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On certain vector valued Siegel modular
forms of type (k,2) over Z,

by

HiroTAKA KoDAMA (Tokyo)

1. Introduction. For the graded ring M¢Y of Siegel modular forms of
even weight, it is known that the module of vector valued Siegel modular
forms of type (k,2) with an even integer k and degree 2 is finitely generated
over MV, and its generators were explicitly given by Satoh [10]. Let p be a
prime number and Z, the local ring of p-integral rational numbers. In this
paper we study the module over MV (Z,)) of vector valued Siegel modular
forms of type (k,2) and degree 2 such that all Fourier coefficients lie in
Sym3(Zy,)) = {T = (tij) € Symy(Q) | tis,2t;; € Zp)}, where MV(Zy))
is the graded ring over Z,) of Siegel modular forms of degree 2 with even
weight whose Fourier coefficients lie in Z ). Specifically, we give generators
over M{V(Z ) of that module for an even integer k when p > 5.

We will now state our result more precisely. A Siegel modular form of
type (k,2) is a holomorphic function f on the Siegel upper half-plane Hy
with values in Sym,(C), satisfying

f(M(Z)) = det(CZ + D)*(CZ + D) f(2)"(CZ + D)

for all M = (é 137) in the Siegel modular group Iy = Spy(Z) and for all
7Z € Hy. Here (k,2) comes from the fact that the automorphy factor is
the one of representatives in the equivalence class of the representation
det® ®Sym(2). We denote by Mp,2(I%)z,,, the module consisting of all such
[ whose Fourier coefficients are in Symj(Z,)) and by Mj(I%)z,, the mod-
ule consisting of all scalar valued modular forms of degree 2 whose Fourier
coefficients are in Z(p). Let g, X109, X12 be Igusa’s generators over Z of
weight 6, 10, 12 respectively given in [6]. The following theorem is our main
result.
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THEOREM 1. For each even integer k and each prime p > 5, there exist
siz generators over MY (Zy)) of the module My 2(1%)z,,, whose determinant
weights are 10,14,16,16,18,22. If we write them as Py, € Mk’Q(FQ)Z@) (k=
10,14, 16, 18,22) and ¥4 € M16’2(F2)Z<p), then we have (as a Z(p)-module)

My 2(12)z,,, = Mi-10(12)z,, P10 ® Mi-14(12)z, P14
© My—16(12)z,, P16 © Vi—16(12)z,, V16
© Vi—18(12)z,, P18 © Wi—22(12)z,, P22,
where
Vi(I2)z,, = Mi(I%)z,, N Zp)lps, X10, Xi2],
Wi(I2)z,, = Mi(I2)z,, N Z)[Xi0, X2

We will construct @, and ¥ explicitly by taking constant multiples of
Satoh’s generators given in [10]. The proof of the theorem is by induction
on the determinant weight k and our main tool is the Witt operator.

2. Preliminaries

2.1. Siegel modular forms of type (k,2) and degree 2. The Siegel
upper half-space of degree 2 is defined as
Hy :={Z = X +1iY € Symy(C) | Y > 0 (positive definite)}.
The real symplectic group Spy(R) acts on Hy in the following way:
Z v+ M(Z):=(AZ + B)(CZ + D)™,

4 B) € Spa(R).

7 € Hs, M:<
C D

A Siegel modular form of type (k,2) on Iy with character v is a holo-
morphic function f on Hy with values in Sym,(C), satisfying
f(M(Z)) = v(M)det(CZ + D)*(CZ + D)f(2)/(CZ + D)

for all M = (é g) € Iy and for all Z € Hy. Here (k,2) comes from the fact
that the automorphy factor is the one of representatives in the equivalence
class of the representation det® ®@Sym(2).

We denote by My, o(1%,v) (resp. Sk 2(I%,v)) the C-vector space of Siegel
modular forms (resp. cusp forms) of type (k,2) on I'; with character v.

