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Finding exact formulas for the L2 discrepancy
of digital (0, n, 2)-nets via Haar functions

by

Ralph Kritzinger (Linz)

1. Introduction and main results. In this paper, we study the Lp
discrepancy of special digital (0, n, 2)-nets with the main focus on precise
computation of L2 discrepancy.

Discrepancy theory treats the irregularities of point distributions, often
in the d-dimensional unit cube [0, 1)d (see e.g. [13]). We study point sets P
with N elements in the unit square [0, 1)2. We define the discrepancy func-
tion of such a point set by

∆(t,P) =
1

N

∑
z∈P

1[0,t)(z)− t1t2,

where for t = (t1, t2) ∈ [0, 1]2 we set [0, t) = [0, t1) × [0, t2) with volume
t1t2 and denote by 1[0,t) the indicator function of this interval. The Lp
discrepancy of P for p ∈ [1,∞) is given by

Lp(P) := ‖∆(·,P)‖Lp([0,1)2) =
( �

[0,1]2

|∆(t,P)|p dt
)1/p

,

and the star discrepancy of P is defined as

L∞(P) := ‖∆(·,P)‖L∞([0,1)2) = sup
t∈[0,1]2

|∆(t,P)|.

Throughout this paper, for functions f, g : N→ R+, we write g(N) . f(N)
and g(N) & f(N) if there exists a C > 0 such that g(N) ≤ Cf(N) or g(N) ≥
Cf(N) for all N ∈ N, N ≥ 2, respectively. This constant C is independent
of N , but might depend on several other parameters α1, . . . , αi, which we
sometimes emphasize by writing .α1,...,αi and &α1,...,αi , respectively. Further,
we write f(N) � g(N) if g(N) . f(N) and g(N) & f(N).

2010 Mathematics Subject Classification: Primary 11K06, 11K38; Secondary 42C10.
Key words and phrases: L2 discrepancy, digital nets, Haar functions.
Received 16 November 2017; revised 23 February 2018.
Published online 10 December 2018.

DOI: 10.4064/aa171116-26-3 [151] c© Instytut Matematyczny PAN, 2019



152 R. Kritzinger

It is well known that for every p ∈ [1,∞) the Lp discrepancy of any point
set P consisting of N points in [0, 1)2 satisfies

(1) Lp(P) &p

√
logN

N
,

where log denotes the natural logarithm. This was first shown by Roth [18]
for p = 2 and hence for all p ∈ [2,∞), and later by Schmidt [20] for all
p ∈ (1, 2). The case p = 1 was added by Halász [6]. For the star discrepancy
of such a P we have the best possible lower bound

(2) L∞(P) &
logN

N
,

which is due to Schmidt [19].

An important class of point sets with low star discrepancy is formed
by the digital nets (see e.g. [17, 4]). A digital net in base 2 is a point set
{x0, . . . ,x2n−1} in the d-dimensional unit interval [0, 1)d, which is generated
by d matrices of size n×n. Hence we need two matrices to generate a digital
net in the unit square. The procedure is as follows. Let n ≥ 1 be an integer.

• Choose a bijection ϕ : {0, 1} → Z2, where Z2 is the field with two elements.
• Choose n× n matrices C1 and C2 over Z2.
• For r ∈ {0, 1, . . . , 2n−1} let r = r0 + 2r1 + · · ·+ 2n−1rn−1 with ri ∈ {0, 1}

for all i ∈ {0, . . . , n−1} be the dyadic expansion of r. Map r to the vector
~r = (ϕ(r0), . . . , ϕ(rn−1))>.

• Compute Cj~r =: (y
(j)
r,1 , . . . , y

(j)
r,n)> for j = 1, 2.

• Compute x
(j)
r = ϕ−1(y

(j)
r,1)/2 + · · ·+ ϕ−1(y

(j)
r,n)/2n for j = 1, 2.

• Set xr = (x
(1)
r , x

(2)
r ).

• Repeat steps 3 to 6 for all r ∈ {0, 1, . . . , 2n − 1} and set P :=
{x1, . . . ,x2n−1}. We call P the digital net generated by C1 and C2.

A point set P in the unit square is called a (0, n, 2)-net in base 2 if every
dyadic box [

m1

2j1
,
m1 + 1

2j1

)
×
[
m2

2j2
,
m2 + 1

2j2

)
,

where j1, j2 ∈ N0 and m1 ∈ {0, 1, . . . , 2j1 − 1} and m2 ∈ {0, 1, . . . , 2j2 − 1}
with volume 2−n, i.e. with j1 + j2 = n, contains exactly one element of P. It
is well known that a digital net is a (0, n, 2)-net if and only if the following
condition holds: for any d1, d2 ∈ N0 with d1 + d2 = n the first d1 rows of C1

and the first d2 rows of C2 are linearly independent. By Niederreiter [17],
the star discrepancy of any (0, n, 2)-net in base 2 is of best possible order
(logN)/N . In particular, by [15] we have the general upper bound

2nL∞(P) ≤ n/3 + 19/3

for every digital (0, n, 2)-net.
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The situation is less clear for the L2 discrepancy of digital (0, n, 2)-nets.
Classical nets like the Hammersley point set (see Example 1.3) fail to achieve
the optimal order

√
logN/N of L2 discrepancy. To reduce the L2 discrep-

ancy of digital nets, digital shifts have been applied to such nets in many
previous papers [7, 4, 11]. A digital shift σ = (σ1, . . . , σn)> is an element
of Zn2 . We obtain a shifted digital net by altering the fourth step in the con-

struction scheme of digital nets above to C2~r + σ =: (y
(2)
r,1 , . . . , y

(2)
r,n); hence

after multiplication of the matrix C2 by the vector ~r we also add the digital
shift, before transforming the vector back to a number in [0, 1). Note that
by [10, Lemma 2.2], without loss of generality we can apply the shift only
to the second component.

We consider the following n× n matrices over Z2:

(3)

A1 =



0 0 0 · · · 0 0 1

0 0 0 · · · 0 1 0

0 0 0 · · · 1 0 0
...

...
...

. . .
...

...
...

0 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0

1 0 0 · · · 0 0 0


, A2 =



1 0 0 · · · 0 0 a1

0 1 0 · · · 0 0 a2

0 0 1 · · · 0 0 a3

...
...

...
. . .

...
...

...

0 0 0 · · · 1 0 an−2

0 0 0 · · · 0 1 an−1

0 0 0 · · · 0 0 1


.

We study the discrepancy of the digital net Pa(σ) with a = (a1, . . . , an−1)T ,
generated by A1 and A2 and shifted by σ = (σ1, . . . , σn)T . We simply write
Pa if we do not apply a shift. The set Pa(σ) can be written as

Pa(σ) =

{(
tn
2

+ · · ·+ t1
2n
,
b1
2

+ · · ·+ bn
2n

)
: t1, . . . , tn ∈ {0, 1}

}
,

where bk = tk ⊕ aktn ⊕ σn for k ∈ {1, . . . , n− 1} and bn = tn ⊕ σn. Here ⊕
denotes addition modulo 2.

We also consider symmetrized versions of shifted digital nets. It is conve-
nient to define P̃a(σ) = Pa(σ)∪Pa(σ∗), where σ∗ = (σ1⊕ 1, . . . , σn⊕ 1)T .

Note that P̃a(σ) can also be written in the form

P̃a(σ) = Pa(σ) ∪ {(x, 1− 2−n − y) : (x, y) ∈ Pa(σ)},

which justifies the term “symmetrized digital net”. Symmetrization can of-
ten reduce L2 discrepancy to the best possible order (1) (see e.g. [3, 14, 2]).
We will discuss this phenomenon in more detail in Section 5.

Theorem 1.1 gives an exact formula for the L2 discrepancy of the class
Pa(σ) of shifted digital (0, n, 2)-nets.
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Theorem 1.1. Let L =
∑n−1

i=1 ai(1− 2σi) and ` =
∑n

i=1(1− 2σi). Then

(2n L2(Pa(σ)))2 =
1

64

(
(`− L)2 + L2 + 8`− 10L+

5

3
n

)
+

1

2n+4
(2σnL− `+ 4) +

3

8
− 1

9

1

22n+3
.

Hence L2(Pa(σ)) .
√

logN/N if and only if |`− L| .
√
n and |L| .

√
n.

Remark 1.2. For a fixed a ∈ Zn−1
2 , how can we construct a shift σ ∈ Zn2

which satisfies |` − L| .
√
n and |L| .

√
n? Put I0 := {i ∈ {1, . . . , n − 1} :

ai = 0} and I1 := {i ∈ {1, . . . , n − 1} : ai = 1}, and further `0 := |{i ∈ I0 :
σi = 0}| and ¯̀

0 := |{i ∈ I1 : σi = 0}|. Choose σ such that
∣∣|I0| − 2`0

∣∣ . √n
and

∣∣|I1|−2¯̀
0

∣∣ . √n; hence the number of zeros and ones in the components
of the shifts whose indices belong to I0 or I1 respectively has to be balanced.

Example 1.3. We study a special instance of our nets, namely P0(σ),
where 0 = (0, . . . , 0) ∈ Zn−1

2 . This is the (digit shifted) Hammersley point
set in base 2 (also known as the van der Corput set or Roth net). For a = 0
we have L = 0 and ` =

∑n
i=1(1 − 2σi) =

∑n
i=1(2(1 − σi) − 1) = 2z − n,

where z denotes the number of zero digits in the digital shift σ. We insert
these values into Theorem 1.1 to find

(L2(P0(σ)))2 =
n2

64
+
z2

16
− zn

16
− 19n

192
+
z

4
+

n

2n+4
− z

2n+3
+

1

2n+2
+

3

8
− 1

9 · 22n+2
.

This formula was already obtained by Kritzer and Pillichshammer [11, The-
orem 1] in 2006. Their proof is different from ours, since they used an explicit
formula for the discrepancy function of the digit shifted Hammersley point
set, found by Larcher and Pillichshammer [15, Example 2] in 2001 by an ap-
proach via Walsh functions. Like Haar functions, which will be the central
tool used in this paper, the Walsh functions are also an orthonormal basis
of L2([0, 1)2) and are useful in studying the L2 discrepancy of digital nets.
For more details on Walsh functions we refer to [5, Appendix A].

As an immediate corollary of Theorem 1.1 we compute the L2 discrep-
ancy of unshifted nets. Surprisingly, the L2 discrepancy only depends on
the number of zeros and ones in a, but not on their positions. The result
follows from Theorem 1.1 by setting σi = 0 for all i = 1, . . . , n, which yields
L =

∑n−1
i=1 ai and ` = n.

Corollary 1.4. Let |a| =
∑n−1

i=1 ai. Then

(2n L2(Pa))2 =
1

64

(
(n−|a|)2 + |a|2− 10|a|+ 29

3
n

)
+

3

8
− n− 4

2n+4
− 1

9

1

22n+3
.

Hence L2(Pa) & (logN)/N for all a ∈ Zn−1
2 .
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Now we fix a and ask how large the L2 discrepancy of the shifted nets
Pa(σ) is on average. In other words, we compute the mean of (2nL2(Pa(σ)))2

over all possible shifts σ ∈ Zn2 .

