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Finding exact formulas for the L, discrepancy
of digital (0, n,2)-nets via Haar functions

by

RALPH KRITZINGER (Linz)

1. Introduction and main results. In this paper, we study the L,
discrepancy of special digital (0,n,2)-nets with the main focus on precise
computation of Ly discrepancy.

Discrepancy theory treats the irregularities of point distributions, often
in the d-dimensional unit cube [0,1)? (see e.g. [13]). We study point sets P
with N elements in the unit square [0,1)2. We define the discrepancy func-
tion of such a point set by

A(t,P) = % D 1y(z) — tita,
zeP
where for t = (t1,t2) € [0,1] we set [0,t) = [0,%1) x [0,t2) with volume
t1t2 and denote by 1jg4) the indicator function of this interval. The Ly
discrepancy of P for p € [1,00) is given by

1/p
Ly(P) = AP, = (| 1A®PIPat)
[0,1)?
and the star discrepancy of P is defined as
Loo(P) = ACP)llconz) = sup [A(E, P)I.
te(0,1]?
Throughout this paper, for functions f,g: N — R*, we write g(N) < f(N)
and g(IV) 2 f(N) if there exists a C' > 0 such that g(N) < Cf(N) or g(IN) >
Cf(N) for all N € N, N > 2, respectively. This constant C' is independent
of N, but might depend on several other parameters asq,...,«;, which we
sometimes emphasize by writing Sq, .. o, a0d Zay,... «;, respectively. Further,

we write f(N) = g(N) if g(N) < F(N) and g(N) Z f(N).
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It is well known that for every p € [1, 00) the L, discrepancy of any point

set P consisting of N points in [0, 1)? satisfies

Vdieg N

1) Ly(P) 2p Y2,
where log denotes the natural logarithm. This was first shown by Roth [18§]
for p = 2 and hence for all p € [2,00), and later by Schmidt [20] for all
€ (1,2). The case p = 1 was added by Haldsz [6]. For the star discrepancy

of such a P we have the best possible lower bound

2) Loo(P) 2 BN

<N
which is due to Schmidt [19].

An important class of point sets with low star discrepancy is formed
by the digital nets (see e.g. [I7, 4]). A digital net in base 2 is a point set
{x0,...,2xn_1} in the d-dimensional unit interval [0, 1)¢, which is generated
by d matrices of size n x n. Hence we need two matrices to generate a digital
net in the unit square. The procedure is as follows. Let n > 1 be an integer.

e Choose a bijection ¢ : {0,1} — Za, where Zs is the field with two elements.

e Choose n x n matrices C; and Cy over Zs.

e Forr € {0,1,...,2" —1}let r = ro+2ry +---+ 2" 1r, 1 with r; € {0,1}
for alli € {0,...,n—1} be the dyadic expansion of . Map r to the vector
r= (QD(T’()) e 7()0(Tn 1))T’ )

e Compute C = ( 1 ,yg,)L)T for j =1,2.

e Compute 2\ = ¢~ ( )/2+-~-+<p* (yrn)/Q" for j =1,2.

o Set x, = (1:7(}),939)).

e Repeat steps 3 to 6 for all » € {0,1,...,2" — 1} and set P :=
{x1,...,xan_1}. We call P the digital net generated by C1 and Cs.

A point set P in the unit square is called a (0,n,2)-net in base 2 if every
dyadic box

my mp+1 my mo+1

9 o ) N o 9k )

where ji,jo € Ng and my € {0,1,...,2t — 1} and my € {0,1,...,272 — 1}
with volume 27" i.e. with j; + jo = n, contains exactly one element of P. It
is well known that a digital net is a (0, n,2)-net if and only if the following
condition holds: for any dy,ds € Ny with di + do = n the first d; rows of C}
and the first dy rows of Cy are linearly independent. By Niederreiter [17],
the star discrepancy of any (0,7n,2)-net in base 2 is of best possible order
(log N)/N. In particular, by [15] we have the general upper bound

9 Loo(P) < n/3+19/3
for every digital (0, n,2)-net.
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The situation is less clear for the Lo discrepancy of digital (0,7, 2)-nets.
Classical nets like the Hammersley point set (see Example fail to achieve
the optimal order v/log N/N of Lo discrepancy. To reduce the Lo discrep-
ancy of digital nets, digital shifts have been applied to such nets in many
previous papers [7, 4, 11]. A digital shift ¢ = (01,...,0,)" is an element
of Zy. We obtain a shifted digital net by altering the fourth step in the con-
struction scheme of digital nets above to Cor + o =: (?J?(~21) Yo ,yﬁ%), hence
after multiplication of the matrix Co by the vector 7 we also add the digital
shift, before transforming the vector back to a number in [0,1). Note that
by [10, Lemma 2.2], without loss of generality we can apply the shift only
to the second component.

We consider the following n x n matrices over Zs:

3)

0 0 00 ai

01 as

0 0O 1 00 0 01 0 0 oas

Ar= | 0 ) Ay = Do Do
01 .- 00 00 --- 1 0 aps

10 --- 00 00 -+ 01 ap_

00 -+ 00 00 .- 00 1

We study the discrepancy of the digital net P, (o) with @ = (a1, ..., a,1)7,

generated by A; and Ay and shifted by o = (01, ...,0,)T7. We simply write
Pg if we do not apply a shift. The set Pg (o) can be written as

tn t1 b bn,
,Pa(a->:{<2++2711>21++2n> :tla"'>tn€{071}}7

where by, =t ® agt, ® oy for k € {1,...,n—1} and b, = t,, ® 0,. Here §
denotes addition modulo 2.

We also consider symmetrized versions of shifted digital nets. It is conve-
nient to define Pg(0) = Py(0) UPq(0*), where 0* = (01 @& 1,...,0, & 1)T.
Note that P4(o) can also be written in the form

Pa(0) = Pa(o) U{(2,1-27" =) : (2,y) € Pa(0)},

which justifies the term “symmetrized digital net”. Symmetrization can of-
ten reduce Lo discrepancy to the best possible order (1)) (see e.g. [3, 14, 2]).
We will discuss this phenomenon in more detail in Section

Theorem gives an exact formula for the Lo discrepancy of the class
Pa(o) of shifted digital (0, n,2)-nets.
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THEOREM 1.1. Let L =Y""""a;(1 - 20;) and £ = 3" (1 — 20;). Then

1 )
(2" Ly(Pa(0)))? = ol ((Z L)Y? 4+ L+ 80— 1OL+3n)
3 1 1
+2n+4(20”L €+4)+§ 9 i’

Hence La(Pg(o)) < V1og N/N if and only if |¢ — L| < /n and |L| < v/n.

REMARK 1.2. For a fixed a € Z5 ™!, how can we construct a shift o € Z3
which satisfies [¢ — L| < v/n and |L| < /n? Put Iy :={i e {1,...,n—1}:
a; =0} and I :={i € {1,...,n— 1} : a; = 1}, and further ¢y := |{i € Iy :
o; = 0}| and £ := |{i € I : 0; = 0}|. Choose & such that ||Io| — 2(y| < V/n
and HI 1] —2[70} < v/n; hence the number of zeros and ones in the components
of the shifts whose indices belong to Iy or I respectively has to be balanced.

ExAMPLE 1.3. We study a special instance of our nets, namely Py(o),
where 0 = (0,...,0) € Z5~'. This is the (digit shifted) Hammersley point
set in base 2 (also known as the van der Corput set or Roth net). For a = 0
we have L = 0 and £ = Y " (1 —20;) = > " 1(2(1 —0y) — 1) = 22 — n,
where z denotes the number of zero digits in the digital shift o. We insert
these values into Theorem [L1] to find

n? 22 zn 19n 2 n z 1 3 1

L e D -
(L2(Po@))” = 611616 102 T4 Tod o8 Tgeer TR g e

This formula was already obtained by Kritzer and Pillichshammer [I1, The-
orem 1] in 2006. Their proof is different from ours, since they used an explicit
formula for the discrepancy function of the digit shifted Hammersley point
set, found by Larcher and Pillichshammer [I5, Example 2] in 2001 by an ap-
proach via Walsh functions. Like Haar functions, which will be the central
tool used in this paper, the Walsh functions are also an orthonormal basis
of L2([0,1)?) and are useful in studying the Lo discrepancy of digital nets.
For more details on Walsh functions we refer to [5, Appendix A].

As an immediate corollary of Theorem we compute the Lo discrep-
ancy of unshifted nets. Surprisingly, the Lo discrepancy only depends on
the number of zeros and ones in a, but not on their positions. The result
follows from Theorem [I.1] by setting o; = 0 for all i = 1,...,n, which yields
L=Y""a;and { =n.