2.2. Fourier expansions. Any F(Z) € My 2(I%,v) has a Fourier ex-
pansion of the form

F(Z)= Y oT;F)exp2nitr(TZ)), a(T;F) € Symy(C),
0<Ted Ay
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where T runs over all positive semi-definite elements of %Ag defined as
Ay = {T = (tij) € Sme(Q) | tis, Qtij € Z}.

Taking ¢, := exp(27mit), q, = exp(2miw) and ¢ := exp(2wir’) for Z =

(;f,) € Hs, we can write

¢’ = exp(2mitr(TZ)) = 2t”(]t“é_fr”.

Using this notation, we have the generalized g-expansion

F= > a(T;F)"

0<Te35 Az

= Y (T3 F)g2h2)g ¢! € Symy(C)[as Y2, ¢/ la?, 4.
0<(tij) €5 A2

For any subring R of C, we denote by My 2(I%,v)r the R-module con-
sisting of those F' in M}, o(I,v) for which a(T; F) is in Sym3(R) for every
T e %/12 where

Symg(R) = {T = (tij) S Sme(C) ’ tii, Qtij c R}

From this, any element F' in My, o(I%,v)r can be regarded as an element of
the ring of formal power series Sym3(R)|[qw V2 o 2] [[qi/ 2, ql/ 2]]

2.3. Generators of scalar valued Siegel modular forms. Let ¢y,
e, X10, X12 be Igusa’s generators over Z of weight 4, 6, 10, 12 respectively
given in [0]. Let My (%, v) (resp. S(I%, 7)) be the C-vector space consisting
of the scalar valued Siegel modular forms (resp. cusp forms) of weight k
on I with character v. We denote by Mj(Is,v)z, (resp. S(I%,v )Z<p))
the Z,)-module consisting of the scalar valued Siegel modular forms in
My 2(I2,v) (resp. cusp forms in Si2(l32,v)) for which a(T;F) is in Z,)
for every T € % /A,. By the result of Nagaoka [9], we have

M () = D M)z,
ke2Z

= Zp)lepa, w6, X10, X12] if p > 5.
Let CSpy(Z) be the commutator subgroup of I'y. Let x : [s — {£1} be
a non-trivial abelian character, which is basically a character of Spy(Z/2Z)

2 3, the symmetric group on six letters. Any Siegel modular form of weight
k on CSpy(Z) also has a Fourier expansion of the form

Z b(T; F)exp(2mitr(TZ)), b(T;F)cC.
0<T€3Ag
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In this case Igusa [5] showed that
M.(CSpy(Z @Mk CSpy(Z)) = Clipa, As, 6, X12, Aol

where Ay € My (CSpy(Z )) = My (I, x) is constructed by theta series with
Fourier coefficients

(2 1) (5 2y =

The modular forms 4, As, g, X12 are algebraically independent and they
are Maass lifts (cf. [2], [8]). Moreover As and Agy are Borcherds products
(cf. [3]) and AZ = X3. We remark that there exists a unique relation among
the generators:

A%O € (C[9047 A5a ©6, X12]-

2.4. p-order of modular forms. We shall define the p-order of mod-
ular forms. Let p be a prime with p > 5 and v}, the additive valuation on Q
normalized as vp(p) = 1.

Let F' be a formal power series with bounded denominators of the form

F= Y aiF)q", a(T;F) € Symy(Q).
Te%/lz
In the scalar valued case, let v, be just as in Bocherer-Nagaoka [I] and
elsewhere. Define a value v, for F' with a(T; F') € Sym,(Q) as

() = nt{ (T F)) | 7 € o0},

where Vp(%/, %, %) = vp(ged(d, b, ) /ged(a, b, ¢)) for a, a’, b, V', ¢, ¢ € Z.
Moreover, we define an order “>” for two elements of + Ay following [7].

The following statement and its proof are due to Kikuta:

LEMMA 1.

(1) For f = Spern,alTs g and g = pery,alTsg)q” with a(T: ),
a(T; g) € Q, we have vy(fg) = vp(f) + vp(9)-

(2) Let F = ZTe%AQ a(T; F)q" with a(T; F) € Symy(Q) and g be as in (1).
Then vp(Fg) = vp(F) + vp(g).