Corollary 1.5. Let a ∈ Zn−1
2 be fixed. Then

1

2n

∑
σ∈Zn2

(2nL2(Pa(σ)))2 =
n

24
+

3

8
+

1

2n+2
− 1

9 · 22n+3
.

Hence the mean of the squared L2 discrepancy of Pa(σ) over all possible
shifts σ ∈ Zn2 is the same for all a ∈ Zn−1

2 and of best possible order accord-
ing to (1).

Proof. It is not difficult to verify 2−n
∑
σ∈Zn2

(` − L)2 = n − |a| and

2−n
∑
σ∈Zn2

L2 = |a| as well as 2−n
∑
σ∈Zn2

` = 2−n
∑
σ∈Zn2

L = 0, which

yields the result.

Remark 1.6. Dick and Pillichshammer [4] studied the problem of the
mean squared L2 discrepancy of digital nets. They did not only apply a
shift σ ∈ Zn2 to the first n digits of the coordinates as in this paper, but also
added random numbers from [0, 2−n) to each component of all elements of
the digital net after the shifting process. Then they computed the mean over
all shifts and obtained the same result for every digital (0, n, 2)-net. They
also studied the problem in higher dimensions. With the methods used in [4]
one can show that Corollary 1.5 actually holds for all digital (0, n, 2)-nets.

We will prove the following exact result concerning the L2 discrepancy
of the symmetrized nets P̃a(σ). This formula demonstrates that the L2

discrepancy depends on a and on σ, but only to a minor extent.

Theorem 1.7. Let P̃a(σ) have 2n+1 elements. Then

(2n+1L2(P̃a(σ)))2 =
n

24
+

11

8
+

1

2n
− 1

9 · 22n+1
− (−1)σn

2n+2
L.

Hence the point sets P̃a(σ) achieve the optimal order of L2 discrepancy
without any conditions on a and σ.

Remark 1.8. Again, the L2 discrepancy of unshifted symmetrized nets
depends only on the parameter |a|, since

(2n+1L2(P̃a))2 =
n

24
+

11

8
+

1

2n
− 1

9 · 22n+1
− 1

2n+2
|a|.

For the symmetrized shifted Hammersley point set P̃0(σ) we obtain

(2n+1L2(P̃0(σ)))2 =
n

24
+

11

8
+

1

2n
− 1

9 · 22n+1
,

and so the L2 discrepancy is independent of the shift σ. This result has
previously been obtained by the author [12] with the methods used in [15]
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and [11]. Further, we immediately obtain for every a ∈ Zn−1
2 the average

result
1

2n

∑
σ∈Zn2

(2nL2(P̃a(σ)))2 =
n

24
+

11

8
+

1

2n
− 1

9 · 22n+1
.

Note that the fact that the nets P̃a achieve the optimal order of L2 discrep-
ancy independently of a follows already from [12, Theorem 2].

Remark 1.9. Since the proofs of Theorems 1.1 and 1.7 as presented in
Sections 3 and 4 are very technical and prone to mistakes, we tested the
correctness of our formulas using Warnock’s formula [21]. It states that for
a point set P = {x0, . . . ,xN−1} in the unit square with xk = (xk,1, xk,2) for
k = 0, . . . , N − 1 we have

(NL2,N (P))2 =
N2

9
− N

2

N−1∑
k=0

2∏
i=1

(1− x2
k,i) +

N−1∑
k,l=0

2∏
i=1

(1−max{xk,i, xl,i}).

This formula allows us to compute the L2 discrepancy of Pa(σ) exactly,
provided that the number of points N = 2n is small (e.g. n = 10). Then
we can compare the results of Warnock’s formula with the output of our
formulas for different choices of n, a and σ. Note that Warnock’s formula
requires O(N logN) operations to compute the L2 discrepancy of a given
point set (see e.g. [16, Section 2.4, Exercises 11, 12]), whereas our formulas

allow a very fast computation of this quantity for Pa(σ) and P̃a(σ).

We close this introduction by pointing out three papers which heavily in-
fluenced the current paper. The first one is [11] by Kritzer and Pillichshammer,
who obtained the exact result for the L2 discrepancy of the shifted Hammer-
sley point set and discovered the beautiful fact that it only depends on the
number of zeroes in the shiftσ but not on their position. It is a natural question
whether this result can also be obtained with reasonable effort by using Haar
functions, as Hinrichs [8] computed the Haar coefficients of the corresponding
discrepancy function exactly in almost all cases. However, the aim of his paper
was to estimate the Besov norm of the discrepancy function, and therefore in
certain cases he was content with upper bounds rather than exact formulas.
We apply the notation of [8] and use some of its results and ideas. The third
paper which inspired this work is by Bilyk, Temlyakov and Yu [2], who com-
puted the Fourier coefficients of the discrepancy function of the symmetrized
Fibonacci lattice exactly in order to find an exact formula for its L2 discrep-
ancy. We do the same for a class of digital (0, n, 2)-net with the difference that
we compute the Haar coefficients instead of the Fourier coefficients, since Haar
functions fit the structure of digital nets much better than harmonic functions.

The outline of this paper is as follows. In Section 2 we introduce the
Haar function system and present general formulas for the Haar coefficients
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of the discrepancy function of arbitrary point sets in the unit square. Sec-
tion 3 is the longest and most technical one; there we compute all the Haar
coefficients of ∆(·,Pa(σ)) exactly and insert them into Parseval’s identity
in order to prove Theorem 1.1. In Section 4 we do the same for the discrep-
ancy function of symmetrized nets, but we omit all the technical details.
In Section 5 we comment on the results for Haar coefficients in the pre-
vious sections. In particular, we point out which Haar coefficients cause a
large L2 discrepancy of (symmetrized) digital nets. We disprove a conjecture
by Bilyk and give a new proof of a result by Larcher and Pillichshammer
on symmetrized nets. In Section 6 we consider a different class of digital
nets, for the L2 discrepancy of which we can also find an exact formula with
the same method as in Section 3. We therefore omit technicalities again.
In Section 7 we discuss the Lp discrepancy of digital nets with the aid of a
Littlewood–Paley inequality, and in the final Section 8 we mention several
problems for future research.

2. The Haar expansion of the discrepancy function. A dyadic
interval of length 2−j , j ∈ N0, in [0, 1) is an interval of the form

I = Ij,m :=

[
m

2j
,
m+ 1

2j

)
for m = 0, 1, . . . , 2j − 1.

The left and right halves of Ij,m are the dyadic intervals Ij+1,2m and Ij+1,2m+1,
respectively. The Haar function hj,m is the function on [0, 1) which is +1
on the left half of Ij,m, −1 on the right half, and 0 outside of Ij,m. The
L∞-normalized Haar system consists of all Haar functions hj,m with j ∈ N0

and m = 0, 1, . . . , 2j − 1 together with the indicator function h−1,0 of [0, 1).
After normalization in L2([0, 1)) we obtain the orthonormal Haar basis of
L2([0, 1)).

Let N−1 = N0 ∪ {−1} and define Dj = {0, 1, . . . , 2j − 1} for j ∈ N0 and
D−1 = {0}. For j = (j1, j2) ∈ N2

−1 and m = (m1,m2) ∈ Dj := Dj1 × Dj2 ,
the Haar function hj,m is given as the tensor product

hj,m(t) = hj1,m1(t1)hj2,m2(t2) for t = (t1, t2) ∈ [0, 1)2.

We call Ij,m = Ij1,m1 × Ij2,m2 dyadic boxes with level |j| = max{0, j1} +
max{0, j2}, where we set I−1,0 = 1[0,1). The system

{2|j|/2hj,m : j ∈ N2
−1, m ∈ Dj}

is an orthonormal basis of L2([0, 1)2), and Parseval’s identity states that for
every function f ∈ L2([0, 1)2) we have

(4) ‖f‖2L2([0,1)2) =
∑
j∈N2

−1

2|j|
∑
m∈Dj

|µj,m|2,



158 R. Kritzinger

where the numbers

µj,m = µj,m(f) = 〈f, hj,m〉 =
�

[0,1)2

f(t)hj,m(t) dt

are the Haar coefficients of f .

Let P be an arbitrary 2n-element point set in the unit square. The Haar
coefficients of its discrepancy function ∆(·,P) are as follows (see [8]). By
z ∈ Ij,m we actually mean z = (z1, z2) ∈ Ij,m ∩ P.

• If j = (−1,−1), then

(5) µj,m = 2−n
∑
z∈P

(1− z1)(1− z2)− 1

4
.

• If j = (j1,−1) with j1 ∈ N0, then

(6) µj,m = −2−n−j1−1
∑
z∈Ij,m

(1− |2m1 + 1− 2j1+1z1|)(1− z2) + 2−2j1−3.

• If j = (−1, j2) with j2 ∈ N0, then

(7) µj,m = −2−n−j2−1
∑
z∈Ij,m

(1− |2m2 + 1− 2j2+1z2|)(1− z1) + 2−2j2−3.

• If j = (j1, j2) with j1, j2 ∈ N0, then

µj,m = 2−n−j1−j2−2
∑
z∈Ij,m

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|)
(8)

− 2−2j1−2j2−4.

Note that we could also write z ∈ I̊j,m, where I̊j,m denotes the interior
of Ij,m, since the summands in (6)–(8) vanish if z lies on the boundary
of the dyadic box. Hence, in order to compute the Haar coefficients of the
discrepancy function, we have to deal with the sums over z above and to
determine which points z = (z1, z2) ∈ P lie in Ij,m with j ∈ N2

−1 and
m = (m1,m2) ∈ Dj . If m1 and m2 are nonnegative integers, then they have
dyadic expansions

(9) m1 = 2j1−1r1 + · · ·+ rj1 and m2 = 2j2−1s1 + · · ·+ sj2

with ri1 , si2 ∈ {0, 1} for all i1 ∈ {1, . . . , j1} and i2 ∈ {1, . . . , j2}. Let

z = (z1, z2) =

(
tn
2

+ · · ·+ t1
2n
,
b1
2

+ · · ·+ bn
2n

)
∈ Pa(σ).

Then z ∈ Ij,m if and only if

(10) tn+1−k = rk for all k ∈ {1, . . . , j1} and bk = sk for all k ∈ {1, . . . , j2}.
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Further, for such a point z = (z1, z2) ∈ Ij,m we have

2m1 + 1− 2j1+1z1 = 1− tn−j1 − 2−1tn−j1−1 − · · · − 2j1−n+1t1,(11)

2m2 + 1− 2j2+1z2 = 1− bj2+1 − 2−1bj2+2 − · · · − 2j2−n+1bn.(12)

These observations will be the starting point of all proofs in the following
section.