COROLLARY 1.4. Let |a| = 2?2—11 a;. Then

i 1 ) 20\ 3 n—4 1 1
(2" Ls(Pa))® = o <(”—W) +lal 10\a\+3”> T8 onrt T g gents

Hence Ly(Pg) 2 (log N)/N for all a € Z5 .
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Now we fix a and ask how large the Lo discrepancy of the shifted nets
Pq(0o) is on average. In other words, we compute the mean of (27 Ly (Py(0)))?
over all possible shifts o € Z7.

COROLLARY 1.5. Let a € Z2™ ' be fized. Then

1 n 3 1 1

n 2 _ v = _
o Ezn@ La(Pal@)))” = 51 + 5 T gnrz ~ 5 zrs
oCLy

Hence the mean of the squared Lo discrepancy of Pa(o) over all possible
shifts o € 7 1is the same for all a € Zg_l and of best possible order accord-

g to .

Proof. It is not difficult to verify 27" Zaezg (¢ —L)> = n — |a|] and
27" Zaezg L? = |a| as well as 27" ZUGZELE =2™" Zan’gL = 0, which
yields the result. m

REMARK 1.6. Dick and Pillichshammer [4] studied the problem of the
mean squared Lo discrepancy of digital nets. They did not only apply a
shift o € Z3 to the first n digits of the coordinates as in this paper, but also
added random numbers from [0,27") to each component of all elements of
the digital net after the shifting process. Then they computed the mean over
all shifts and obtained the same result for every digital (0, n,2)-net. They
also studied the problem in higher dimensions. With the methods used in [4]
one can show that Corollary actually holds for all digital (0, n,2)-nets.

We will prove the following exact result concerning the Lo discrepancy
of the symmetrized nets Pgy (o). This formula demonstrates that the Lo
discrepancy depends on a and on o, but only to a minor extent.

THEOREM 1.7. Let Pq(o) have 2"t elements. Then

n 11 1 1 (—=1)on
=—+ -+ = - -

24 8 on 9.92n+1 on+2
Hence the point sets 73a(0') achieve the optimal order of Lo discrepancy
without any conditions on a and o.

(2" La(Pa(0)))?

REMARK 1.8. Again, the Lo discrepancy of unshifted symmetrized nets
depends only on the parameter |a|, since

~ 11 1 1 1
(2n+1L2<Pa))2 n + 4

24 % Ton 9.l gnd
For the symmetrized shifted Hammersley point set Po (o) we obtain
~ 1 1 1
(2" Lao(Po(0))” = 5

Tu TR T g
and so the Lo discrepancy is independent of the shift o. This result has
previously been obtained by the author [12] with the methods used in [15]

5lal.
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and [II]. Further, we immediately obtain for every a € Zg_l the average

result
n 11 1 1

1 ~
— > (2"La(Pa R

ocy

Note that the fact that the nets 73(1 achieve the optimal order of Lo discrep-
ancy independently of a follows already from [12, Theorem 2].

REMARK 1.9. Since the proofs of Theorems [I.I] and [I.7] as presented in
Sections 3 and 4 are very technical and prone to mistakes, we tested the
correctness of our formulas using Warnock’s formula [2I]. It states that for
a point set P = {xo,...,xn_1} in the unit square with & = (z4,1,xx2) for
k=0,...,N —1 we have

N2 N N2 N-1 2
(NLyn(P))? = 5 Z H(l - ZL’%Z) + Z H(l — max{xy;, 2 }).
k=0 i=1 k,l=0 i=1

This formula allows us to compute the Lo discrepancy of Pg (o) exactly,
provided that the number of points N = 2" is small (e.g. n = 10). Then
we can compare the results of Warnock’s formula with the output of our
formulas for different choices of n, a and o. Note that Warnock’s formula
requires O(N log N) operations to compute the Lo discrepancy of a given
point set (see e.g. [16, Section 2.4, Exercises 11, 12]), whereas our formulas
allow a very fast computation of this quantity for Py (o) and Pg(o).

We close this introduction by pointing out three papers which heavily in-
fluenced the current paper. The first one is [IT] by Kritzer and Pillichshammer,
who obtained the exact result for the Lo discrepancy of the shifted Hammer-
sley point set and discovered the beautiful fact that it only depends on the
number of zeroes in the shift o but not on their position. It is a natural question
whether this result can also be obtained with reasonable effort by using Haar
functions, as Hinrichs [8] computed the Haar coefficients of the corresponding
discrepancy function exactly in almost all cases. However, the aim of his paper
was to estimate the Besov norm of the discrepancy function, and therefore in
certain cases he was content with upper bounds rather than exact formulas.
We apply the notation of [8] and use some of its results and ideas. The third
paper which inspired this work is by Bilyk, Temlyakov and Yu [2], who com-
puted the Fourier coefficients of the discrepancy function of the symmetrized
Fibonacci lattice exactly in order to find an exact formula for its Lo discrep-
ancy. We do the same for a class of digital (0, n, 2)-net with the difference that
we compute the Haar coefficients instead of the Fourier coefficients, since Haar
functions fit the structure of digital nets much better than harmonic functions.

The outline of this paper is as follows. In Section [2| we introduce the
Haar function system and present general formulas for the Haar coefficients
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of the discrepancy function of arbitrary point sets in the unit square. Sec-
tion |3|is the longest and most technical one; there we compute all the Haar
coefficients of A(,Pg(0)) exactly and insert them into Parseval’s identity
in order to prove Theorem In Section 4 we do the same for the discrep-
ancy function of symmetrized nets, but we omit all the technical details.
In Section 5 we comment on the results for Haar coefficients in the pre-
vious sections. In particular, we point out which Haar coefficients cause a
large Lo discrepancy of (symmetrized) digital nets. We disprove a conjecture
by Bilyk and give a new proof of a result by Larcher and Pillichshammer
on symmetrized nets. In Section 6 we consider a different class of digital
nets, for the Lo discrepancy of which we can also find an exact formula with
the same method as in Section [3] We therefore omit technicalities again.
In Section 7 we discuss the L, discrepancy of digital nets with the aid of a
Littlewood—Paley inequality, and in the final Section 8 we mention several
problems for future research.

2. The Haar expansion of the discrepancy function. A dyadic
interval of length 277, j € Ny, in [0,1) is an interval of the form

m m-+1
2i7 2

I:Ijvm;:{ ) form=0,1,...,2/ — 1.

The left and right halves of I; ,,, are the dyadic intervals I 1 2, and Ij 41 2pm+1,
respectively. The Haar function hj,, is the function on [0,1) which is +1
on the left half of I;,,, —1 on the right half, and 0 outside of I;,,. The
L -normalized Haar system consists of all Haar functions h; ,, with j € Ny
and m =0,1,...,2/ — 1 together with the indicator function h—10 of [0,1).
After normalization in Ls([0,1)) we obtain the orthonormal Haar basis of
Ly([0,1)).

Let N_y = Ng U {—1} and define D; = {0,1,...,27 — 1} for j € Ny and
D_; = {0}. For j = (j1,Jj2) € N2, and m = (my1,mg) € Dj := D;, x Dj,,
the Haar function h; ,, is given as the tensor product

jm(t) = hjymy (1) Ry m, (t2)  for t = (t1,t2) € [0,1).

We call I = Ij;m, X Ljym, dyadic bozes with level |j| = max{0,j;} +
max{0, jo}, where we set I_1 9 = 1j91). The system

{2“7.‘/2hj,m 1 J € N2_1, m c ]D)j}

is an orthonormal basis of Ls([0,1)?), and Parseval’s identity states that for
every function f € La([0,1)?) we have

(4) 11,0 = D 290 D7 lujml

jeN{l meD;



158 R. Kritzinger

where the numbers
tgm = Hjm(f) = (fihjm) = S f@)hjm(t)dt
[0,1)2
are the Haar coefficients of f.
Let P be an arbitrary 2™-element point set in the unit square. The Haar

coefficients of its discrepancy function A(-,P) are as follows (see [§]). By
z € Iy, we actually mean z = (21,22) € Ij m NP.

o If j = (—1,—1), then
_ 1
(5) Hjm = 2 nZ(l—Zl)(l—Zz)—Z-
z€P
o If j = (j1,—1) with j; € Ny, then
(6) pjm=—2"""T"1 3" (1= |2my 41— 2y |)(1 - z9) + 27178,
ZGIj,m
o If 5 = (—1,j2) with jo € Np, then
() pjm=—2"""7"1 3" (1—|2mg+1—27Fz|)(1 - z)+27%272
ZGIj,m
° Ifj = (jl,jQ) with jl,jg S NQ, then
(8)
Pim =27 "IN (1 2my 1= 20 ) (1 — [2mg + 1 — 272F )
ZEijm

_9=21—2j2—4

Note that we could also write z € I j.m, Where Ioj,m denotes the interior
of I, since the summands in @f vanish if z lies on the boundary
of the dyadic box. Hence, in order to compute the Haar coefficients of the
discrepancy function, we have to deal with the sums over z above and to
determine which points z = (21,22) € P lie in [, with j € N2_1 and
m = (my, mg) € D;. If m; and mg are nonnegative integers, then they have
dyadic expansions

(9) my =22t 4oy, and mo =22"1s 4 sy,
with Tiy 5 Siy € {0, 1} for all 4; € {1, e ,jl} and iy € {1, R ,jg}. Let

tn t1 b bn
z = (21,22) = (2+"'+2;,21+"'+2n> € Pal0).

