

F (v, t)E(x)E(x′)+
∑

x·v+x′·v−2t=0

F (v, t)E(x)E(x′)
)

= |F |(I + II).

We now bound I and II as follows:
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I =
∑

x·v−x′·v=0

F (v, t)E(x)E(x′)(2.2)

= q−1|F | |E|2 + q−1
∑
s 6=0

∑
v,t,x,x′

χ(sv · (x− x′))F (v, t)E(x)E(x′)

= q−1|F | |E|2 + q−1
∑
s 6=0

∑
v,t,x,x′

χ(sv · (x− x′))F (v, t)E(x)E(x′)

= q−1|F | |E|2 + q3
∑
s 6=0

∑
v,t

|Ê(sv)|2F (v, t)

≤ q−1|F | |E|2 + q2d−1 ·max
v∈V

∑
t

F (v, t) ·
∑
z∈Fdq

|Ê(z)|2

= q−1|F | |E|2 + qd−1|E| ·max
v∈V

∑
t

F (v, t),

where we have used
∑

z∈Fdq |Ê(z)|2 = q−d|E|, and

II =
∑

x·v−x′·v=2t

F (v, t)E(x)E(x′)(2.3)

= q−1|F | |E|2

+ q−1
∑
s 6=0

∑
v,t,x,x′

χ(sv · (x+ x′))χ(2st)F (v, t)E(x)E(x′)

= q−1|F | |E|2 + q3
∑
s 6=0

∑
v,t

Ê(sv)Ê(sv)χ(st+ st)F (v, t)

≤ q−1|F | |E|2 + q2d−1
∑
s6=0

∑
v,t

|Ê(sv)|2F (v, t)

≤ q−1|F | |E|2 + q2d−1 ·max
v∈V

∑
t

F (v, t) ·
∑
z∈Fdq

|Ê(z)|2

= q−1|F | |E|2 + qd−1|E| ·max
v∈V

∑
t

F (v, t).

Putting (2.2) and (2.3) together, we obtain∑
r∈Fq

ν(r)2 ≤ 2q−1|F |2|E|2 + 2qd−1|F | |E| ·max
v∈V

∑
t

F (v, t).

We conclude that

#

{
(x · v − t)2

‖v‖
: x ∈ E, (v, t) ∈ F

}
≥ |E|2|F |2

2q−1|F |2|E|2 + 2qd−1 maxv∈Vγ F (v, t) · |E| |F |
.
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Hence,

|∆(E,F )| ≥ |E|2|F |2

2q−1|F |2|E|2 + 2qd−1 maxv∈Vγ F (v, t) · |E| |F |
.

This concludes the proof once we note that

max
v∈Vγ

F (v, t) ≤ q.
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