Proof. Since the proofs are similar, we prove only (2). We can take the
minimum S in Ag such that v,(a(S; F)) = v,(F), and denote it Sy. That
is, vp(a(S;F)) > v,(F) for any S > Sp, and vp(a(S; F')) > vp(F) for any
S < Sp. Similarly, we can find Ty € + Ay such that vy(a(Tp;9)) = vp(9),
vp(a(T;g)) > vp(g) for any T > Tp, and vp(a(T; g)) > vp(g) for any T < T.
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For R € %/12, the coefficient a(R; Fg) of Fg is given by

a(R;Fg)= Y a(S;F)a(T;g).
S+T=R
S, Te+ Az

We first consider the case R # So+ Tp. Then S # Sy or T # Ty. In both

cases, vp(a(S; F)) > vp(F) and vp(a(T; g)) > vp(g). This implies
vp(a(S; F)a(T; 9)) = vp(a(S; F)) + vp(a(T' 9))
> vy(a(So; ) + vp(alTb; 9)) = vp(F) + vplg).

If R = Sy + Tp, then we have the cases (i) S < Sy or T < Tp, and
(ii) S = Sp and T' = Tp. In case (i), we obtain (a) vp(a(S;F)) > v,(F) and
’VTP}EG(T;Q)) > vp(g), or (b) vp(a(S; F)) = vp(F) and vp(a(T59)) > vp(9)-

en

vp(a(S; F)a(T; g)) = vp(a(S; F)) + vp(a(T g))
> vp(a(So; F)) + vp(a(To; 9)) = vp(F) + vp(9)

In case (ii), we obtain v,(a(S; F)) = vp(F) and vp(a(T;g)) = vp(g). These
show that

vp(a(R; Fg)) > vp(F) +1vp(g)  for any R # Sp + To,
vp(a(So + To; Fg)) = vp(F) + vp(9),
and hence vp(Fg) = vp(F) + vp(g). =
We remark that, for a formal power series of the form
F = Z a(T; F)q", a(T;F) € Symy(Q),
Te%Az
we have a(T; F) € Sym3(Zy) for all T' € % A5 if and only if v,(F) >0 .

2.5. Generators of vector valued Siegel modular forms. Let R
be a subring of C, and N be 1 or 2. For a formal power series f of the form

=Y aTf)e" € Rig;"™N, a/MaN . M,
TE%AQ
the theta operator O is defined by
Ol(f)= 3 T-a(T;f)q" € Symy(R)a, ™, a)/Nar™, a1/ M.
TG%AQ
Let I'" be either Iy or CSpy(Z), and f € My(I") and g € M;(I"). We put

Lo ony L on
[f,g] = jf@ U(g) ;90 Hr).

Then a result of Satoh [10] states that [f, g] € Mj4;2(I").
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Let w4, g, X10, X12 be Igusa’s generators over Z of weight 4, 6, 10, 12
respectively, given in [6]. It is known that the MgV (I%)-module of Siegel
modular forms of type (k,2) has six generators:

THEOREM 2 (Satoh [10]). For each even integer k, we have (as a C-vector
space)
My o(I2) = My_10(12)[p4, 6] © My_14(I%)[4, X10]
© My_16(12)[pa, X12] © Vi—16(12)[w6, X10]
® Vi—18(12)[w6, X12] ® Wi_02(I2)[X10, X12],
where
Vi(I2) = Mi(I2) NClps, X10, X12],  Wi(I2) = Mp(I2) N C[X10, X12].
We construct @ (k = 10, 14, 16, 18, 22) and ¥4 by taking constant
multiples of these generators:
1o = — 1 lea, 6, Pra = 10[ps, X10], P16 = 12[ip4, X12),
U6 = 10[ps, X10], P18 = 12[pg, X12], P22 = —120[X10, X12].
Then

(6 o6 (627G
(60627 (6,
(G027 (o))

Moreover, we put @9 := 10[p4, As], P11 := 10[pg, A5], P17 := —120[A5, X12].
We will use them in the proof of the main theorem.