3. The Haar coefficients of the discrepancy function of Pa(σ).
Recall the definitions of ` and L from Theorem 1.1. Throughout the whole
section, σ′j for j ∈ {1, . . . , n − 1} will always mean σj ⊕ aj . The idea of

the proof of Theorem 1.1 is as follows: We partition the set N2
−1 into 13

smaller sets Ji, i = 1, . . . , 13. Then we compute the Haar coefficients µj,m
of ∆(·,Pa(σ)) for all j ∈ Ji and further

∑
j∈Ji 2|j|

∑
m∈Dj

|µj,m|2. Then

Theorem 1.1 follows via Parseval from

(2n L2(Pa(σ)))2 =
13∑
i=1

∑
j∈Ji

2|j|
∑
m∈Dj

|µj,m|2.

Case 1: j ∈ J1 := {(−1,−1)}

Proposition 3.1. Let j ∈ J1 and m ∈ Dj. Then

µj,m =
1

2n+1
+

1

22n+2
+

1

2n+3
(`− L).

Proof. By (5) we have

µj,m = 2−n
∑

z∈Pa(σ)

(1− z1)(1− z2)− 1

4

= 1− 2−n
∑

z∈Pa(σ)

z1 − 2−n
∑

z∈Pa(σ)

z2 + 2−n
∑

z∈Pa(σ)

z1z2 −
1

4

= − 1

4
+ 2−n + 2−n

∑
z∈Pa(σ)

z1z2,

where we have applied

∑
z∈Pa(σ)

z1 =
∑

z∈Pa(σ)

z2 =

2n−1∑
l=0

l

2

n

= 2n−1 − 2−1

in the last step. We write u = 2−1tn−1 + · · ·+ 2−n+1t1, v1 = 2−1(t1 ⊕ σ1) +
· · ·+ 2n−1(tn−1⊕σn−1) and v2 = 2−1(t1⊕σ′1) + · · ·+ 2n−1(tn−1⊕σ′n−1) and
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consider∑
z∈P̃a(σ)

z1z2 =

1∑
t1,...,tn=0

(
tn
2

+ · · ·+ t1
2n

)(
t1 ⊕ a1tn ⊕ σ1

2
+ · · ·+ tn ⊕ σn

2n

)

=
1∑

t1,...,tn−1=0

(
u

2

(
v1 +

σn
2n

)
+

(
1

2
+
u

2

)(
v2 +

σn ⊕ 1

2n

))

=
1∑

t1,...,tn−1=0

(
2−n−1−2−n−1σn+2−n−1u+

v2

2
+

1

2
(uv1 + uv2)

)
= 2n−1(2−n−1 − 2−n−1σn) + (2n−2 − 2−1)(2−n−1 + 2−1)

+
1

2

1∑
t1,...,tn−1=0

(uv1 + uv2),

where we have used
1∑

t1,...,tn−1=0

u =
1∑

t1,...,tn−1=0

v2 =
2n−1−1∑
l=0

l/2n−1 = 2n−2 − 2−1

in the last step. We have

(13)
1∑

t1,...,tn−1=0

uv1

=

1∑
t1,...,tn−1=0

(
tn−1

2
+ · · ·+ t1

2n−1

)(
t1 ⊕ σ1

2
+ · · ·+ tn−1 ⊕ σn−1

2n

)

=
1∑

t1,...,tn−1=0

(n−1∑
k=1

tk(tk ⊕ σk)
2n−k2k

+

n−1∑
k1,k2=1
k1 6=k2

tk1(tk2 ⊕ σk2)

2n−k12k2

)

=
1

2n

n−1∑
k=1

2n−2
1∑

tk=0

tk(tk ⊕ σk) +
1

2n

n−1∑
k1,k2=1
k1 6=k2

2k1−k22n−3
1∑

tk1 ,tk2=0

tk1(tk2 ⊕ σk2)

=
1

4

n−1∑
k=1

(1⊕ σk) +
1

8

n−1∑
k1,k2=1
k1 6=k2

2k1−k2 .

Analogously,

(14)

1∑
t1,...,tn−1=0

uv2 =
1

4

n−1∑
k=1

(1⊕ σ′k) +
1

8

n−1∑
k1,k2=1
k1 6=k2

2k1−k2
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and therefore

1∑
t1,...,tn−1=0

(uv1 + uv2) =
1

4

n−1∑
k=1

(1⊕ σk + 1⊕ σ′k) +
1

4

n−1∑
k1,k2=1
k1 6=k2

2k1−k2 .

If ak = 0 then 1⊕σk+1⊕σ′k = 2−2σk, and if ak = 1 then 1⊕σk+1⊕σ′k = 1;
hence 1⊕ σk + 1⊕ σ′k = (1− ak)(1− 2σk) + 1 and

n−1∑
k=1

(1⊕ σk + 1⊕ σ′k) = `− (1− 2σn)− L+ n− 1.

Further, a direct calculation yields

n−1∑
k1,k2=1
k1 6=k2

2k1−k2 =

n−1∑
k1,k2=1

2k1−k2 −
n−1∑
k=1

1 = 2n − n− 3 + 2−n+2.

Now we put everything together to arrive at the desired result.

The following consequence is immediate.

Lemma 3.2. We have∑
j∈J1

2|j|
∑
m∈Dj

|µj,m|2 =

(
1

2n+1
+

1

22n+2
+

1

2n+3
(`− L)

)2

.

Case 2: j ∈ J2 := {(−1, j2) : 0 ≤ j2 ≤ n− 2}

Proposition 3.3. Let j ∈ J2 and m ∈ Dj. Then

µj,m = 2−2n−2 − 2−n−j2−3 − 2−2n−1(σj2+1 ⊕ aj2+1σn)

+ 2−2j2−3
j2∑
k=1

sk ⊕ σk + sk ⊕ σ′k
2n+1−k .

Proof. For z ∈ Ij,m we have bk = sk for all k ∈ {1, . . . , j2} and there-
fore

1− z1 = 1− tn
2
− · · · − t1

2n

= 1− tn
2
− · · · − tj2+1

2n−j2
− sj2 ⊕ aj2tn ⊕ σj2

2n−j2+1
− · · · − s1 ⊕ a1tn ⊕ σ1

2n

= 1− u− tj2+1

2n−j2
− ε(m2, tn),

where u := tn
2 − · · · −

tj2+2

2n−j2−1 and ε :=
sj2⊕aj2 tn⊕σj2

2n−j2+1 + · · · + s1⊕a1tn⊕σ1
2n .
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Further,

1− |2m2 + 1− 2j2+1z2| = 1− |1− bj2+1 − · · · − 2j2−n+1bn|

=

{
v if bj2+1 = 0, i.e. tj2+1 = aj2+1tn ⊕ σj2+1,

1− v if bj2+1 = 1, i.e. tj2+1 = aj2+1tn ⊕ σj2+1 ⊕ 1,

where v = v(tn) = 2−1bj2+2 + · · · + 2j2−n+1bn. We fix tj2+2, . . . , tn; hence
ε(m2, tn) depends on m2, and u and v are fixed as well. Then

1∑
tj2+1=0

(1− z1)(1− |2m2 + 1− 2j2+1z2|)

=

(
1− u− aj2+1tn ⊕ σj2+1

2n−j2
− ε(m2, tn)

)
v

+

(
1− u− aj2+1tn ⊕ σj2+1 ⊕ 1

2n−j2
− ε(m2, tn)

)
(1− v)

= 1− 2−n+j2 − ε(m1, tn)− u+ 2−n+j2v − 2−n+j2(aj2+1tn ⊕ σj2+1)(2v − 1).

We sum the last expression over the remaining digits tj2+2, . . . , tn and ob-
serve that

1∑
tj2+2,...,tn=0

v =

1∑
tj2+2,...,tn=0

u =

2n−j2−1−1∑
l=0

l

2n−j2−1
= 2n−j2−2 − 2−1.

Hence∑
z∈Ij,m

(1− z1)(1− |2m2 + 1− 2j2+1z2|)

=
1

4
(2n−j2 − 2−n+j2+1 + 1)− 2−n+j2

1∑
tj2+2,...,tn=0

(aj2+1tn ⊕ σj2+1)(2v − 1)

−
1∑

tj2+2,...,tn=0

ε(m1, tn).

From the definition of ε(m2, tn) it is easy to see that

1∑
tj2+2,...,tn=0

ε(m1, tn) = 2n−j2−2
j2∑
k=1

sk ⊕ σk + sk ⊕ σ′k
2n+1−k .

We compute
∑1

tj2+2,...,tn=0(aj2+1tn⊕σj2+1)(2v−1), distinguishing two cases.
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If aj2+1 = 0, we obtain

1∑
tj2+2,...,tn=0

(aj2+1tn ⊕ σj2+1)(2v − 1)

=
1∑

tj2+2,...,tn=0

σj2+1

(
2

( n−1∑
k=j2+2

tk ⊕ aktn ⊕ σk
2k−j2−1

+
tn ⊕ σn
2n−j2−1

)
− 1

)

=
1∑

tj2+2,...,tn−1=0

σj2+1

{(
2

( n−1∑
k=j2+2

tk ⊕ σk
2k−j2−1

+
σn

2n−j2−1

)
− 1

)

+

(
2

( n−1∑
k=j2+2

tk ⊕ σ′k
2k−j2−1

+
1⊕ σn
2n−j2−1

)
− 1

)}

= σj2+1

2n−j2−2−1∑
l=0

{
2

(
l

2n−j2−2
+

σn
2n−j2−1

)
− 1 + 2

(
l

2n−j2−2
+

1− σn
2n−j2−1

)
−1

}
= −σj2+1 = −σj2+1 ⊕ aj2+1σn.

If aj2+1 = 1, then

1∑
tj2+2,...,tn=0

(aj2+1tn ⊕ σj2+1)(2v − 1)

=
1∑

tj2+2,...,tn=0

(tn ⊕ σj2+1)

(
2

( n−1∑
k=j2+2

tk ⊕ aktn ⊕ σk
2k−j2−1

+
tn ⊕ σn
2n−j2−1

)
− 1

)

=
1∑

tj2+2,...,tn−1=0

(
2

( n−1∑
k=j2+2

tk ⊕ ak(σj2+1 ⊕ 1)⊕ σk
2k−j2−1

+
σj2+1 ⊕ 1⊕ σn

2n−j2−1

)
− 1

)

=

2n−j2−2−1∑
l=0

(
2

(
l

2n−j2−2
+
σj1+1 ⊕ 1⊕ σn

2n−j2−2

)
− 1

)
= σj2+1 ⊕ 1⊕ σn − 1 = −σj2+1 ⊕ σn = −σj2+1 ⊕ aj2+1σn.

Thus, in any case
∑1

tj2+2,...,tn=0(aj2+1tn⊕σj2+1)(2v−1) = −σj2+1⊕aj2+1σn
and we arrive at∑
z∈Ij,m

(1− z1)(1− |2m2 + 1− 2j2+1z2|) =
1

4
(2n−j2 − 2−n+j2+1 + 1)

+ 2−n+j2(σj2+1 ⊕ aj2+1σn)− 2n−j2−2
j2∑
k=1

sk ⊕ σk + sk ⊕ σ′k
2n+1−k .

The rest follows from (7).
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Lemma 3.4. We have∑
j∈J2

2|j|
∑
m∈Dj

|µj,m|2 =
1

9
2−4n−6

(
2n22n − 9(n− 1)2n+2 + 22n+3 − 44

)
+ 2−3n−3

(n−1∑
i=1

σi + σnL
)
− 2−2n−8

n−2∑
i=0

2−2i
i∑

k=1

ak2
2k.