Then z € I ,, if and only if
(10) tpy1g=rrforallke {1,...,71} and by = s; for all k € {1,...,72}.
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Further, for such a point z = (21, 22) € Ij m we have
(11)  2my+1—20M =1~ — 27 g g — - — 20
(12)  2mo+1—-22"lsg =1 —bj, 1 — 27 )0 — - — 27277 p,

These observations will be the starting point of all proofs in the following
section.

3. The Haar coefficients of the discrepancy function of P,(o).
Recall the definitions of ¢ and L from Theorem Throughout the whole

section, a;- for j € {1,...,n — 1} will always mean o; & a;. The idea of
the proof of Theorem is as follows: We partition the set N? into 13
smaller sets J;, i = 1,...,13. Then we compute the Haar coefficients pi; m,

of A(+,Pa(0)) for all j € J; and further } ..~ 2141 ZmeDj |14j.m|*. Then
Theorem [I1] follows via Parseval from
13

(2" La(Pa(@)* = > > 290 37 Jpjml*.

i=1jeJi  meD;
Case 1: j € J; = {(—1,-1)}

PRrRoOPOSITION 3.1. Let 3 € J1 and m € D;. Then

1 1 1

Him = on31 + 92n+2 + on+3 (£—L).

Proof. By we have

_ 1
Mj,m:2 " Z (1—2’1)(1—22)—1
2€Paq (o)
_ _ _ 1
=1-2" Z 21— 27" Z 2o+ 277 Z 2122*1
z€Pq (o) 2€Pa (o) z€Paq(o)
1
:—Z+2_n+2_n Z 2122,
2EPq (o)
where we have applied
2" —1 [n ) .
— — — on— -
DRI SR S L
2€Pq (o) zE€Pq (o) =0

in the last step. We write u = 27, 1 +--- + 27", vy =27 (t; B oy) +
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consider
1
. tn 3] t1 ®© arty, © o1 t, © oy
S e 3 (o) (Roaon o)
2€Pa(0) t15000stn =0

- §1 ot ) e (2 D) (o L
- 2\ ! 2n IV ASE on
t1,eeestn—1=0

1
= Z <2_"_1—2_"_1an+2_”_1u+v22+2(uv1 +uv2))
t1,.tn—1=0

— 2n71(27n71 o 27n710_n) + (2n72 o 271)(27n71 + 271)

1
+ = Z (uvy + uvsy),

2 t15eeytn_1=0
where we have used
1 1 on—1l_1
>oou= > wm= Yy =g
t150etn_1=0 t1yeetn_1=0 1=0

in the last step. We have

1

(13) Z uvy

t1yeestn—1=0
1

_ tn1 31 t1 @ o th-1 ® op_1
. < : +...+2n_1>( . +...+2n>

t1,.tn—1=0

1 n—1 n—1

_ Z tk(tk ©® ak) + Z by (th b Uk2)
- on—kok on—ki19ka

t1,ee0stn—1=0 “k=1 k1,ko=1

K17k
1 n—1 1
= Z2n 2 Z tr(ti ® op) + on Z ok1—kagn—3 Z i, (tk, @ Oky)
=0 k1,ka=1 tkl,thZO
k1#k2

= 1 =

- k1—k2

=1 Z (1®oy) Z 2 .

k=1 kl,kzzl
K1k
Analogously,
1 1n—1 1 n—1
I / - k —k;g
(14) > uvg—42(1@ak)+8 > ook
t1yeeestn—1=0 k=1 k1,ka=1

k1 ko
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and therefore
1

N LS
Z (uvy + uvy) = 4; @Jk+1@a§§)+1 Z ok1—ka

t1,eestn—1=0 k1,ko=1
k1#k2

If a, = 0 then 1®o,+1P 0}, = 2—20y, and if a, = 1 then 1G o +1G 0, = 1;
hence 1 @ o, + 1@ 0, = (1 —ag)(1 — 203) + 1 and

n—1
Y (l@or+1d0,)=L—(1-20,)—L+n—1
k=1

Further, a direct calculation yields

n—1 n—1 n—1

D e S N B A O R
k1,ko=1 k1,ko=1 k=1

k1#k2

Now we put everything together to arrive at the desired result. m
The following consequence is immediate.

LEMMA 3.2. We have

1 1 2
2
Z 20! Z |j,ml|” = <2n+1 gonts T onts (- L)> :

JET mG]D)

Case 2: j€ Jo:={(—1,72) : 0< ja <n—2}
PROPOSITION 3.3. Let j € J2 and m € D;. Then

—2n—2 —n—j2—3 —2n—1
Hjm = 2 -2 7270 -2 (Uj2+1 S aj2+10n>

J2 /
9 S, Do+ s Do

Proof. For z € I}, we have by = s, for all k € {1,...,j2} and there-
fore

t t
2 AL
o bist1 _ 55 @ ptn ©0jp 1@ aitn &0
N 2 on—ja on—ja+1 on
t.
_ Jo+1
=1—u-— s e(ma, t,),
o ln tio+2 . 5i9PajtnDojy s1Pa1tn Doy
where 1 := T~ and € := e T et
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Further,
L—2mg+1—22T | =1 —[1 = bjy4q — - — 20277y, |

K if bj,41 =0, ie. tj,41 = aj11tn ® 0jy41,

- {1 —v if bj,41 =1, ie. tj,41 = ajyq1tn @ 0jp41 D1,
where v = v(t,) = 27 bj, 10 + - + 227" Fp, . We fix tj,49,...,1,; hence

g(ma, t,) depends on mg, and u and v are fixed as well. Then

1
Z (1—21)(1 — [2mg +1 — 22T

=0
_aj +1tn D 0411
= (1w S )
 Gjpyitn DOy D1
+ (1 I2 nzn—jf —e(ma,ty) | (1 —v)
=1-27"2 —e(my,ty) —u+ 27" 2 — 272 (g it @ 0jyr) (20 — 1).
We sum the last expression over the remaining digits ¢;,42,...,t, and ob-
serve that
1 1 on—j2—1_1 I
_ _ _ on—ja—2 _ o—1
)T SIS SR
tj2+2,...,tn:0 tj2+2,...,tn:0 =0
Hence
> (= z)(1 - 2mg 41— 22 5))
ZE[j,m

1
1 s o o
= LR o ) g ST (gt @ 04) (20 — 1)
tj2+2,...,tn:0

1

— Z E(ml,tn).

tj2+2,...,tn:0
From the definition of (mq, t,,) it is easy to see that

1 /
_ 9 S Do+ s Doy,
D elmty) =2"70" Z ont1—k :

tj2+2,...,tn—0

We compute Zt1j2+2,...,tn:0(aj2+1tn@%H)(z”_ 1), distinguishing two cases.
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If aj,+1 = 0, we obtain
1
Y. (@it ®0j41)(20 - 1)
t]‘2+2,...,tn=0
! G Dagt, Dot Doy
- Z Tj2+1 <2 <k Z ok—ja—1 t 2n—j2—1> - 1)

tj2+2,...,tn:0 =j2+2

1

oo o
k k n
- Z Uj2+1{ <2< Z 9k—ja—1 T an21> - 1>

tj2+2,...,tn_1=0 k=742

n—1 /
tp O (o 1®o,
+ (2< Z 2k—ja2—1 + 2n—j2—1> B 1>}
k=j2+2
n—i2=2-1
l on, l 1—o0,

= Oj2+1 Z {2<2nj22 + 2nj21> -1+ 2<2nj22 + 2nj21) 1}

1=0
= = 0jy+1 = —0jp+1 D Ajr410n.