PROPOSITION 1. Let p be a prime with p > 5. Then v,(¥15) > 0 and
V(1) > 0 for k =9,10,11,14,16,17, 18, 22.

Proof. Since v,(¢r) > 0 (k = 4,6) and v,(Xy) > 0 (k = 10,12), it
follows that v,(O1(pg)) > 0 (k = 4,6) and v,(61(X})) > 0 (k = 10,12).
By a direct calculation, we see that p does not divide the denominators of
the Fourier coefficients of W14 and @, which yields the assertion. m

2.6. The Witt operator. Let F' be a holomorphic function on Hs.
Then the Witt operator is defined by
T 0
0 7

This operator was first introduced in Witt [I1]. We extend the Witt operator

to the case of vector valued forms. Let G = (gi; g;;) € My2(I»,v) be a

W(F)(r,7') = F( > (r,7) € Hy x Hj.
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vector valued Siegel modular form of type (k,2) on I with character v.
Then we define

n . (W(Gu) W(Gr)
W(G)(r,7") = (W(G12) W (C)
For later use, we list some examples:

W (pa)(7,7") = Ea(T)Es(7"),  W(pe)(r,7") = Eo(7)Eg(),
W (X10)(r,7') =0, W (X12)(r,7") = 12A(T)A(T'),
W (As)(r,7') =

W (P10) = — (A

), (T,T’>€H1XH1.

0,
(T)E4(7") E(7') 0 >

0 Ey(T)E¢(T)A(T))’
Es(T)A(T)E4(7") A(T") 0 )

0 Ey(1)A(T)Es(T)A(r))’
Ey(1)2A(T)Eg(T) A(r! 0

Wi =12 AR am)
W(®14) = W(¥16) = W(Pa2) =0,

W (@) = —2E4(r) Ea(r')n(r) 2 (") (0 1>,

W (P1g) = —12<

1 0
/ 12, 120 1
W (1) = ~2E5(r) Bo(r(r) 2n(e)2 (| 1),
01
W) = ~28AmAC ) 22 ()
where 7 is the Dedekind eta function defined as n(7) :qi/ 2 I (I=¢g).

3. Proof of the main theorem (Theorem . By Proposition 1, the
inclusion “D” is clear.

To prove “C”, we use induction on the determinant weight. By Theo-
rem (Subsection [2.5), any F' € My 2(I%)z,, can be written in the form

F = (P + X10Q1)210 + (P2 + X10Q2)P14 + (P3 + X10Q3)P16
+ (Py 4+ X10Q4)¥16 + (Ps + X10Q5)P158 + (Ps + X10Q6) P22,

where P; € My_10(12) NCleps, vs, X12], Q1 € My_20(132), Py € My_14(I2)N
Clea, p6, X12], Q2 € My_24(I3), P3 € My_16(12) N Clea, s, X12], Q3 €
My_26(I%), Py € Vi—16(I2) N Clpe, X12], Q4 € Vi—o6(I2), P5s € Vi—1s(I2) N
Cles, X12], Qs € Vi—osg(In), Ps € Wi_2a(I2) NC[X12], Qs € Wi_32(I3).

Here we regard P; as polynomials (with coefficients in C): Py = P (g4,
v, X12), P2 = Pa(p4, w6, X12), P3 = P3(pa, 06, X12), Pr = Pi(w6, X12),
Ps = P5(p¢, X12), Ps = Ps(X12).
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We start with the following lemma:
LEMMA 2. vp(F;) >0 fori=1,3,5.