Proof. We write S(m2) :=
∑j2

k=1
sk⊕σk+sk⊕σ′k

2n+1−k . Then∑
m2∈Dj2

µ2
j,m =

1∑
s1,...,sj2=0

{
(2−2n−2 − 2−n−j2−3 − 2−2n−1(σj2+1 ⊕ aj2+1σn))2

+ 2−2j2−2
(
2−2n−2 − 2−n−j2−3 − 2−2n−1(σj2+1 ⊕ aj2+1σn)

)
S(m2)

+ 2−4j2−6S(m2)2
}
.

Since ∑
m2∈Dj2

S(m2) =
1∑

s1,...,sj2=0

j2∑
k=1

sk ⊕ σk + sk ⊕ σ′k
2n+1−k

=

j2∑
k=1

2j2−1
1∑

sk=0

sk ⊕ σk + sk ⊕ σk ⊕ ak
2n+1−k

=

j2∑
k=1

2j2−1 2

2n+1−k = 22j2−n − 2j2−n

and∑
m2∈Dj2

S(m2)2

=
1∑

s1,...,sj2=0

{ j2∑
k1,k2=1
k1 6=k2

(sk1 ⊕ σk1 + sk1 ⊕ σ′k1)(sk2 ⊕ σk2 + sk2 ⊕ σ′k2)

2n+1−k12n+1−k2

+

j2∑
k=1

(sk ⊕ σk + sk ⊕ σ′k)2

22n+2−2k

}

=

j2∑
k1,k2=1
k1 6=k2

2j2−2 4

2n+1−k12n+1−k2 +

j2∑
k=1

2j2−1a
2
k + (1 + ak ⊕ 1)2

22n+2−2k

=
1

3
2−2n+j2+2 +

1

3
2−2n+3j2+1 − 2−2n+2j2+1 +

j2∑
k=1

2j2−1 4− 2ak
22n+2−2k

,
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we obtain the claimed result by combining all these expressions, summing
2|j|
∑
m∈Dj

|µj,m|2 over all j ∈ J2 and using the fact that

n−2∑
j2=0

(σj2+1 ⊕ aj2+1σn) =

n−1∑
i=1

(σi ⊕ aiσn) =

n−1∑
i=1

(σi − aiσn)2

=
n−1∑
i=1

(σi − 2aiσiσn + aiσn) =
n−1∑
i=1

σi + σnL.

Case 3: j ∈ J3 := {(−1, n− 1)}
Proposition 3.5. Let j ∈ J3 and m ∈ Dj. Then

µj,m = 2−2n−1

(
−σn +

n−1∑
k=1

sk ⊕ ak(σn ⊕ 1)⊕ σk
2n−k

)
.

Proof. For j2 = n− 1 we have 1− |2m2 + 1− 2j2+1z2| = 1− |1− bn| =
bn = tn ⊕ σn. Writing

ε(tn,m2) :=

n−1∑
k=1

sk ⊕ aktn ⊕ σk
2n+1−k ,

we get∑
z∈Ij,m

(1− z1)(1− |2m2 + 1− 2j2+1|) =
1∑

tn=0

(
1− tn

2
− ε(tn,m2)

)
(tn ⊕ σn)

= 1− σn ⊕ 1

2
− ε(σn ⊕ 1,m1),

which leads to µj,m = 2−2n−1(σn⊕1+2ε(σn⊕1,m1)−1) via (7) and hence
to the result.

Lemma 3.6. We have∑
j∈J3

2|j|
∑
m∈Dj

|µj,m|2 =
1

3
2−4n−4(22n − 3 · 2n + 2 + 3σn2n+1).

Proof. We have∑
j∈J3

2|j|
∑
m∈Dj

|µj,m|2

= 2n−1
1∑

s1,...,sn−1=0

(
2−2n−1

(
−σn +

n−1∑
k=1

sk ⊕ ak(σn ⊕ 1)⊕ σk
2n−k

))2

= 2n−1
2n−1−1∑
l=0

(
2−2n−1

(
−σn +

l

2n−1

))2

,

which leads to the claimed result.
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Case 4: j ∈ J4 := {(−1, j2) : j2 ≥ n}

Proposition 3.7. Let j ∈ J4 and m ∈ Dj. Then

µj,m = 2−2j2−3.

Proof. If j2 ≥ n, no point of P is contained in the interior of Ij,m and
therefore only the linear part −t1t2 contributes to the Haar coefficient of the
discrepancy function in this case. Hence, the given formula is an immediate
consequence of (7).

Lemma 3.8. We have∑
j∈J4

2|j|
∑
m∈Dj

|µj,m|2 =
1

48
2−2n.

Proof. It is easy to compute

∑
j∈J4

2|j|
∑
m∈Dj

|µj,m|2 =
∞∑
j2=n

22j22−4j2−6 =
1

48
2−2n.

Case 5: j ∈ J5 := {(0,−1)}

Proposition 3.9. Let j ∈ J5 and m ∈ Dj. Then

µj,m =
1

22n+2
− 1

2n+3
+

1

2n+3
L− 1

22n+1
σn.

Proof. For z ∈ Pa(σ) we have

1− z2 = 1− b1
2
− · · · − bn

2n

= 1− t1 ⊕ a1tn ⊕ σ1

2
− · · · − tn−1 ⊕ an−1tn ⊕ σn−1

2n−1
− tn ⊕ σn

2n

and

1− |2m1 + 1− 2z1| = 1− |1− 2z1| = 1−
∣∣∣∣1− tn − tn−1

2
− · · · − t1

2n−1

∣∣∣∣.
Hence, writing u = 2−1tn−1 + · · · + 2−n+1t1, v1 = 2−1(t1 ⊕ σ1) + · · · +
2−n+1(tn−1 ⊕ σn−1) and v2 = 2−1(t1 ⊕ σ′1) + · · · + 2−n+1(tn−1 ⊕ σ′n−1), we
have
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z∈Pa(σ)

(1− |2m1 + 1− 2z1|)(1− z2)

=
1∑

t1,...,tn=0

(
1−

∣∣∣∣1− tn − tn−1

2
− · · · − t1

2n−1

∣∣∣∣)
×
(

1− t1 ⊕ a1tn ⊕ σ1

2
− · · · − tn−1 ⊕ an−1tn ⊕ σn−1

2n−1
− tn ⊕ σn

2n

)
=

1∑
t1,...,tn−1=0

{
u

(
1− v1 −

σn
2n

)
+ (1− u)

(
1− v2 −

σn ⊕ 1

2n

)}

=

1∑
t1,...,tn−1=0

{1− 2−n + 2−nσn − v2 + u(2−n − 2−n+1σn) + u(v2 − v1)}

= 2n−1(1− 2−n + 2−nσn) + (2n−2 − 2−1)(−1 + 2−n − 2−n+1σn)

+

1∑
t1,...,tn−1=0

u(v2 − v1),

where we have used
∑1

t1,...,tn−1=0 u =
∑1

t1,...,tn−1=0 v2 = 2n−2 − 2−1 in the

last step. By (13) and (14) we find

1∑
t1,...,tn−1=0

u(v2 − v1) =
1

4

n−1∑
k=1

(σ′k ⊕ 1− σk ⊕ 1) = −1

4

n−1∑
k=1

ak(1− 2σk) = −L
4
,

and therefore∑
z∈Pa(σ)

(1− |2m1 + 1− 2z1|)(1− z2) =
1

4
− 2−n−1 + 2n−2 + 2−nσn −

L

4
.

The rest follows from (6).

Lemma 3.10. We have∑
j∈J5

2|j|
∑
m∈Dj

|µj,m|2 =

(
1

22n+2
− 1

2n+3
+

1

2n+3
L− 1

22n+1
σn

)2

.

Case 6: j ∈ J6 := {(j1,−1) : 1 ≤ j1 ≤ n− 1}
Proposition 3.11. Let j ∈ J6 and m ∈ Dj. Then

µj,m = 2−2n−2j1−3
(
22j1+1 − 2j1+n + 22n+1ε(m1)− 22j1+2(an−j1r1 ⊕ σn−j1)

)
,

where ε(m1) = r1⊕σn
2n +

∑j1
k=2

rk⊕an+1−kr1⊕σn+1−k
2n+1−k .

Proof. Similar to the proof of Proposition 2 we write

1− z2 = 1− u− bn−j1
2n−j1

− ε(m1)
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with u = 2−1b1 + · · ·+ 2−n+j1+1bn−j1−1 and

ε(m1) = 2−n+j1−1bn−j1+1 + · · ·+ 2−nbn

=
r1 ⊕ σn

2n
+

j1∑
k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2n+1−k .

We also have

1− |2m1 + 1− 2j1+1z1| = 1− |1− tn−j1 − · · · − 2j1−n+1t1|

=

{
v if tn−j1 = 0,

1− v if tn−j1 = 1,

where v = 2−1tn−j1−1 + · · · + 2j1−n+1t1. Let us first fix t1, . . . , tn−j1−1 and
hence u and v. Then we have

1∑
tn−j1=0

(
1− u− bn−j1

2n−j1
− ε(m1)

)
(1− |1− tn−j1 − · · · − 2j1−n+1t1|)

=

(
1− u− an−j1r1 ⊕ σn−j1

2n−j1
− ε(m1)

)
v

+

(
1− u− 1⊕ an−j1r1 ⊕ σn−j1

2n−j1
− ε(m1)

)
(1− v)

= 1− 2−n+j1 − ε− u+ 2−n+j1v − 2−n+j1+1(an−j1r1 ⊕ σn−j1)v

+ 2−n+j1(an−j1r1 ⊕ σn−j1).

Since

1∑
t1,...,tn−j1−1=0

u =

1∑
t1,...,tn−j1−1=0

v =

2n−j1−1−1∑
l=0

l

2n−j1−1
= 2n−j1−2 − 1

2
,

we find∑
z∈Ij,m

(1− z2)(1− |2m1 + 1− 2j1+1z1|)

= 2−n−j1−2
(
22n + 2j1+n − 22j1+1 − 22n+1ε(m1) + 22j1+2(an−j1r1 ⊕ σn−j1)

)
.

The rest follows from (6).

Lemma 3.12. We have∑
j∈J6

2|j|
∑
m∈Dj

|µj,m|2

=
1

9
4−2n−3

(
(3n+ 11)4n − 56

)
− 2−3n−4

(
n− 1− 2

n−1∑
i=1

σi − 2σnL
)
.
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Proof. To compute
∑

m2∈Dj2
µ2
j,m, we first sum over r1, write ε = ε(r1)

and find
1∑

r1,...,rj1=0

µ2
j,m

=

1∑
r2,...,rj1=0

{(
2−2n−2j1−3(22j1+1 − 2j1+n + 22n+1ε(0)− 22j1+2σn−j1)

)2
+
(
2−2n−2j1−3(22j1+1 − 2j1+n + 22n+1ε(1)− 22j1+2σ′n−j1)

)2}
.