If aj,y1 =1, then

1
Z (ajz-l—ltn ® 0j2+1)(2v -1)

tjo+25e-tn=0
1

n—1
tr ® agty D ok tn @ op
- Y ewoa(z( X MG 20T )

t]‘2+2,...,tn=0 k=j2+2

1 -1
_ Z 9 ng: tk@ak(0j2+l@1)@0k+Uj2+1@1@‘7n 1
- 2k—j2—1 on—jz2—1

tj2+2,...,tn71:0 k=j2+42
on—j2=2_]
o Z 2 l + Uj1+1 EB ]. @ On 1
- 2717]'272 2n7j272
=0
=051 P1Doy —1=—0j,11 D0y = —0jy41 D Aj,110n.
Thus, in any case >} (Ajyt1tn @ 0jy+1)(20—1) = —0j,41 D ajy+10
) Yy tigt2setn=0\Gj2+1tn D02 +1 = T 0jo+1 D 0Aj+10n

and we arrive at

) 1 ) )
S (L—z)(1 - 2my+1— 22T 5)) = yiCAR 9 il 4 )

zG]j’m

sk@ok+sk@afc

J2
P ie—9
+272 (0,11 @ agpp10m) — 272N

2n+17k
k=1

The rest follows from . "
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LEMMA 3.4. We have

- 1
D2 YT il = 527 (2027 — 9(n — 1)27H? 4 225 - 44)
JET2 meD;

n—1 n—2 7
4 9—3n-3 (Z o; + anL) _9—2n-8 Z 9—2i Z 22",
i=1 i=0 k=1

. !
Proof. We write S(mg) := > 72, % Then

1
S tim= Y {@T o2 B0 o @ ag,100))

m2€D;, 81,-.4,855=0
427222 (2_2n_2 —oTnTiTS 2_2n_1(0j2+1 S} aj2+10'n))5(m2)
+2_4j2_6S(m2)2}.

Since
1 J2 /
Sk Do+ s Doy,
. Stm) = > >
2n+17k
ma€D;, 815003855 =0 k=1
J2 1
B Z2j271 Z S @ ok + Sk D o D ag
- Pt g on+l—k
— Sk.:
J2 9
— Z 9J2—1 — 92j2—n _ 9j2—n
2n+1—k
k=1
and
2
> S(ma)
m2€Dj,
1 J2 / /
B Z Z (Skl@(fkl—l-skl@le)(sk2@0k2+8k2@ak2)
- oL = on+1—k19gn+1—ka
81505850 = 1,ka=
k1#k2
J2
(Sk Do+ s D 012)2
+ Z 22n+2—2k
k=1
J2 J2 2 2
. Z 2j2—2 4 —|—Z2‘72_1ak+(1+ak@1)
- on+1—k19n+1—kz 92n+2-2k
k1,ko=1 k=1
k17#ks

1 —2n4-ja+2 1 —2n43j2+1 —2n42j2+1 & jo—1 4 —2ay,
=32 ’ +§2 -2 ’ +222 92n+2-2k’

k=1



Ly discrepancy of digital (0,n,2)-nets 165

we obtain the claimed result by combining all these expressions, summing
214l ZmeDj |115.m|* over all j € J> and using the fact that

n—2 n—1 n—1
D (01 @ aj100) = Y (0B aion) = (05 — a;on)?
j2=0 i=1 i=1

i
L

(Ui — 2a;0;0, + aian) = Z o;+opL. m
) °

Case 3: j € J3:={(-1,n—1)}
PROPOSITION 3.5. Let 3 € J3 and m € D;. Then

—on—1 Sk@ak on ©® 1) @ oy
o= (s TG DO )

Proof. For jo=n—1we have 1 — [2mg + 1 — 22Tl =1—|1 -b,| =
b, =ty @ o,. Writing

<.
I

n—1
S @ artn, D o,
SRS, 3 L LI
k=1
we get
1
. t
o (l—z)(1—2my+1-22H ) = Y (1 - 5” - e(tn,m2)> (tn ® on)
ze[j,m tn=0
1
=1- Unz@ —e(on ® 1,my),

which leads to fijm = 272" (0, &1+ 2¢(0, ©1,m1) — 1) via (7)) and hence
to the result. m

LEMMA 3.6. We have
; 1
S Y gl = 2 g2 2 k)
JET3 mE]D)j
Proof. We have

> 270

j€j3 mE]D)j

1 n—1 2
D S C G B )

S1ye0ySpn—1=0 k=1
on—1_1 I 2
_ on—1 —2n—1
=" ; <2 n (—an + 2n_1>> ,

which leads to the claimed result. =
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Case 4: j € Jy:={(—1,72) : jo > n}
PROPOSITION 3.7. Let 3 € J4 and m € D;. Then
2j2—3

Hjm =27

Proof. 1f jo > n, no point of P is contained in the interior of I; ,, and
therefore only the linear part —t1ty contributes to the Haar coefficient of the
discrepancy function in this case. Hence, the given formula is an immediate
consequence of . =

LEMMA 3.8. We have

> 2Ny ml? = %2‘2”.

JEIT mG]D)j

Proof. It is easy to compute

o0
. Y 1
I T e e w2z

JE€Ja meD; Jo=n
Case 5: j € J5 :={(0,—-1)}

PROPOSITION 3.9. Let j € J5 and m € Dj. Then

! 1 1 1
Hjm = 92n+2 B on+3 + on+3 B 922n+1 On-

Proof. For z € Pg(o) we have

b b
2 on
-1 t1 ® art, © oy tn—1 D an—1tn © on—1 ty, @ op
and
L= [2m 41 =22 =1 —[1—2z =1 — 1=ty — 2t 1L
mi 2| = 2| = " g 1|

Hence, writing u = 271, 1 + - + 27", vy = 27ty @ oq) + -+ +
27 (¢, 1 @ op1) and vg =27ty @ of) + -+ 27t D 0l y), we
have
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> (1= 2my +1-2z])(1 - 2)
2€Pq (o)

1
tn—1 t
= D, <1_‘1_tn— T

t1,..,tn=0 >

y (1_ t1 @ arty, @ o1 tpn—1 D ap—1tn © on_1 _ tn@0n>

2 2n—1 AL

= thé;_o{ (1 —up - 2n> (- <1 - ””Qf 1)}

1
= Z {1-2"4+2"0, —vo+u(27" — 27" g,) + u(vy —v1)}
t17---7tn—1:0
= l1 -2 4 27"g, )+ (2" 2 — 27 (—1 427" — 27" g
1

+ Z U(UQ — 7)1),

t1,05tn—1=0

where we have used Z; b= U = Z;l ot _—ov2 =272 =271 in the
last step. By and (| we find
— n—1

1
1y 1 L
Z (U2—U1 4;Uk@l_gk@l):_4Zak(1_2ak):—4,

t1,.estn—1=0 k=1
and therefore
1
S —2m+1-2n])(1-2)= i 27l pon=2 4 o7y,
2€Pq (o)
The rest follows from @ "
LEMMA 3.10. We have
1 1 1 2
2
> 2> lnml? = (22n+2 ~ s T omrsl 22n+1‘7”> :
JETs mG]D)
Case 6: j € J5:={(j1,—1): 1 <j1 <n-—1}
PROPOSITION 3.11. Let j € Js and m € D;. Then
i = 27 QI i 9 () — 22 0,y ©0,,)),
where e(my) = rl@a" + Z rk@a"+§nﬂl%0"+l .

Proof. Simllar to the proof of Proposition 2 we write

=]

bn_jl

1—22:1—U—ﬂ—5(m1)
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with u = 271b; + - + 277ty o and

6(m1) = 2_n+j1_1bnfj1+1 + -+ 2_nbn

J1

_ridoy Z Tk D Qpy1-kT1 D Onq1—k

AL on+1—k
k=2
We also have
1—|2my+1— 2j1+121‘ =1-—1- tpejy — " — 2j1—n+1t1|
v if tn—j1 = 07
1w ift, =1,
where v = 2_1tn—j1—1 + o 20y Let us first fix ¢4, ... s tn—j,—1 and

hence v and v. Then we have

1

bn—‘ -
50 (1w g e ) (1= 1=ty = = 2

on—j1
tn—j, =0
Ap—iT1 D Op—i
= (1 —u— = ]12n7j1 o —5(m1)>v
1D ap—ir1 ®op_;
T (1—“— o —€(m1)>(1—v)
=1-27"M — g4 27y — 27 (g, @ oy )Y
+ 27" (an 1 © o jy)-
Since
1 1 on—ii—1_1 I 1
_ _ —on—ji—2 _ =
Z w= Z U= Z on—j1—1 =2 ' 9’
tl,...,tn,j1,1=0 tl,...,tn,hfl:(] =0
we find
> (1= z)(1— [2my + 1 -2 5))
ZGIj’m

— 9 -2 (22n + giitn _ 921+l _ 22”+16(m1) + 22j1+2(an,j17“1 b Unfjl)).
The rest follows from @ n
LEMMA 3.12. We have

> 23 Jjml?

jejﬁ mG]D)j

n—1
1
= 547 (B + 14" = 56) =274 (n 1 -2 z; 0i —20,L).
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Proof. To compute )
and find