Proof. We apply the Witt operator to F'. Using the fact that W(Az) =
we get

W(F) = W(P)W(®P10) + W (P3)W(®16) + W(P5)W (D1s)

. <A<T>E4<Or'>E6<T’> E4(T)E6(ET)A(T,)>
12w @(EG(T)A(T)?(T/)A(T’) E4<T)A<T>OEG<T'>A(T'>>
—12W(P) (E‘*(T)M(T)OE A E6<T)A(r>g4(f’)2A(T’)>
_ {_W(P1)<E4(TI)OE6(T/) E4(T)OE6(T)>
— (Eﬁ(T)E4(§7'/)A(T/) E4(T)A(OT>E6(T/)>
— 12W(P5) <E4(T)2E%<T/)A(T,) Eﬁ(T)A(i)Ez;(T')Q) } (A(()T) A(OT’)>

B <(J)c11 f2(2)> <AE)T) A(OT’)>'

Since v,(F) > 0, we have v,(W(F)) > 0. The (1,1)-component and
(2,2)-component of W(F) are
() = (=W (P)Ea(r')Eo(1') — 12W (Py) Eg(1) Ea(7") A(7')
— 12W (P5) E4(7)*Es () A(7")) A(7),
far A(7") = (=W (P1)Ea(7)Eo(1) — 12W (P3) Ex (1) A(7) Eo (7')
— 12W/(P5) Eg(1) A(7) E4(7')?) A(7).
Then we see that
Ey(1)A(1)Es(7") f11 — E6(7)E4(7") A(T') f22

= (Ea(1)*A(7') = A(m)Es(7')?)
x (BEa(T)Es(r )W (Py) + 28 - 32 A(m) A(7 )W (P5)),



Siegel modular forms 91

—E4(7)Es(7) f11 + Ea(7") E6(7') f22
=27 3(E4(7)* A(') — A()Ea(7')?)
X (E4(T)E4(TI)W(P3) + EG(T)E6(T,)W(P5)).

Since v,(LHS) > 0, we have v,(RHS) > 0 for both formulas above. Moreover,
the Fourier expansion

Ey(1)’A(r) = A(T)Eo(T')? = 4 — - + -+ € L4, 47/]
implies
Vp (E4(7')3A(7'/) — A(T)E4(T/)3) =0.
Applying Lemma [I, we obtain
(3.1) vp (Ea(1)Ea(r" YW (P1) 4 2% - 3TA(1) A(T )W (P5)) > 0,
(3.2) Vp(E4(T)Ea(T )W (Ps) + E6(7)Es(T" )W (P5)) > 0.
We separate the argument into several cases:

CASE k # 0 (mod 6): In this case we have P; = 0 as a polynomial.
Hence P, P53 € Z(p) [g04, (pﬁ,Xlz], and therefore l/p(Pl) > 0 and Z/p(P3) > 0.

CASE k£ =0 (mod 12) (k=0 (mod 4) and k = 0 (mod 6)): We can write

W(Py) = Eg(7)Es(7) > YareW(00) W (05) W (X12),
a=2 (mod 3)
4a+12b+12¢c=k—16
W(Ps) = > VapeW (04) W (05)"W (X12)°,
a=2 (mod 3)

4a+12b+12c=k—16
W(Ps) = Eg(T)Es(r') > W (9§)'W(X12)".
12b+12c=k—24
Using these formulas, we can write

Ey(T)Ey(TW(Py) + 28 34A(T)A(T/)W(P5)

= Fo(1)Es(7') > Va—1)peW (02) W (08)"W (X12)°
a=0 (mod 3), a>3
4a+12b+12c=k—12
+20.3%Es(T)Be(7) ). ey WI(93) W (X12)°
12b+162%ik712
= BB D W) W o) W (Xao)¢

a=0 (mod 3), a>3
4a+12b+12c=k—12

+20.3% 72’(0—1)W(906)2bW(X12)C}-
c>1
12b+12c=k—12
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Since v,(LHS) > 0, we have v,(RHS) > 0 for both formulas above. By
the same argument as in [9, p. 416], it follows that y,_1ys. € Z) and
26 . 337b(c 1) S Z(p). Hence P; € Z(p)[go4,g06,X12] and P5 € Z(p)[gp4,4p6].
These mean that v,(P1) > 0 and vp(P5) > 0. From (3.2), we have v,(W(P3))
> 0. Hence P5 € Z(p) [904,()06,)(12], SO Vp(Pg) > 0.