We arrive at the claimed formula by writing ε(0) = l
2n−1 + σn

2n and ε(1) =
l

2n−1 + 1−σn
2n and by replacing the sum over r2, . . . , rj1 by a sum over l running

from 0 to 2j1−1 − 1.

Case 7: j ∈ J7 := {(j1,−1) : j1 ≥ n}. This case is completely analo-
gous to Case 4.

Proposition 3.13. Let j ∈ J7 and m ∈ Dj. Then

µj,m = −2−2j1−3.

Lemma 3.14. We have∑
j∈J7

2|j|
∑
m∈Dj

|µj,m|2 =
1

48
2−2n.

Case 8: j ∈ J8 := {(0, j2) : 0 ≤ j2 ≤ n− 2}

Proposition 3.15. Let j ∈ J8 and m ∈ Dj. Then

µj,m = 2−2j2−4
j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k

+ 2−2n−2
(
1 + 2σj2+1(σn − 1) + 2σn(σ′j2+1 − 1)

)
.

Proof. In this case, the condition z ∈ Ij,m results in bk = sk for all
k ∈ {1, . . . , j2} and

2m1 + 1− 2j1+1z1 = 1− 2z1 = 1− tn − · · · − 2−n+1t1

= 1− tn − u− 2−n+j2+1tj2+1 − ε(m2, tn),

where u = 2−1tn−1 + · · ·+ 2−n+j2+2tj2+2 and ε(m2, tn) =
∑j2

k=1
sk⊕aktn⊕σk

2n−k
.

Further, we have

2m2 + 1− 2j2+1z2 = 1− bj2+1 − · · · − 2−n+j2+1bn

= 1− tj2+1 ⊕ aj2+1tn ⊕ σj2+1 − v(tn)− 2−n+j2+1tn ⊕ σn
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with v(tn) =
∑n−1

k=j2+2 2j2+1−k(sk ⊕ aktn ⊕ σk). Therefore∑
z∈Ij,m

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|)

=
1∑

tj2+1,...,tn=0

(1− |1− tn − u− 2−n+j2+1tj2+1 − ε(m2, tn)|)

× (1− |1− tj2+1 ⊕ aj2+1tn ⊕ σj2+1 − v(tn)− 2−n+j2+1(tn ⊕ σn)|)

=

1∑
tj2+2,...,tn−1=0

{(
u+ 2−n+j2+1σj2+1 + ε(m2, 0)

)(
v(0) + 2−n+j2+1σn

)
+
(
u+ 2−n+j2+1(σj2+1 ⊕ 1) + ε(m2, 0)

)(
1− v(0)− 2−n+j2+1σn

)
+
(
1− u− 2−n+j2+1σ′j2+1 − ε(m2, 1)

)(
v(1) + 2−n+j2+1(σn ⊕ 1)

)
+
(
1− u− 2−n+j2+1(σ′j2+1 ⊕ 1)− ε(m2, 1)

)(
1− v(1)− 2−n+j2+1(σn ⊕ 1)

)}
=

1∑
tj2+2,...,tn−1=0

4−n
{

4j2+1
(
2σn(σj2+1 + σ′j2+1 − 1)− 2σ′j2+1 + 1

)
+ 4n

(
1 + ε(m2, 0)− ε(m2, 1) + 2n+j2+1(σ′j2+1 − σj2+1)

)
+ 2n+j2+1

(
(2σj2+1 − 1)v(0)− (2σ′j2+1 − 1)v(1)

)}
.

In the last expression, only v(0) and v(1) depend on the digits tj2+2, . . . , tn−1

and we have

1∑
tj2+2,...,tn−1=0

v(0) =
1∑

tj2+2,...,tn−1=0

v(1) =
2n−j2−2−1∑

l=0

l

2n−j2−2
= 2n−j2−3 − 1

2
.

Hence, we can compute
∑
z∈Ij,m(1 − |2m1 + 1 − 2j1+1z1|)(1 − |2m2 + 1 −

2j2+1z2|) and the Haar coefficients via (8). Note that

ε(m2, 0)− ε(m2, 1) =

j2∑
k=1

sk ⊕ σk − sk ⊕ ak ⊕ σk
2n−k

=

j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k
,

where the relation sk ⊕ σk − sk ⊕ ak ⊕ σk = ak(2(sk ⊕ σk)− 1) can be seen
easily.

Lemma 3.16. We have∑
j∈J8

2|j|
∑
m∈Dj

|µj,m|2 =
1

3
4−2n−3(4n − 4) + 2−2n−8

n−2∑
i=0

2−2i
i∑

k=1

ak2
2k.

Proof. For the sake of brevity we write

f := 2−2n−2
(
1 + 2σj2+1(σn − 1) + 2σn(σ′j2+1 − 1)

)
.
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Note that f does not depend on m2. Then
∑

m2∈Dj2
µ2
j,m equals

∑
m2∈Dj2

{
2−4j2−8

( j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k

)2

+ 2−2j2−3f

j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k
+ f2

}
.

Since
1∑

s1,...,sj2=0

j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k
=

j2∑
k=1

ak
2n−k

2j2−1
1∑

sk=0

(2(sk ⊕ σk)− 1) = 0

and
1∑

s1,...,sj2=0

( j2∑
k=1

ak
2(sk ⊕ σk)− 1

2n−k

)2

=
1∑

s1,...,sj2=0

( j2∑
k1,k2=1
k1 6=k2

ak1ak2
(2(sk1 ⊕ σk1)− 1)(2(sk2 ⊕ σk2)− 1)

2n−k12n−k2

+

j2∑
k=1

ak
(2(sk ⊕ σk)− 1)2

22n−2k

)
=

j2∑
k1,k2=1
k1 6=k2

ak1ak2
2n−k12n−k2

2j2−2
1∑

sk1 ,sk2=0

(2(sk1 ⊕ σk1)− 1)(2(sk2 ⊕ σk2)− 1)

+

j2∑
k=1

ak
22n−2k

2j2−1
1∑

sk=0

(2(sk ⊕ σk)− 1)2

= 2j2−2n
j2∑
k=1

ak2
2k,

this yields ∑
m2∈Dj2

µ2
j,m = 2−3j2−2n−8

j2∑
k=1

ak2
2k + 2j2f2.

Note that 1 + 2σj2+1(σn − 1) + 2σn(σ′j2+1 − 1) = 1 − 2σj2+1 if σn = 0,
and 1 + 2σj2+1(σn − 1) + 2σn(σ′j2+1 − 1) = 2σ′j2+1 − 1 if σn = 1; thus

(1 + 2σj2+1(σn − 1) + 2σn(σ′j2+1 − 1))2 = 1 in any case and f2 = 2−4n−4.
After summation over j2 we obtain the result.

Case 9: j ∈ J9 := {(j1, j2) ∈ N2
0 : j1 + j2 ≤ n− 2, j1 ≥ 1}

Proposition 3.17. Let j ∈ J9 and m ∈ Dj. Then

µj,m = 2−2n−2
(
2(an−j1r1 ⊕ σj2+1)− 1

)(
2(aj2+1r1 ⊕ σn−j1)− 1

)
.
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Proof. By (10)–(12), the condition z ∈ Ij,m yields

2m1 + 1− 2j1+1z1 = 1− tn−j1 − u− 2j1+j2−n+1tj2+1 − ε1

with u = 2−1tn−j1−1 + · · ·+ 2j1+j2−n+2tj2+2 and

ε1 = 2j1−n+1
j2∑
k=1

2k−1tk = 2j1−n+1
j2∑
k=1

2k−1(sk ⊕ akr1 ⊕ σk) = ε1(m).

Similarly, we write

2m2 + 1− 2j2+1z2 = 1− bj2+1 − v − 2j1+j2−n+1bn−j1 − ε2

with v = 2−1bj2+2 + · · ·+ 2j1+j2−n+2bn−j1−1 and

ε2 = 2j2−n+1
j1∑
k=1

2k−1bn+1−k

= 2j2−n+1
(
r1 ⊕ σn +

j2∑
k=1

2k−1(rk ⊕ an+1−kr1 ⊕ σn+1−k)
)

= ε2(m).

We fix the digits tj2+2, . . . , tn−j1−1; then u and v are also fixed. We sum

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|)

over tn−j1 ∈ {0, 1} and tj2+1 ∈ {0, 1} = {aj2+1r1⊕σj2+1, aj2+1r1⊕σj2+1⊕1}
and find after lengthy calculations

1∑
tj2+1,tn−j1=0

(1− |1− tn−j1 − u− 2j1+j2−n+1tj2+1 − ε1|)

× (1− |1− bj2+1 − v − 2j1+j2−n+1bn−j1 − ε2|)
= 1 + 4−n+j1+j2+1

(
2(an−j1r1 ⊕ σj2+1)− 1

)(
2(aj2+1r1 ⊕ σn−j1)− 1

)
.

Summation over the remaining digits tj2+2, . . . , tn−j1−1 yields∑
z∈Ij,m

(1− |2m1 + 1− 2j1+1z1|)(1− |2m2 + 1− 2j2+1z2|)

= 2n−j1−j2−2 + 2−n+j1+j2
(
2(an−j1r1 ⊕ σj2+1)− 1

)(
2(aj2+1r1 ⊕ σn−j1)− 1

)
,

and the result follows from (8).

Since µ2
j,m = 2−4n−4 is independent of j andm in this case, the following

consequence is straightforward.

Lemma 3.18. We have∑
j∈J9

2|j|
∑
m∈Dj

|µj,m|2 =
1

9
4−2n−3(3n4n − 7 · 4n + 16).
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Case 10: j ∈ J10 := {(0, n− 1)}

Proposition 3.19. Let j ∈ J10 and m ∈ Dj. Then

µj,m =
1

22n+2

(
1− 2

∣∣∣∣σn − n−1∑
k=1

sk ⊕ ak(σn ⊕ 1)⊕ σk
2n−k

∣∣∣∣).
Proof. We have 1 − |2m1 + 1 − 2z1| = 1 −

∣∣1 − tn −∑n−1
k=1

sk⊕aktn⊕σk
2n−k

∣∣
and 1− |2m2 + 1− 2nz2| = 1− |1− bn| = bn, and therefore∑
z∈Ij,m

(1− |2m1 + 1− 2z1|)(1− |2m2 + 1− 2nz2|)

=
1∑

tn=0

(
1−

∣∣∣∣1− tn − n−1∑
k=1

sk ⊕ aktn ⊕ σk
2n−k

∣∣∣∣)(tn ⊕ σn)

= 1−
∣∣∣∣1− σn ⊕ 1−

n−1∑
k=1

sk ⊕ ak(σn ⊕ 1)⊕ σk
2n−k

∣∣∣∣;
the rest of the proof is straightforward by (8).

Lemma 3.20. We have∑
j∈J10

2|j|
∑
m∈Dj

|µj,m|2 =
1

3
2−4n−6(22n + 8).

Proof. In both cases σn = 0 and σn = 1 we find

2n−1
2n−1−1∑
m2=0

µ2
j,m = 2n−1 1

24n+4

2n−1−1∑
l=0

(
1− 2

l

2n−1

)2

,

which yields the claim.