1
Yo Him

71,0075, =0

1
— Z {(272%72]1*3(22]14’1 _ 2]1+n + 22n+15(0) _ 22j1+20,n_j1))2

72575, =0

4 (2—2n—2j1—3(22j1+1 _oiitn 2271-1—16(1) 92j1+2,/ ))2}.

n]l

2 : —
maeD;, M ms We first sum over ry, write ¢ = e(r;)

We arrive at the claimed formula by writing £(0) = 2n samr + g and (1) =

Qn 415 5 and by replacing the sum over 73, ..., 7; by a sum over [ running
from 0 to 21—l _ 1. u

Case T: j € J7 := {(j1,—1) : j1 > n}. This case is completely analo-
gous to Case 4.
ProprosITION 3.13. Let 3 € J7 and m € D;. Then

—251—3

Hjm = —
LEMMA 3.14. We have
. 1
2 -2
S S gl = 2
JeT7 mG]DJj
Case 8: j € Jg :={(0,72) : 0 < jo <n—2}

PROPOSITION 3.15. Let j € Jg and m € D;. Then

1, —22”42 —Skiai 1

+272 2(1 +20541(0n = 1) + 200 (07,41 — 1))

Proof. In this case, the condition z € I, results in by = s; for all
ke {1,...,j2} and

2my4+1—-21F 1 =1 -2z, =1—1¢, —--- —27"Fly

=1—t,—u— 2*”+J'2+1tj2+1 —e(ma, ty),

_ s . .
where u = 2 1tn—l 442 n+]2+2tj2+2 and 5(m2atn) = ?92 1 W
Further, we have

2mg +1— 2j2+122 =1- bj2+1 —_— = 2—7L+j2+1bn

=1- tjst1 D Ajpr1ln @ Tjpr1 — ’U(tn) — 27n+j2+1tn Doy,
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with v(t,) = S 71 Zpi2 22T F (s, @ agty, ® o},). Therefore

> (= [2my +1 =2 ) (1 — 2mg + 1 — 22 5))
ZEIj7m
1 .
= Z (1— |1—tn—u—2_”+]2+1tj2+1 —E(mg,tn)D
tj2+1,...,tn:0
X (I—|1— Ljot1 @ Ujpt1tn © Ojpp1 — v(tn) — 2_n+j2+1<tn @® on)l)
1
= Z {(u+27"2% g, 11 +e(me,0)) (v(0) + 272 g,,)
tj2+2,‘..,tn71:0
+ (w4272 g5 @ 1) + e(mo, 0)) (1 — v(0) — 272 g,
+ (1 — g — 2 el ;2“ g(ma, 1)) (v(l) + 2_"+j2+1(0n P 1))
+(L—u—27"2 () ®1) —e(mg, 1)) (1 —v(1) — 27" o, 0 1))}
1
= Y AT 20u(0y01 + 0y — 1) = 207,40 +1)

Ljg+25e-stn—1=0
+4"(1+8(m2,0)—5(m2,1) 2”+J2+1(aj 11 0j2+1))
(20,01 — 1)0(0) — (2%, 1, — Do(1)) ).

In the last expression, only v(0) and v(1) depend on the digits tj,12,...,tn—1
and we have

1 1 on—j2=2q
R S R S
2n—j2—2 2

tj2+2,...,tn71:0 tj2+2,...,tn71:() =0

Hence, we can compute Zzeljm(l —2my + 1 =21 ) (1 — |2mg + 1 —
272%12,|) and the Haar coefficients via (8)). Note that

isk@ak—sk@akeaak Z 2(sp ®og) — 1

g(me,0) —e(ma,1) = Sk ok ,

k=1
where the relation s; @ o — s, @ ar ® o = ag(2(sk @ ak) — 1) can be seen
easily. m

LEMMA 3.16. We have

n—2 i
Z 2|_7| Z |'u m|2 4—2n 3(4 4) + 2—271—8 22—21' Zak22k-
JETs meD; i=0 k=1

Proof. For the sake of brevity we write

f= 2_2"_2(1 +20j,11(0n — 1) + 20,(07, 11 — 1)).
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Note that f does not depend on mso. Then ng €D, M? m equals
2 b

By

ma€Dj,
—2jp—3 Sk@f’kz -1 2
Since
1 J2 J2
2(sp P og) — 1

Z Z T — =Y s le (sr® k) —1) =0
S1ye458 0 k= k=1 sp=0
and

1

J2
> (Salegnity

S15e-38jg =0

_ & (2(sk, D oky) — 1)(2(8ky D 0k,) — 1)
- Z Z akl ak2 2117](:1 277,7]@‘2
8158j5=0 “k1,ko=1

K1k A
2 (25 @ op) — 1)?
+ 92n—2k
. k=1
J2 e, Ok, - 1
- Z 2nfk12nfk2 22 Z (2(sk, © oky) — 1)(2(sk, D Oky) — 1)
k1,k2=1 Skq1Skg=0

k1¢k2

+222211 72" IZ (sk @ op) = 1)°

sp=0
2
— 2j272n Z ak22k,
k=1
this yields
Z MJ = 2—3]2 2n—8 Zak22k + 232]('2
szD =
Note that 1 + 20j,41(0n — 1) + ZJn(UjZH —-1) =1-20541 if 0, =0,
and 1+ 20j,41(0n — 1) + 20,(07, 1 — 1) = 207, — 1 if 05, = 1; thus
(1 +20j,41(0n — 1) + 200(0), 41 — 1))?2 = 1 in any case and f? = 2744,
After summation over js we obtain the result. m
Case 9: j € Jo:={(j1,J2) ENg : 1+ jo <n—2, j1 > 1}
PROPOSITION 3.17. Let j € Jg and m € D;. Then

Wim = 2—277,—2 (2(an,j17“1 b Uj2+1) — 1) (2(aj2+17‘1 ] O'n,jl) — ].)
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Proof. By 7, the condition z € I; », yields
2m1 + 1 — 2j1+121 =1- tn—jl —Uu— 2j1+j2_n+1tj2+1 — &1

with v = 2_1tn7j171 + 4+ 2j1+j2_n+2tj2+2 and

J2 J2
gy = il Z ok—1y, = on—n+l Z 2k_1(sk @ apr1 @ og) = e1(m).
k=1 k=1

Similarly, we write
2mo + 1 — 2j2+122 =1- bj2+1 -V — 2j1+j27n+1bn_jl — &9

with v = 2—1bj2+2 N 2j1+j2—n+2bn_j1_1 and

J1
£g = 202711 Z 2" b1k
k=1

J2
= 9f2—n+l (1"1 @ o + Z 2’“*1(77C D api1_ k1 D 0n+1_k)) = go(m).
k=1

We fix the digits tj,42,...,th—j,—1; then u and v are also fixed. We sum
(1—2my +1 =212 ) (1 — |2mg + 1 — 22T 2y))

over tp—j, € {0,1} and tj,41 € {0,1} = {4171 B 0jo41, Ajo 171 D 0511 D1}
and find after lengthy calculations

1

Yo ==ty —u =2 — )
tig+15tn—j5;=0 . L
: ' X (1= 1= bjpyr —v = 2127, — e

=1+ gntitietl (2(an_j17"1 D 0']'2+1) — 1) (2(aj2+17’1 D Un—jl) — 1).
Summation over the remaining digits t;,42,...,t,—j, -1 yields
> (= [2my+1 =2 ) (1 - [2mg + 1 — 221 2))

ZEIj,m
— on—ji1—j2—2 + 9—"n+j1+j2 (2(an7j17,1 D 0'j2+1) _ 1) (2(aj2+17a1 D Unfjl) _ 1)’
and the result follows from . u

Since /@ m= 2~47=4 i5 independent of j and m in this case, the following

consequence is straightforward.