CASE k =6 (mod 12) (k=2 (mod 4) and k = 0 (mod 6)): We argue
similarly to the case of k =0 (mod 12). =

Next we prove the following lemma:;:
LEMMA 3. vp(P;) > 0 fori=2,4,6.
Proof. We put
G:=F — (P1®1o + P3Pi6 + PsP13)
= (25)*(Q1P10 + Q3P16 + Q5P1s)
+ As{ (P2 + X10Q2)Pg + (Ps + X10Q4)P11 + (Ps + X10Q6) P17}

Then it is clear that W (G) = 0. For the reason given in Ibukiyama—Wakat-
suki [4, p. 198], G/As5 is holomorphic and therefore

G/As = A5(Q1P10 + Q3P16 + Q5P18) + (P2 + X10Q2)Po
+ (Ps + X10Q4)P11 + (Ps + X10Q6) P17
€ My_52(I2,X)-

By Lemma 2 we have ,(G) > 0. Moreover, the Fourier expansion

As = (—q5 2+ /22 + - € Zig5 M, /A [gY% 7]

7_

indicates that
l/p(A5) =0.

Applying Lemma we have v,(G/As5) > 0 and also v,(W(G/A5)) > 0.
On the other hand,

W) = 2B (B 0 (] ).
W) = ~26(n o) 202 (] ).

W (®17) = ~288A(1) A(r ) (7) *n(r')" (2 é)

These imply
W(G/As) = W(R)W (Dg) + W(Py)W(P11) + W (FPs)W (P17)

=W(P) (—2E4<T>E4<r'>n<r>”n<r'>” (2 3))
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() (2B B )0 (] )

1 0

CASE k # 4 (mod 6): In this case we have Py = Ps = 0 as polynomials.
Therefore Py € Zy) |4, p6, X12] and hence v,(P2) > 0.

CASE k =4 (mod 12) (k=0 (mod 4) and k = 4 (mod 6)): We can write

+ W (Ps) (-2884(7)4(7')77(7)1277(7')12 (0 1) )

W (Py) = Eg(7)Eo(7") > Yabe W (02) "W (03)" W (X12)°,
a=2 (mod 3)
4a+12b+12¢c=k—20
W(Py) = Z YW (03)"W (X19)",
12b+12c=k—16
W (Pg) = 0.

Using these formulas, we can write

W(G/As5) = —2< > Yia=1)6eW (92) "W (06)*"W (X12)°
a=0 (mod 3), a>3
da+12b+12c=k 16

0 1
bYWl W) BB ) e (] ).
12b+12c=k—16
Again by the same argument as in [9, p. 416], we get Y(q—1)sc € Z(p) and

’}/l/)c S Z(p) Hence P, € Z(p) [g04, ng,Xlg] and Py € Z(p) [@67X12]- These mean
that vp(P2) > 0 and vp(Py) > 0.

CASE k = 10 (mod 12) (kK = 2 (mod 4) and k¥ = 4 (mod 6)): We can
write
WR) = > W (@) WIe)) W (Xia)",

a=2 (mod 3)
4a+12b+12c=k—14

W(P) = Es()Es(r) > %W (eg)"W(Xi)",
12b412c=k—22
W (Ps) = (a9 12V (X12) F 72212,
Using these formulas, we can write
WG/ = (=2 X W) W (o)W (Xi2)°

a=0(mod 3), a>3
4a+12b+12c=k—10

-2 Z VEb_1)CW(<P6)2bW(X12)C
b>1
12b4+12¢c=k—10

_ 0 1
= 2 W (X)) 22 ().
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Again by the same argument as in [9, p. 416], we obtain —27(,_3)s. € Zy),
—2’7&)_1)0 S Z(p) and —24’)/E/,€_22)/12 S Z(p) Hence P, € Z(p) [(p4,g06,X12],
Py € Z(p) [@G,Xlg] and Fg € Z(p) [Xlg]. These imply I/p(Pg) >0, l/p(P4) >0
and vp(FPs) > 0.