Case 11: j ∈ J11 := {(j1, j2) ∈ N2
0 : j1 + j2 = n− 1, j1 ≥ 1}

Proposition 3.21. Let j ∈ J11 and m ∈ Dj. Then

µj,m =

2−2n−1

{(
1−
∣∣∣∣1−aj2+1r1⊕σj2+1−

j1∑
k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2j1−k+1

− r1 ⊕ σn
2j1

∣∣∣∣)

×
( j2∑
k=1

sk ⊕ akr1 ⊕ σk
2j2−k+1

)



174 R. Kritzinger

+

(
1−

∣∣∣∣1− 1⊕ aj2+1r1 ⊕ σj2+1 −
j1∑
k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2j1−k+1

− r1 ⊕ σn
2j1

∣∣∣∣)

×
(

1−
j2∑
k=1

sk ⊕ akr1 ⊕ σk
2j2−k+1

)}
− 2−2n−2.

Proof. By the condition z ∈ Ij,m all digits but tj2+1 = tn−j1 are fixed.
Hence, we get the result by summing (1− |2m1 + 1− 2j1+1z1|)(1− |2m2 +
1− 2j2+1z2|) over the two possibilities tj2+1 = 0, 1 and expressing the other
digits of z1 and z2 in terms of the digits ri1 and si2 of m1 and m2 according
to (10).

Lemma 3.22. We have∑
j∈J11

2|j|
∑
m∈Dj

|µj,m|2 =
1

27
2−4n−6(3n22n + 7 · 22n + 48n− 88).

Proof. As usual, we first investigate
∑
m∈Dj

µ2
j,m. We sum over r1 to

obtain

1∑
r2,...,rj1=0

1∑
s1,...,sj2=0{
2−2n−1

(
1−

∣∣∣1− 1⊕ σj2+1 −
j1∑
k=2

2k−1−j1(rk ⊕ σn+1−k)− 2−j1σn

∣∣∣)

×
( j2∑
k=1

2k−1−j2(sk ⊕ σk)
)

+ 2−2n−1
(

1−
∣∣∣1− 1⊕ σj2+1 −

j1∑
k=2

2k−1−j1(rk ⊕ σn+1−k)− 2−j1σn

∣∣∣)

×
(

1−
j2∑
k=1

2k−1−j2(sk ⊕ σk)
)
− 2−2n−2

}2

+

1∑
r2,...,rj1=0

1∑
s1,...,sj2=0{

2−2n−1
(

1−
∣∣∣1− 1⊕ σ′j2+1 −

j1∑
k=2

2k−1−j1(rk ⊕ σ′n+1−k)− 2−j1(σn ⊕ 1)
∣∣∣)

×
( j2∑
k=1

2k−1−j2(sk ⊕ σ′k)
)
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+ 2−2n−1
(

1−
∣∣∣1− 1⊕ σ′j2+1 −

j1∑
k=2

2k−1−j1(rk ⊕ σ′n+1−k)− 2−j1(σn ⊕ 1)
∣∣∣)

×
(

1−
j2∑
k=1

2k−1−j2(sk ⊕ σ′k)
)
− 2−2n−2

}2
=: M1(σj2+1) +M2(σ′j2+1).

We can compute M1(0) via

2j1−1−1∑
l1=0

2j2−1∑
l2=0

[
2−2n−1

{
l2
2j2

(
l1

2j1−1
+
σn
2j1

)

+

(
1− l2

2j2

)(
1− l1

2j1−1
− σn

2j1

)}
− 2−2n−2

]2

.

Similarly, one calculates M1(1) and finds M1(1) = M1(0). We can compute
M2(0) with the same formula as for M1(0)—we just have to replace σn by
1− σn. Again we have M2(1) = M2(0) and therefore

∑
m∈Dj

µ2
j,m = M1(0)

+M2(0). The rest follows by a straightforward summation of 2|j|
∑
m∈Dj

µ2
j,m

over all j ∈ J11.

Case 12: j ∈ J12 := {(j1, j2) ∈ N2
0 : j1 + j2 ≥ n, 1 ≤ j1, j2 ≤ n− 1}

Proposition 3.23. Let j ∈ J12 and m ∈ Dj. Then

µj,m = 2−n−j1−j2−2

(
1−

∣∣∣∣1− n−j1∑
k=1

sk ⊕ akr1 ⊕ σk
2n−j1−k

∣∣∣∣)

×
(

1−
∣∣∣∣1− n−j2∑

k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2n−j2−k

− r1 ⊕ σn
2n−j2−1

∣∣∣∣)− 2−2j1−2j2−4

if sµ ⊕ aµr1 ⊕ σµ = rn+1−µ for all µ ∈ {n + 1 − j1, . . . , j2}, and µj,m =
−2−2j1−2j2−4 otherwise.

Proof. Again, the condition z ∈ Ij,m implies, by (10), that tn+1−k = rk
for all k ∈ {1, . . . , j1} and bk = sk for all k ∈ {1, . . . , j2}. As a result, for
µ ∈ {n+ 1− j1, . . . , j2} we must have

(15) rn+1−µ = bµ ⊕ aµtn ⊕ σµ = sµ ⊕ aµr1 ⊕ σµ
in order to have a point of P in the dyadic box Ij,m. Hence, if (15) is not
satisfied, then only the linear part of the discrepancy function contributes
to the Haar coefficient and hence µj,m = −2−2j1−2j2−4.

Assume now that (15) is satisfied and let z = (z1, z2) be the single point
in Ij,m. Then by (11) and (12) we obtain

µj,m = 2−n−j1−j2−2(1− |1− tn−j1 − · · · − 2j1−n+1t1|)
× (1− |1− bj2+1 − · · · − 2j2−n+1bn|)− 2−2j1−2j2−4,
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where the above conditions on the digits give tk = sk ⊕ akr1 ⊕ σk for k =
1, . . . , n− j1 and bn+1−k = rk ⊕ an+1−kr1 ⊕ σn+1−k for k = 2, . . . , n− j2 as
well as bn = r1 ⊕ σn. Hence the result follows.

Lemma 3.24. We have∑
j∈J12

2|j|
∑
m∈Dj

|µj,m|2 =
1

27
4−2n−2 − 1

27
4−n−2 − 1

9
n4−2n−1 +

5

9
n4−n−3.

Proof. We write∑
m∈Dj

|µj,m|2 =

2j1−1∑
m1=0

( 2j2−1∑
m2=0

(15) satisfied

µ2
j,m +

2j2−1∑
m2=0

(15) not satisfied

(−2−2j2−2j2−4)2
)

=
2j1−1∑
m1=0

2j2−1∑
m2=0

(15) satisfied

µ2
j,m + 2j1(2j2 − 2n−j1)2−4j1−4j2−8.

Note that for a fixedm1∈ Dj1 the system (15) fixes the digits sn−j1+1, . . . , sj2
and thus the digits s1, . . . , sn−j1 remain free. This means that there are
2n−j1 elements in Dj2 which satisfy (15), whereas the remaining 2j2 − 2n−j1

elements do not. It is where the factor 2j2 − 2n−j1 in the last expression
comes from. Let us study

2j1−1∑
m1=0

2j2−1∑
m2=0

(15) satisfied

µ2
j,m.

It equals

1∑
r2,...,rj1=0

1∑
s1,...,sn−j1(

2−n−j1−j2−2(1− |1− sn−j1 ⊕ σn−j1 − · · · − 2j1−n+1(s1 ⊕ σ1)|)

× (1− |1− rn−j2 ⊕ σj2+1 − · · · − 2j2−n+1σn|)− 2−2j1−2j2−4
)2

+

1∑
r2,...,rj1=0

1∑
s1,...,sn−j1(

2−n−j1−j2−2(1− |1− sn−j1 ⊕ σ′n−j1 − · · · − 2j1−n+1(s1 ⊕ σ′1)|)

× (1− |1− rn−j2 ⊕ σ′j2+1 − · · · − 2j2−n+1(σn ⊕ 1)|)− 2−2j1−2j2−4
)2

=: S1 + S2,

where we have already summed over r1. The sums S1 and S2 can be com-
puted similarly. Note that the summands in S1 do not depend on the digits
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rn−j2+1, . . . , rj1 . Summation over rn−j2 and sn−j1 leads to

S1 = 2j1+j2−n
1∑

r2,...,rn−j2−1=0

1∑
s1,...,sn−j1−1=0{(

2−n−j1−j2−2u(v + 2j2−n+1σn)− 2−2j2−2j2−4
)2

+
(
2−n−j1−j2−2u(1− v − 2j2−n+1σn)− 2−2j2−2j2−4

)2
+
(
2−n−j1−j2−2(1− u)(v + 2j2−n+1σn)− 2−2j2−2j2−4

)2
+
(
2−n−j1−j2−2(1− u)(1− v − 2j2−n+1σn)− 2−2j2−2j2−4

)2}
,

where u=2−1(sn−j1−1⊕σn−j1−1)+· · ·+2j1−n+1(s1⊕σ1) and v=2−1(rn−j2−1

⊕σj2+2)+ · · ·+2j2−n+2(r2⊕σn−1). To compute the sum over the remaining
digits, we replace u by 2−n+j1+1l1 and v by 2−n+j2+2l2, and let l1 run from 0
to 2n−j1−1 − 1 and l2 run from 0 to 2n−j2−2 − 1, respectively. This yields

S1 = −2−3j1−3j2−8 +
1

9
2−5n−1 +

1

9
2−3n−2j1−2 +

1

9
2−3n−2j2−4

+
1

9
2−n−2j1−2j2−5 + 2n−4j1−4j2−9 − σn

(
1

3
2−5n−2 +

1

3
2−3n−2j1−3

)
.

We obtain a similar result for S2 with the only difference that σn is replaced
by 1− σn. Altogether, we find∑
m∈Dj

|µj,m|2 = −2−3j1−3j2−7 +
1

9
2−5n−2 +

1

9
2−3n−2j1−3 +

1

9
2−3n−2j2−3

+
1

9
2−n−2j1−2j2−4 +2n−4j1−4j2−8 +2j1(2j2 − 2n−j1)2−4j1−4j2−8.

The rest follows by a straightforward summation of 2|j|
∑
m∈Dj

µ2
j,m over

all j ∈ J11.

Case 13: j ∈ J13 := {(j1, j2) ∈ N2
0 : j1 ≥ n or j2 ≥ n}

Proposition 3.25. Let j ∈ J13 and m ∈ Dj. Then

µj,m = −2−2j1−2j2−4.

Proof. No point lies in the interior of Ij,m if j1 ≥ n or j2 ≥ n, and
hence the result follows directly from (8).

Since the Haar coefficients in this case are independent of m, the follow-
ing consequence is easy to verify.