LEMMA 3.18. We have

. 1 o
>0 29 37 gl = G477 B0~ 747 116).
J€Jo meD;
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Case 10: j € J10:={(0,n—1)}

PRroprosITION 3.19. Let 3 € Jio and m € D;. Then

sk @ ag(o, B 1) oy,
n Z ank

)

Proof. We have 1 —|2m1 +1 — 22| =1 — }1 -ty — Z;%S’@;’j%
and 1 —|2mg + 1 —2"29| =1 — |1 — b,| = by, and therefore

1
Him = 22n+2<1 —2
k=1

> (= [2my +1—2z))(1 - [2mg + 1 — 2"2))

ZEijm
1 n—1
S @ ait, P o,
=S (1o - E S e
tn=0 k=1
n—1
s © ap(on 1) © oy |
:1—‘1—%@1—2 = ;
k=1

the rest of the proof is straightforward by . "

LEMMA 3.20. We have
) 1,
§ 2|J| § ’,Ufg,m’2 — §2 4n 6(2271 + 8)

J€J10 meD;
Proof. In both cases o, = 0 and o, = 1 we find
an—1-1 1 2n—1—1 I \2
-1 2 _ on—1
P = 3 (1725 )
ma=0 1=0
which yields the claim. m
Case 11: j € 711 :={(Jj1,J2) € N(Q) i1t je=n—1,75 >1}
PROPOSITION 3.21. Let 3 € J11 and m € D;. Then
Mg m =

Ji

—2n—1 L ' _Z Tk D Ont1-kT"1 O Ony1-k  T1Dop
2 { (1 ‘1 @j2+171 D g1 92j1—k+1 271
k=2

)

J2
Sk D agr1 & oy
o (Y )

k=1
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Ji
Z Tk D Ont1-k"1 D Onp1—k 71D on
2j1—k+1 271

+ <1 - ‘1 —1®aj1171 D 0jpq1 —

)

J2
Sk D agr1 oy, —9n—2
X <1_22jz—k+1>} -2

k=1

Proof. By the condition z € I ,, all digits but t;,41 = t,,—;, are fixed.
Hence, we get the result by summing (1 — |2mq + 1 — 2171 2|)(1 — [2ma +
1 —272F125]) over the two possibilities ¢j,11 = 0,1 and expressing the other
digits of z; and z3 in terms of the digits r;, and s;, of m; and mg according

tO.l

LEMMA 3.22. We have

> 2N g m)? = 2 —4n=6(3n22" 4 7. 922" 1 48n — 88).
jeJn meb;

Proof. As usual, we first investigate ZmGDj u? m- We sum over 71 to
obtain

> ¥

72,..,7j1 =0 81,...,855,=0

{2—271—1( ’1_1@0_]2+1 Z2k‘ 1— Jl(rk@o-n+1 k _2 .71 ‘)
k=2
J2

X (Z2k 1= ]2 (sk @ o)

k=1

+2—2n—1( ’1_1@0]2+1 Z2k 1— Jl(rk@o-n+l k _2 ]1 ‘)
k=2
J2 ' 9
x (1 N o ak)> - 2*2"*2}
1 1 k=1
+ > D

725,75, =0 81,...,8,, =0

J1
{2—2"—1 (1 - ‘1 1@l > 2T (@0l ) — 27 (o ® 1)‘)
k=2
J2
X (Z ok=1=J2 (g, @ og))

k=1
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J1
4 2—27’L—1 (1 _ ‘1 -1 @ 0'3‘2_’_1 o Z 2k—1—j1 (Tk: @ O-;z—‘rl—k) — 2_j1 (O'n @ 1)’)
k=2

72 , 2
X (1 — Z ok=1=02 (g, @ J;)) — 2_2"_2} = M1(0jy41) + Ma(0%, 1)
k=1
We can compute M;(0) via

2i1—1_12i21
> Y (2
2j2 \ 2j1—1 * 951

11=0 Il2=0
YRR Y AU T ) Gy
272 2j1—1 95 ’

Similarly, one calculates M7(1) and finds M;(1) = M7(0). We can compute
M>(0) with the same formula as for M;(0)—we just have to replace o, by
1 — op,. Again we have Ms(1) = M3(0) and therefore ZmeDj u;m = M;(0)

+ M>(0). The rest follows by a straightforward summation of 21 37 meD; M?,m

over all j € J11. =
Case 12: j € J12 .= {(j1,j2) € N2 1 j1 +jo > n, 1 < j1, 5o <n—1}
PROPOSITION 3.23. Let 3 € J12 and m € D;. Then

)

n—j2
w(1-11- Z Tk D Ongp1-kT1 D Opg1—k "1 D Oon
271,7_]'27’6 2%7‘7.271

n—ji
Z Sk P arri P o
2n—j1—k‘

[ m = 9—n—j1—j2—2 (1 _ ‘1 _
k=1

) — 972j1—2j2—4
k=2

if s @ aprt & oy = rpgp1—y for all p € {n+1—j1,...,j2}, and pjm =
—27201=22=4 otherwise.

Proof. Again, the condition z € I; », implies, by , that t, 41k =71
for all k € {1,...,71} and by = s for all k € {1,...,j2}. As a result, for
we{n+1—yji,...,j2} we must have
(15) Tnil—p = by @ auty ® oy, = s, Sayry oy
in order to have a point of P in the dyadic box I ,,. Hence, if is not
satisfied, then only the linear part of the discrepancy function contributes
to the Haar coefficient and hence p; , = —27 21224,

Assume now that is satisfied and let z = (21, z2) be the single point
in Ij . Then by (11]) and we obtain

Hjam = 2L Lty — e = 20 )

x(1—1— bjgt1 — -+ — 2j27n+1bn|) _ 2*2j1*2j2*47
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where the above conditions on the digits give tp = sp ® apr; @ op for k =
1,...,n—jrand byy1 =7 D apr1 k1 Dopy1g for k=2,....n— js as
well as b, = r1 @ 0,,. Hence the result follows. m

LEMMA 3.24. We have
n 1 1 1 5
Z 2|J| Z ‘:uj m’2 = 472 ymnm2 _pyinl + “p4n3,
JE€T12 meD; 21 27 9 9

Proof. We write
201 — 272 1 272 —1

2 2 —2j9—272—4\2
§nwm|=§j( Xt X2 22
meb; mao=0
satlsﬁed (15) not satisfied

2011 2921

= Z Z p3 g+ 201 (22 — 2n Ity AR,

m1=0 mo=0

satisfied
Note that for a fixed m; € D;; the system fixes the digits sp—j, 41, -, Sjs
and thus the digits s1,...,s,—j remain free. This means that there are

2"t elements in Dj, which satisfy , whereas the remaining 272 — 2771
elements do not. It is where the factor 272 — 2"7J1 in the last expression
comes from. Let us study

2i1—-1 92i2-1
2
) 2: 3 m-
mi= 0
satlsﬁed
It equals
1 1
7250575 =0 815,803
e — 02 i1 —n+1
(220 1= sy Do, — = 2 (s 8 01))

X (L= =rpjy B Ojpp1— - — 227", |) — 2_2j1_2j2_4)2

1 1
DD
720 Tjy =0 S1eesSn—jy
@A = L= sy B oy, = =2 (1@ 0))
X (L= |1 =1y ® 0y g — o — 27 "“(an @ 1)]) — 272221
=: 51 + 59,

where we have already summed over r1. The sums S; and S can be com-
puted similarly. Note that the summands in S; do not depend on the digits
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Trn—jot1s---,Tj - Summation over r,_;, and s,_;, leads to
1 1

Sy = 9Jj1tj2—n Z Z

P2 s Ty —1=0 81,08, —1=0
{(2_”_j1_j2_2u(v + 2j2—n+10n) _ 2—2j2—2j2—4)2
+ (2fnfj1*j272u(1 —y— 2j2fn+1an) _ 2*%2*2]'2*4)2
+ (27T (1 )0+ 22 oy) — 27
4 (2R (1 = 2P, -yttt

where u=2"1(sp_j, —1D0p_j,—1)++ - -+20 7" (s1®0q) and v=2"1(r,—j, 1
Bojyr2)+- - +227" 2 (rg @ oy,_1). To compute the sum over the remaining
digits, we replace u by 27"+, and v by 27"*+72%2, and let {1 run from 0
to 27751=1 — 1 and Iy run from 0 to 2"772=2 — 1, respectively. This yields

Sl — _2—3j1—3j2—8 + 12—577,—1 + 12—3n—2j1—2 + 12—377,—2]’2—4
9 9 9

+ }24%2]'172]'275 4 on—dn—4p=9 _ (125n2 + 123n2j13)_
9 3 3

We obtain a similar result for So with the only difference that o, is replaced
by 1 — o,. Altogether, we find

Z ‘,Ufg,m‘Q — _2—3j1—3j2—7 + %2—5TL—2 + 32—37L—2j1—3 + %2—3%—2]'2—3
mE]D)j
+ %277172]'172]'274_’_2n74j1*4j2*8+2j1(2j2 _ 2”*3'1)2*4]'1*41'2*8_

The rest follows by a straightforward summation of 219! >
all g € J11. m

2
meD; Hjm OVEr
Case 13: j € Ji3 :={(j1,j2) € N3 : j1 > n or jo > n}
PROPOSITION 3.25. Let j € J13 and m € D;. Then

Him = _272j172j274‘

Proof. No point lies in the interior of I, if j1 > n or j2 > n, and
hence the result follows directly from . "

Since the Haar coefficients in this case are independent of m, the follow-
ing consequence is easy to verify.

LEMMA 3.26. We have
. I
2 : 2\]] 2 : | J. |2 92 4dn 4(22n+1 1)

JET3 meD;
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4. The Haar coefficients of symmetrized digital nets. From the
construction Pg (o) = Pg(0) U Pg(0*), it is easy to see that for the Haar
coefficients fij m of A(:, Pa(0)) we have fijm = %(,ufj”m—i-u‘j’,;%) (compare [9]
proof of Lemma 3]). Here, xi,,, denote the Haar coefficients of A(:,Pa(0))
and u‘;m those of A(-,Pq(c*)). Hence, it is easy to derive fij, from our
previous results.

PROPOSITION 4.1. Let j € N2, and m € Dj. Then fijm equals:

1 1 . .
® it +amrz I €T

1 1+aj,+1(2(0jy+1®00n)
2— 22]'2 n) - 2 22532 = Zf] € Ja.

223+s(
o — o + g Yopsy Al=skOon®on) yp 5 e 7.

o 2723 withi=1ori=2ifj € Jy orj € J7, respectively.

. _2”% if 3 €Js.

° —W if 3 € Js-

o wmz(0hi1+0), 1 —1)(20,—1) if j € T

o oz (2(an—jim1 B 0jpt1) — 1)(2(ajy117m1 B onyy) — 1) if 5 € To.

o —(—1)na 2n-2y7n—1 1 (1= ak)(2sb51c@gk -1 if 7 € TJio.

o 2 2n— 2{(1 — ‘1 — Ayt 171 D Ojpq1 — U — 2701 (ry @ an){)v

+(1- ’1 —jy41T1 B Ojp1 D1 —u— 27 (r @ O'n)‘)(l —-v)}

+ 272"72{(1 — ’1 — jy1T1 B Oy D1 — ' — 21 (r1®on ® 1)‘)1}
+(1-1=ajp1r ®ojpp1 —v =27 (n@o, @ 1)) (1 —0)} —272"72

. j k—1—7 /
if § € Ju, where v = Y71 ,2 N(re @ ape1-kr1 D Opg1-k), v =
St 2k g = 3702 2R TR (s Bagr Do) and v/ = Y72 2K1TR

e Forj e Jio:

n—ji o o
9—n—ji—j2=3( 1 _ |1 — Sk ak?'l Ok
2n—]1—k
k=1
n—ja

Tk D anp1-kT1 D Ong1—k 71 D on
on—j2—k on—jz—1

><<1_‘1_

+ 27717]'1*]'2 3

(o3

— 97 2j1—2j2—

]

)

- Sk@akﬁ@ﬁk@l
on— J1—k

N

-z

3
<.

j2

M

Tk D anp1-k"1 DOnp1-k ®1 71D 0n B 1
2%7]'27]6 2717]'271

"kf
[\o}
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Zf jl + j2 =n;
& Sk D agr1 D oy
—n—ji1—j2—3 —_ 11 = Al
2 17J2 (]_ ‘1 kZ; 2n7j1*]€ >

n—ja
w(1-11— Z Tk D anp1-kT1 D Ong1—k 71 Doy
2n—j2—k on—jz2—1

> _ 972j1—2ja—4
k=2
if j1+jo > n+1 and s, ®aur1®oy, = rpp1—p for allp € {jo, ..., n+1—j1};

n—ji
—n—ji—ja—=3(1 |1 _ Sk @ agry ® o @ 1
(" > e

1-1 2 T D A1 kT B o1k D1 T @0, 1 9~ 21-2j2—4
ol W Z on—jo—k - on—p-l -
k

g1+ 2n+1and sy ©apry © 0y S 1= Tpy1—y for all p € {ja, ...,
n+1—j1}; and —2721722=4 otherwise.
—272n =224 if § € Jis.

[}
Now we have to calculate
=X Y [
jeTi mEDj
for all i € {1,...,13}. In many cases this is easy, and the argument in the

more difficult cases is very similar to what we did in the previous section.
We therefore state the following results without proofs.

LEMMA 4.2. Consider a symmetrized net Pq (o). Let fijm for j € N2,

and m € D; be the Haar coefficients of the corresponding discrepancy func-
tion. Then

2

2= (gn% + gmvz) -
—1)on _ .
Xy = I 24n+4 (22n _ 4) _ (23n)_‘_4 L+ 24&4_6 Z?:ll (17;22Z-

21
X3 = 24n+6 Zz 1 a12 ' 24n+4
— 1
Xy = ZJGJ 2ld] ZmG]DJ |5, m|® = 822 -
1

X5 = 9216 -
T = ot (22" — 4)

6 — 3.94n+6

3n-22”—7~22”+16)
220 — 4) — ok S0 022

( )
2= 3.241n+6 (2271 - 4) 24n+6 Zl 1 az22i-
Xy = 9.241n+6(

(

1
29 - 3.24n+6
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o Yig=g27176(5. 4" + 4 — 24n).
o D11 = gairs (n(227 + 8) — 2(2" 4 2)).

[ 212 = 9.24++4(22n+1 — 1)

We obtain Theorem 2 via (L (Pq(0)))? = S5

5. Why do (symmetrized) digital nets fail to have the optimal
order of Ly discrepancy? In many previous papers (e.g. [3, [I4]) it has
been observed that the reason that a point set fails to have the optimal
order of Lo discrepancy can often be found in the zeroth Fourier coefficient
of the corresponding discrepancy function (which is the same as the Haar
coefficient for j = (—1, —1)). This recurring phenomenon led to the following
conjecture by Bilyk [1]:

Whenever an N-element point set P in [0,1)? satisfies Loo(P) <

(log N)/N (i.e. its star discrepancy is of best possible order in N) and
Ly(P) Z (log N)/N, then P should also satisfy

‘ | AwPp)a > los V.

[0,1) N

Our results imply that it is not true. Consider the point set P1, where 1 =
(1,...,1) € Zg_l. Then by Proposition 1 we have p_1 _1) 0,0 = 2 =2 4
5-27"3 <1/N, but Ly(P1) 2 (log N)/N, which follows from Corollary [1.4]
Note that Loo(P1) S (log N)/N, since Py is a (0,n,2)-net. Hence Py is a
counterexample to Bilyk’s conjecture. More generally, none of the nets P (o)
achieves the optimal order of Lo discrepancy. The reason is that for all a
at least one of the inequalities (1 1) 0,0) 2 (log N)/N or o —1),0,0) 2
(log N)/N holds; hence in some cases the Haar coefficient for j = (-1, —1)
is not the one causing trouble.

We point out that an earlier counterexample to the above conjecture
appears in [14]. To state it, we consider the digital (0, n,2)-net generated by
the matrices C; = A; (see (3)) and the matrix

100 --- 0
110 -~ 000
101 --- 0
Co=|: 1 i,
100 --- 1 00
1 00 010
1 00 0 01

which we call P.. We denote its shifted version by P.(o). The following
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theorem of Larcher and Pillichshammer [I4, Theorem 1] shows that not every
symmetrized digital net achieves the optimal order of Lo discrepancy. Their
proof is based on a Walsh function analysis of the discrepancy function. Here
we shall give a new proof based on Haar functions.

THEOREM 5.1 (Larcher and Pillichshammer). The Lo discrepancy of the
symmetrized point set Po>™ := P, U{(z,1—vy) : (z,y) € P.} with N = 2!
elements satisfies

log N
L) 2 Y.

(Note that pu_1,_1),00,0)(A(PE™)) = 2772 and Loo(PE™) < (log N)/N.)

Proof. Instead of P&¥™ we investigate the L, discrepancy of P, (o) =

P.(o) U P.(o*), because the difference between Lo(P™) and La(P.(0)
is at most 27" (see [9, Lemma 4]). Let ng,, denote the Haar coefficients

of A(-,Pc(a)), and fF,,, those of A(+,Pe(e)). The idea of the proof is as
follows: By Parseval’s identity we have Lo(P(0)) > ﬁ?_1,0)7(070). We will
show [L?_l’o) 0,0) 2 2 (log N)/N, which yields the result.

In order to calculate M(_1,0)7(070), we first compute u‘(’_170)7(070) for an
arbitrary shift. We write

t t1 t1 Doy t1 9ty ©o
Pc(a'):{<2"+--~+2n, 5 +-~-+2’;"> :tl,...,tne{o,l}}.