Lemma 3.26. We have∑
j∈J13

2|j|
∑
m∈Dj

|µj,m|2 =
1

9
2−4n−4(22n+1 − 1).
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4. The Haar coefficients of symmetrized digital nets. From the
construction P̃a(σ) = Pa(σ) ∪ Pa(σ∗), it is easy to see that for the Haar

coefficients µ̃j,m of ∆(·, P̃a(σ)) we have µ̃j,m = 1
2(µσj,m+µσ

∗
j,m) (compare [9,

proof of Lemma 3]). Here, µσj,m denote the Haar coefficients of ∆(·,Pa(σ))

and µσ
∗
j,m those of ∆(·,Pa(σ∗)). Hence, it is easy to derive µ̃j,m from our

previous results.

Proposition 4.1. Let j ∈ N2
−1 and m ∈ Dj. Then µ̃j,m equals:

• 1
2n+1 + 1

22n+2 if j ∈ J1.

• 1
22n+3

(
2− 1

22j2−n

)
− 1+aj2+1(2(σj2+1⊕σn)−1)

22n+2 if j ∈ J2.

• − 1
23n+1 + 1

22n+2

∑n−1
k=1

ak(1−sk⊕σk⊕σn)
2n−k

if j ∈ J3.

• −2−2ji−3 with i = 1 or i = 2 if j ∈ J4 or j ∈ J7, respectively.

• − 1
2n+3 if j ∈ J5.

• − 1
2n+2j1+3 if j ∈ J6.

• 1
22n+2 (σj2+1 + σ′j2+1 − 1)(2σn − 1) if j ∈ J8.

• 1
22n+2 (2(an−j1r1 ⊕ σj2+1)− 1)(2(aj2+1r1 ⊕ σn−j1)− 1) if j ∈ J9.

• −(−1)σn2−2n−2
∑n−1

k=1
(1−ak)(2(sk⊕σk)−1)

2n−k
if j ∈ J10.

• 2−2n−2
{(

1−
∣∣1− aj2+1r1 ⊕ σj2+1 − u− 2−j1(r1 ⊕ σn)

∣∣)v
+
(
1−

∣∣1− aj2+1r1 ⊕ σj2+1 ⊕ 1− u− 2−j1(r1 ⊕ σn)
∣∣)(1− v)

}
+ 2−2n−2

{(
1−

∣∣1− aj2+1r1 ⊕ σj2+1 ⊕ 1− u′ − 2−j1(r1 ⊕ σn ⊕ 1)
∣∣)v

+
(
1−

∣∣1− aj2+1r1 ⊕ σj2+1 − u′ − 2−j1(r1 ⊕ σn ⊕ 1)
∣∣)(1− v′)}− 2−2n−2

if j ∈ J11, where u =
∑j1

k=2 2k−1−j1(rk ⊕ an+1−kr1 ⊕ σn+1−k), u
′ =∑j1

k=2 2k−1−j1−u, v =
∑j2

k=1 2k−1−j2(sk⊕akr1⊕σk) and v′=
∑j2

k=1 2k−1−j2

− v.
• For j ∈ J12:

2−n−j1−j2−3

(
1−

∣∣∣∣1− n−j1∑
k=1

sk ⊕ akr1 ⊕ σk
2n−j1−k

∣∣∣∣)

×
(

1−
∣∣∣∣1− n−j2∑

k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2n−j2−k

− r1 ⊕ σn
2n−j2−1

∣∣∣∣)

+ 2−n−j1−j2−3

(
1−

∣∣∣∣1− n−j1∑
k=1

sk ⊕ akr1 ⊕ σk ⊕ 1

2n−j1−k

∣∣∣∣)

×
(

1−
∣∣∣∣1− n−j2∑

k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k ⊕ 1

2n−j2−k
− r1 ⊕ σn ⊕ 1

2n−j2−1

∣∣∣∣)
− 2−2j1−2j2−4
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if j1 + j2 = n;

2−n−j1−j2−3

(
1−

∣∣∣∣1− n−j1∑
k=1

sk ⊕ akr1 ⊕ σk
2n−j1−k

∣∣∣∣)

×
(

1−
∣∣∣∣1− n−j2∑

k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k
2n−j2−k

− r1 ⊕ σn
2n−j2−1

∣∣∣∣)− 2−2j1−2j2−4

if j1+j2 ≥ n+1 and sµ⊕aµr1⊕σµ = rn+1−µ for all µ ∈ {j2, . . . , n+1−j1};

2−n−j1−j2−3

(
1−

∣∣∣∣1− n−j1∑
k=1

sk ⊕ akr1 ⊕ σk ⊕ 1

2n−j1−k

∣∣∣∣)

×
(

1−
∣∣∣∣1−n−j2∑

k=2

rk ⊕ an+1−kr1 ⊕ σn+1−k ⊕ 1

2n−j2−k
− r1 ⊕ σn ⊕ 1

2n−j2−1

∣∣∣∣)−2−2j1−2j2−4

if j1 + j2 ≥ n + 1 and sµ ⊕ aµr1 ⊕ σµ ⊕ 1 = rn+1−µ for all µ ∈ {j2, . . . ,
n+ 1− j1}; and −2−2j1−2j2−4 otherwise.
• −2−2j1−2j2−4 if j ∈ J13.

Now we have to calculate

Σi :=
∑
j∈Ji

2|j|
∑
m∈Dj

|µ̃j,m|2

for all i ∈ {1, . . . , 13}. In many cases this is easy, and the argument in the
more difficult cases is very similar to what we did in the previous section.
We therefore state the following results without proofs.

Lemma 4.2. Consider a symmetrized net P̃a(σ). Let µ̃j,m for j ∈ N2
−1

and m ∈ Dj be the Haar coefficients of the corresponding discrepancy func-
tion. Then

• Σ1 =
(

1
2n+1 + 1

22n+2

)2
.

• Σ2 = 1
3·24n+4 (22n − 4)− (−1)σn

23n+4 L+ 1
24n+6

∑n−1
i=1 ai2

2i.

• Σ3 = 1
24n+6

∑n−1
i=1 ai2

2i + 1
24n+4 .

• Σ4 =
∑
j∈J7 2|j|

∑
m∈Dj

|µ̃j,m|2 = 1
48·22n .

• Σ5 = 1
22n+6 .

• Σ6 = 1
3·24n+6 (22n − 4).

• Σ7 = 1
3·24n+6 (22n − 4)− 1

24n+6

∑n−1
i=1 ai2

2i.

• Σ8 = 1
9·24n+6 (3n · 22n − 7 · 22n + 16).

• Σ9 = 1
3·24n+6 (22n − 4)− 1

24n+6

∑n−1
i=1 ai2

2i.
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• Σ10 = 1
92−4n−6(5 · 4n + 4− 24n).

• Σ11 = 1
3·24n+6

(
n(22n + 8)− 2(22n + 2)

)
.

• Σ12 = 1
9·24n+4 (22n+1 − 1).

We obtain Theorem 2 via (L2(P̃a(σ)))2 =
∑13

i=1Σi.

5. Why do (symmetrized) digital nets fail to have the optimal
order of L2 discrepancy? In many previous papers (e.g. [3, 14]) it has
been observed that the reason that a point set fails to have the optimal
order of L2 discrepancy can often be found in the zeroth Fourier coefficient
of the corresponding discrepancy function (which is the same as the Haar
coefficient for j = (−1,−1)). This recurring phenomenon led to the following
conjecture by Bilyk [1]:

Whenever an N -element point set P in [0, 1)2 satisfies L∞(P) .
(logN)/N (i.e. its star discrepancy is of best possible order in N) and
L2(P) & (logN)/N , then P should also satisfy∣∣∣ �

[0,1)2

∆(t,P) dt
∣∣∣ & logN

N
.

Our results imply that it is not true. Consider the point set P1, where 1 =
(1, . . . , 1) ∈ Zn−1

2 . Then by Proposition 1 we have µ(−1,−1),(0,0) = 2−2n−2 +

5 ·2−n−3 ≤ 1/N , but L2(P1) & (logN)/N , which follows from Corollary 1.4.
Note that L∞(P1) . (logN)/N , since P1 is a (0, n, 2)-net. Hence P1 is a
counterexample to Bilyk’s conjecture. More generally, none of the nets Pa(σ)
achieves the optimal order of L2 discrepancy. The reason is that for all a
at least one of the inequalities µ(−1,−1),(0,0) & (logN)/N or µ(0,−1),(0,0) &
(logN)/N holds; hence in some cases the Haar coefficient for j = (−1,−1)
is not the one causing trouble.

We point out that an earlier counterexample to the above conjecture
appears in [14]. To state it, we consider the digital (0, n, 2)-net generated by
the matrices C1 = A1 (see (3)) and the matrix

C2 =



1 0 0 · · · 0 0 0

1 1 0 · · · 0 0 0

1 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

1 0 0 · · · 1 0 0

1 0 0 · · · 0 1 0

1 0 0 · · · 0 0 1


,

which we call Pc. We denote its shifted version by Pc(σ). The following
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theorem of Larcher and Pillichshammer [14, Theorem 1] shows that not every
symmetrized digital net achieves the optimal order of L2 discrepancy. Their
proof is based on a Walsh function analysis of the discrepancy function. Here
we shall give a new proof based on Haar functions.

Theorem 5.1 (Larcher and Pillichshammer). The L2 discrepancy of the
symmetrized point set Psym

c := Pc ∪ {(x, 1− y) : (x, y) ∈ Pc} with N = 2n+1

elements satisfies

L2(Psym
c ) &

logN

N
.

(Note that µ(−1,−1),(0,0)(∆(·,Psym
c )) = 2−n−2 and L∞(Psym

c ) . (logN)/N.)

Proof. Instead of Psym
c we investigate the L2 discrepancy of P̃c(σ) =

Pc(σ) ∪ Pc(σ∗), because the difference between L2(Psym
c ) and L2(P̃c(0))

is at most 2−n (see [9, Lemma 4]). Let µσj,m denote the Haar coefficients

of ∆(·,Pc(σ)), and µ̃σj,m those of ∆(·, P̃c(σ)). The idea of the proof is as

follows: By Parseval’s identity we have L2(P̃c(0)) ≥ µ̃0(−1,0),(0,0). We will

show µ̃0(−1,0),(0,0) & (logN)/N , which yields the result.

In order to calculate µ̃σ(−1,0),(0,0), we first compute µσ(−1,0),(0,0) for an

arbitrary shift. We write

Pc(σ) =

{(
tn
2

+· · ·+ t1
2n
,
t1 ⊕ σ1

2
+· · ·+ t1 ⊕ tn ⊕ σn

2n

)
: t1, . . . , tn ∈ {0, 1}

}
.