For z = (21, 22) € Pc(o) we have

> (1—z)(1 -1 -2z

z€P:(0o)
1
t t
— Z 1 _ ...
2 on
t1,...stn=0
t1 @t D oo th Dt, Doy,
x(l—‘l—h@al—Q—'“—zn_l)
! o o1 ®1
1 1
= Z {(1—u—2n>v(al)+<1—u— on )(1—1}(01@1))}
to,...,tn=0

1
= Z {—2_%_2 4ol o7 2ndly  omndly, 2v(01)
to,...,tn=0
—27"v(o1) — 2uv(o1)},
where u = 2*1tn + oo 4+ 277y and U(tl) = 2*1(t1 Dty P 02) R
27" (41 t,D0y,). In the last step we have used v(o1@1) = 1-27"F —v(0y).
We have 2%2,_..7tn:0u = Ztlzw_’tn:ov(al) =272 — 271 hence it remains to
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investigate Z%Q tn=0uv(o1). We find that
1

1
t(ty © op © 01)
> wle) = ¥ e
t2,...,tn=0 k=212,....,tn=0
thy (thy ® Oky ® 01)
+ Z Z 2n+1 k’12k?2 1
k1,ko=2t2,...,tn,=0

k1#ka
ZQ" 2 Ztk (tx © ok ® 01)
t=0
1 n 1
+ o D okirhegnTS Ny (try @ ok, @ 01)
k1,ka=2 tkl ,tk2 =0
k1ks
1 & 1 &
=3 (1@0k@01)+§ > okihe
k=2 E1,ko=2

k17£k2
Combining our results with yields

n
Hr0)00) = 272 =27 = 27 ey 1270y (1@ 0k & o).
k=2

Since i{_y ) 0,0y = %(“( 1,0),0,0) T /‘ ~1,0),(0,0) ), we derive

n
/1771,0),(0,0) =278y 272 Z (1® o @ oy).
k=2

In particular, for o = 0 we find u( = 2""3(n - 2) > (log N)/N,

1,0),(0,0)
and we are done. =

6. Further results. Our method is not restricted to the class of digital
nets Pq (o). For instance, one could also study the nets P.(o) generated by
Cl = A1 and

1 00 --- 000

cc 1 0 --- 0 0 O

cs 01 --- 000
Co=| 1o,

cn—2 0 O 1 00

cn-1 0 O 010

c, 00 -+~ 0 01

where we write ¢ = (co,...,¢,) and again we apply a digital shift o =
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(01,...,0p) to the second components of the relevant points. We simply
write P if we do not apply a shift. Further we put Pe(c) := Pe(0)UPe(o*).
There are many parallel tracks in the computation of the Haar coefficients of
A(+,Pa(o)) and A(-, Pe(0)). We leave it to the reader as a (tedious) exercise
to show the following theorem with the method demonstrated in Section

THEOREM 6.1. Let L =", ¢;(1 —20;) and { =" (1 — 20;). Then

(2" Ly(Pe(0)))? = 6‘14 <(£ L)? 4+ L +8(+2L(201 — 5) + 5n>

3
1 3 1 1
o=+ g~ 5 g
For unshifted nets we find a result of the very same form as Corollary
COROLLARY 6.2. Let || = > 7" 5 ¢;. Then

1 9 29 3 n—4 1 1
" La(Po)? = g (0= el + P10l + ) + 2 - gL

However, there are major differences between the Lo discrepancies of
the symmetrized nets Pq (o) and Pe(o), as our next theorem demonstrates.
Since exact computation of } . 7 2141 ZmeDj |fij.m|? for i € {11,12} is very
complicated, we do not calculate the Lo discrepancy exactly. However, we

can show that
o 200N il S22
JENZ\{(-1,00} ~ meD;
and 29130 o |figml|* = 27270(L? = 2(1 = 201)L + 1) for j = (~1,0).
Therefore the following result is a consequence of Parseval’s identity.
THEOREM 6.3. Let L be as in Theorem|6.1, Then Ly(Pe(o)) < Viog N

if and only if |L| < \/n. For unshifted symmetrized nets we have Ly(Pe) <
Viog N if and only if |c| < v/n.

7. Results on L, discrepancy. The calculation of the Haar coefficients
of the discrepancy functions allows us to study not only the Lo discrepancy
of point sets, but also the L, discrepancy for all p € (1,00). The key tool is
the Littlewood—Paley inequality for Haar functions. It states that for every f
in L,([0,1)?) with p € (1,00) we have £z, 0,12 = 1Sz, (j0,1)2), Where

. 1/2
sh=( % 22\ﬂ'|uj,m\21fj,m) -
jGNil,mEID)j

The Littlewood—Paley inequality enables us to give sufficient and necessary
conditions for the point sets we are studying to achieve the optimal order
of L, discrepancy. It is not necessary to work with the exact Haar coeffi-
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cients to show these conditions. The following upper bounds can be derived
immediately from the propositions in Section

COROLLARY T7.1. Let 15 m be the Haar coefficients of A(-,Pq(o)). Let
§ = (i o) € N
(i) If j1 =0 and 0 < jo < n — 2 then |pjm| S 277772,
(i) Ifj1+j2<n—1and j1 > 1, jo > 0 then |pjm| =272""2.
(iil) If j1 +Jj2 2 n—1 and 0 < ji,j2 < n then |ujm| S 27771772 and
\jm| = 272172274 for all but at most 2™ coefficients i m with
m € D (the equality occurs if there is no point of Pa(o) in the
interior of Ij m,).
(iv) If j1 > n or jo > n then |pjm| = 9—2j1—2j2—4
Now let j = (=1, j2) with ja € No.

(v) If jo <n then |pjm| <2772
(Vi) If jo > n then |pjm| = 272273,
Neat let j = (j1,—1) with ji € Ny.

i ; 1 1 1 1
(vii) If j1 = 0 then |Nj,m‘ = 9m¥2 — g3 T 2n+3L — 52nF10n-

(viil) If 1 < j1 < n then |pjm| S{z—n—jy
(ix) If j1 > n then |pjm| = 272173,
Finally, if j = (—1,—1) then
(Vl) /’L,Lm = 2n1+l + 227}4»2 —'I_ 2n1+3 (Z - L)
We insert these bounds into the Littlewood—Paley inequality to show the
following result. The proof is basically the same as in [9], where the result

has been shown for the Hammersley point set. Of course we can do the same
for the class Pc(o) of shifted nets.

THEOREM 7.2. Let £ and L be as in Theorem and p € (1,00). Then

Ly(Pa(or)) 5, V2N

if and only if € — L| <p v/nand |L| S v/n. An analogous result holds for
Pel(o).

For symmetrized nets we find the following conditions which ensure the
optimal order of L,, discrepancy.

THEOREM 7.3. Let p € (1,00).Then
log N
N

Lp(ﬁa(a')) S

for alla € Z3" and all & € Z3. Moreover,

Ly(Pe(o)) £ VBN

if and only if |L| < v/n.
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8. Outlook. It would be increasingly difficult to obtain exact formulas
for the Ly discrepancy of more complicated digital nets. However, we could
ask for conditions on matrices C1 and Cy such that the Lo discrepancy of the
digital net generated by them is of optimal order . Let us, for instance,
consider the digital (0,n,2)-net Py, generated by C; = A; and

I a2 a13 -+ aip-2 ai1p-1 ain

0 1 as3 -+ agp-2 aznp-1 a2.n

0 O 1 - azgp—2 azn-1 asn

Cy =
0 O o .- 1 Ap—2n-1 Gn-2n
0 0 o - 0 1 An—1n
0 0 o .- 0 0 1
We observed that either fp_1 _1)0,0)(A(Pa)) =2 (logN)/N or

1(0,—1),(0,0)(A(+;Pa)) 2 (log N)/N. If we could show a similar result for
A(+, Piri), then we would know that the nets Py fail to achieve the optimal
order of Ly discrepancy as well. However, this is not the case in general. We
define several parameters to demonstrate this claim: For u € {1,...,n} put

l,(n) =1, and for k € {1,...,p— 1} put
0 if Fiel{k+1,...,p0}:ar; =1,
lu(k) == e\ ) o
1 ifVie{k+1,...,u}:a,;=0.

Then a direct computation similar to the proofs of Propositions [3.1] and
yields

1
“(—17—1)7(070)(A(t77)tr1 - 2n+3 Zl 2n+1 + 92n+2"

M<0,71>,<o,o>(ﬂ(t77’tri)):2n1+3 (Zln—l Zl K)+ sz
k=1

Hence both (1 _1),(0,0)(A(+; Pui)) S 1/N and M(o,q),(o,o)(ﬂ('ﬂ’tri)) S1/N
if we choose C5 for instance of the form

laigarz - agpn—2ol 1 laig - aip—2 G1pn-1 Qin
0 1 a3 - agp—o1l 1 11 - axp-2 azpn_1 agn,
0 0 1 - a3p—211 00 1 - azp—2 A3 pn—1 asn
or :
0 0 O 11 00 O 1 An_2n
0 0 0 1 00 O 0 1 1
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We assume that we achieve the lowest possible Lo discrepancy for the net
Piyi if we fill the whole upper right triangle of Cy with ones. We intend
to investigate whether the corresponding digital net achieves the optimal
order of Lo discrepancy without shifting or symmetrization, and we hope to
determine precise conditions on C which ensure that.

(1]

7]
8]

[9]
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