For z = (z1, z2) ∈ Pc(σ) we have∑
z∈Pc(σ)

(1− z1)(1− |1− 2z2|)

=

1∑
t1,...,tn=0

(
1− tn

2
− · · · − t1

2n

)
×
(

1−
∣∣∣∣1− t1 ⊕ σ1 −

t1 ⊕ t2 ⊕ σ2

2
− · · · − t1 ⊕ tn ⊕ σn

2n−1

∣∣∣∣)
=

1∑
t2,...,tn=0

{(
1− u− σ1

2n

)
v(σ1) +

(
1− u− σ1 ⊕ 1

2n

)
(1− v(σ1 ⊕ 1))

}

=
1∑

t2,...,tn=0

{−2−2n−2 + 2−n+1 + 2−2n+1σ1 − 2−n+1u+ 2v(σ1)

− 2−nv(σ1)− 2uv(σ1)},
where u = 2−1tn + · · · + 2−n+1t2 and v(t1) = 2−1(t1 ⊕ t2 ⊕ σ2) + · · · +
2−n+1(t1⊕tn⊕σn). In the last step we have used v(σ1⊕1) = 1−2−n+1−v(σ1).
We have

∑1
t2,...,tn=0 u =

∑1
t2,...,tn=0 v(σ1) = 2n−2 − 2−1; hence it remains to
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investigate
∑1

t2,...,tn=0 uv(σ1). We find that

1∑
t2,...,tn=0

uv(σ1) =
n∑
k=2

1∑
t2,...,tn=0

tk(tk ⊕ σk ⊕ σ1)

2n+1−k2k−1

+
n∑

k1,k2=2
k1 6=k2

1∑
t2,...,tn=0

tk1(tk2 ⊕ σk2 ⊕ σ1)

2n+1−k12k2−1

=
1

2n

n∑
k=2

2n−2
1∑

tk=0

tk(tk ⊕ σk ⊕ σ1)

+
1

2n

n∑
k1,k2=2
k1 6=k2

2k1−k22n−3
1∑

tk1 ,tk2=0

tk1(tk2 ⊕ σk2 ⊕ σ1)

=
1

4

n∑
k=2

(1⊕ σk ⊕ σ1) +
1

8

n∑
k1,k2=2
k1 6=k2

2k1−k2 .

Combining our results with (7) yields

µ(−1,0),(0,0) = 2−2n−2 − 2−n−3n− 2−2n−1σ1 + 2−n−2
n∑
k=2

(1⊕ σk ⊕ σ1).

Since µ̃σ(−1,0),(0,0) = 1
2(µσ(−1,0),(0,0) + µσ

∗

(−1,0),(0,0)), we derive

µ̃σ(−1,0),(0,0) = −2−n−3n+ 2−n−2
n∑
k=2

(1⊕ σk ⊕ σ1).

In particular, for σ = 0 we find µ̃0(−1,0),(0,0) = 2−n−3(n − 2) & (logN)/N ,

and we are done.

6. Further results. Our method is not restricted to the class of digital
nets Pa(σ). For instance, one could also study the nets Pc(σ) generated by
C1 = A1 and

C2 =



1 0 0 · · · 0 0 0

c2 1 0 · · · 0 0 0

c3 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

cn−2 0 0 · · · 1 0 0

cn−1 0 0 · · · 0 1 0

cn 0 0 · · · 0 0 1


,

where we write c = (c2, . . . , cn) and again we apply a digital shift σ =
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(σ1, . . . , σn) to the second components of the relevant points. We simply

write Pc if we do not apply a shift. Further we put P̃c(σ) := Pc(σ)∪Pc(σ∗).
There are many parallel tracks in the computation of the Haar coefficients of
∆(·,Pa(σ)) and ∆(·,Pc(σ)). We leave it to the reader as a (tedious) exercise
to show the following theorem with the method demonstrated in Section 3.

Theorem 6.1. Let L =
∑n

i=2 ci(1− 2σi) and ` =
∑n

i=1(1− 2σi). Then

(2n L2(Pc(σ)))2 =
1

64

(
(`− L)2 + L2 + 8`+ 2L(2σ1 − 5) +

5

3
n

)
− 1

2n+4
(`− 4) +

3

8
− 1

9

1

22n+3
.

For unshifted nets we find a result of the very same form as Corollary 1.4.

Corollary 6.2. Let |c| =
∑n

i=2 ci. Then

(2n L2(Pc))2 =
1

64

(
(n− |c|)2 + |c|2−10|c|+ 29

3
n

)
+

3

8
− n− 4

2n+4
− 1

9

1

22n+3
.

However, there are major differences between the L2 discrepancies of
the symmetrized nets P̃a(σ) and P̃c(σ), as our next theorem demonstrates.
Since exact computation of

∑
j∈Ji 2|j|

∑
m∈Dj

|µ̃j,m|2 for i ∈ {11, 12} is very

complicated, we do not calculate the L2 discrepancy exactly. However, we
can show that ∑

j∈N2
−1\{(−1,0)}

2|j|
∑
m∈Dj

|µ̃j,m|2 . n/22n

and 2|j|
∑
m∈Dj

|µ̃j,m|2 = 2−2n−6(L2 − 2(1 − 2σ1)L + 1) for j = (−1, 0).

Therefore the following result is a consequence of Parseval’s identity.

Theorem 6.3. Let L be as in Theorem 6.1. Then L2(P̃c(σ)) .
√

logN

if and only if |L| .
√
n. For unshifted symmetrized nets we have L2(P̃c) .√

logN if and only if |c| .
√
n.

7. Results on Lp discrepancy. The calculation of the Haar coefficients
of the discrepancy functions allows us to study not only the L2 discrepancy
of point sets, but also the Lp discrepancy for all p ∈ (1,∞). The key tool is
the Littlewood–Paley inequality for Haar functions. It states that for every f
in Lp([0, 1)2) with p ∈ (1,∞) we have ‖f‖Lp([0,1)2) � ‖S(f)‖Lp([0,1)2), where

S(f) :=
( ∑
j∈Ns−1,m∈Dj

22|j||µj,m|21Ij,m
)1/2

.

The Littlewood–Paley inequality enables us to give sufficient and necessary
conditions for the point sets we are studying to achieve the optimal order
of Lp discrepancy. It is not necessary to work with the exact Haar coeffi-
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cients to show these conditions. The following upper bounds can be derived
immediately from the propositions in Section 3.

Corollary 7.1. Let µj,m be the Haar coefficients of ∆(·,Pa(σ)). Let
j = (j1, j2) ∈ N2

0.

(i) If j1 = 0 and 0 ≤ j2 ≤ n− 2 then |µj,m| . 2−n−j2.
(ii) If j1 + j2 < n− 1 and j1 ≥ 1, j2 ≥ 0 then |µj,m| = 2−2n−2.
(iii) If j1 + j2 ≥ n − 1 and 0 ≤ j1, j2 ≤ n then |µj,m| . 2−n−j1−j2 and

|µj,m| = 2−2j1−2j2−4 for all but at most 2n coefficients µj,m with
m ∈ Dj (the equality occurs if there is no point of Pa(σ) in the
interior of Ij,m).

(iv) If j1 ≥ n or j2 ≥ n then |µj,m| = 2−2j1−2j2−4.

Now let j = (−1, j2) with j2 ∈ N0.

(v) If j2 < n then |µj,m| . 2−n−j2.
(vi) If j2 ≥ n then |µj,m| = 2−2j2−3.

Next let j = (j1,−1) with j1 ∈ N0.

(vii) If j1 = 0 then |µj,m| = 1
22n+2 − 1

2n+3 + 1
2n+3L− 1

22n+1σn.

(viii) If 1 ≤ j1 < n then |µj,m| . 2−n−j1.
(ix) If j1 ≥ n then |µj,m| = 2−2j1−3.

Finally, if j = (−1,−1) then

(vi) µj,m = 1
2n+1 + 1

22n+2 + 1
2n+3 (`− L).

We insert these bounds into the Littlewood–Paley inequality to show the
following result. The proof is basically the same as in [9], where the result
has been shown for the Hammersley point set. Of course we can do the same
for the class Pc(σ) of shifted nets.

Theorem 7.2. Let ` and L be as in Theorem 1.1 and p ∈ (1,∞). Then

Lp(Pa(σ)) .p

√
logN

N

if and only if |` − L| .p
√
n and |L| .p

√
n. An analogous result holds for

Pc(σ).

For symmetrized nets we find the following conditions which ensure the
optimal order of Lp discrepancy.

Theorem 7.3. Let p ∈ (1,∞).Then

Lp(P̃a(σ)) .

√
logN

N

for all a ∈ Zn−1
2 and all σ ∈ Zn2 . Moreover,

Lp(P̃c(σ)) .

√
logN

N
if and only if |L| .

√
n.
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8. Outlook. It would be increasingly difficult to obtain exact formulas
for the L2 discrepancy of more complicated digital nets. However, we could
ask for conditions on matrices C1 and C2 such that the L2 discrepancy of the
digital net generated by them is of optimal order (1). Let us, for instance,
consider the digital (0, n, 2)-net Ptri generated by C1 = A1 and

C2 =



1 a1,2 a1,3 · · · a1,n−2 a1,n−1 a1,n

0 1 a2,3 · · · a2,n−2 a2,n−1 a2,n

0 0 1 · · · a3,n−2 a3,n−1 a3,n

...
...

...
. . .

...
...

...

0 0 0 · · · 1 an−2,n−1 an−2,n

0 0 0 · · · 0 1 an−1,n

0 0 0 · · · 0 0 1


.

We observed that either µ(−1,−1),(0,0)(∆(·,Pa)) & (logN)/N or
µ(0,−1),(0,0)(∆(·,Pa)) & (logN)/N . If we could show a similar result for
∆(·,Ptri), then we would know that the nets Ptri fail to achieve the optimal
order of L2 discrepancy as well. However, this is not the case in general. We
define several parameters to demonstrate this claim: For µ ∈ {1, . . . , n} put
lµ(µ) := 1, and for k ∈ {1, . . . , µ− 1} put

lµ(k) :=

{
0 if ∃i ∈ {k + 1, . . . , µ} : ak,i = 1,

1 if ∀i ∈ {k + 1, . . . , µ} : ak,i = 0.

Then a direct computation similar to the proofs of Propositions 3.1 and 3.9
yields

µ(−1,−1),(0,0)(∆(t,Ptri)) =
1

2n+3

n∑
k=1

ln(k) +
1

2n+1
+

1

22n+2
,

µ(0,−1),(0,0)(∆(t,Ptri)) =
1

2n+3

(n−1∑
k=1

ln−1(k)−
n∑
k=1

ln(k)
)

+
1

22n+2
.

Hence both µ(−1,−1),(0,0)(∆(·,Ptri)) . 1/N and µ(0,−1),(0,0)(∆(·,Ptri)) . 1/N
if we choose C2 for instance of the form

1 a1,2 a1,3 · · · a1,n−2 1 1

0 1 a2,3 · · · a2,n−2 1 1

0 0 1 · · · a3,n−2 1 1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 1

0 0 0 · · · 0 1 1

0 0 0 · · · 0 0 1


or



1 1 a1,3 · · · a1,n−2 a1,n−1 a1,n

0 1 1 · · · a2,n−2 a2,n−1 a2,n

0 0 1 · · · a3,n−2 a3,n−1 a3,n
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 an−2,n

0 0 0 · · · 0 1 1

0 0 0 · · · 0 0 1


.
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We assume that we achieve the lowest possible L2 discrepancy for the net
Ptri if we fill the whole upper right triangle of C2 with ones. We intend
to investigate whether the corresponding digital net achieves the optimal
order of L2 discrepancy without shifting or symmetrization, and we hope to
determine precise conditions on C2 which ensure that.
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