This completes the proof of Lemma 3] =

We are now in a position to prove Theorem 1. Let G be the function
appearing in the proof of Lemma 3, and set

H := G/A5 — (Pa®g + Pyd11 + Psd17)
= A5(Q19P10 + Q3P16 + Q5P18) + X10(Q2P9y + Q4P11 + Q6P17).
Then v,(H) > 0. Since v,(As) =0, and by Lemma 1, we have
0 <vp(H/As) = vp(Q1 P10 + Q2P14 + Q3P16 + Qa6 + Q5P18 + Q6Pa2).

This is of type (k — 10, 2). By repeating this argument, the proof is reduced
to the case of k < 22, which will be checked directly.

CASE k = 10: Clearly M1072(F2)Z(p) = Z(p)qv)lo.
CASE k = 14: Any F = a1p4P10 + a2P14 € M1472(F2) satisfies

1 0
@(F) = —a1E4A <O 0),

where @ is the Siegel & operator. Since @(F) € Mig(11)z,,,, we get a1 € Z,).
Hence as € Z(p), i.e.

M14,2(F2)Z(p) = Z(p)@@m S2) Z(p)¢14.
CASE k = 16: Any F = a1p6P10 + a2P16 + az¥ie satisfies

B(F) = —ay B <(1) 8)

Since @(F) € Mlg(Fl)Z(p), we get aj € Z,). Moreover,

W(F — a1p6P10)
0 (12 [ E(MAM)Es(T)A(T') 0
ol 12)< 0 E4(T)A(T)E6(T,)A(7J)>.

Since vp(W(F — a196®10)) > 0, we get az € Z,) and hence also az € Zy).
Thus

Mg 2(I2)z,,, = Z(p)pePi0 ® L) P16 ® L) Pie-
CASE k = 18: Any F = a1p1P10 + a2paPra + a3Pis satisfies

10
@(F):—a1E§A<O 0>.

Since @(F) € Mao(I1)z,,,, we get a1 € Z,). Moreover,
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W(F — a193%10)
. B Ey(7)2A(T)Eg(T) A(T") 0
=as-( 12)< 0 E6(T)A(T)E4(T/)2A(7'/)>.

Since v, (W (F — a1piP10)) > 0, we get az € Z,) and hence also ay € Z).
Consequently,

M18,2(F2)Z<p) = Z(p)@iélﬁ D Z(p)@4@14 S Z(p)QBlS-

CASE k = 20: Any F = (a1g04cp6 + a2X10)€1510 + a3cp6d514 + a4<p44516 I~
Moo (1) satisfies

1 0
P(F) = —a1E Eg A .
(F) a1E4Eg <O 0)

Since @(F) € Mgg(Fl)Z(p), we get a1 € Zy,). Moreover,
W (F — a1p196P10)

= a4-(—12)E4(T)E4(7_/) (EG(T)A(T)E4(T/)A(T/) 0 >

0 Ey(r)A(T)Es(T") A7)

Since vp(W(F — a1papePio)) > 0, we find that as € Zpy and hence
Vp(F — a1p4p6P10 — aspsPis) > 0. Since

a2 X10P10 + azpeP1a
2a3 0 —as lCl3 _ —as _la3
:qTqT/<< >+<1 2 qw1+ 1 2 qu
0 2as a3  —ag —3a3 —ag
—564as 0 280as —140as _
+QTQ72—’<( )+< >Qw1
0 2a2 — 1800&3 —140@3 —as + 896@3
280a 140a 2a —2a
o (e
140a3 —as + 896ag —2a3 4ag
2a3 2a
)
2a3 4a3
we get ag and a3 € Zy). Therefore,

Ma02(I2)z,, = Zp)papeP10 © Zp) X10P10 @ Zp) p6P14 D Z ) paPie-

CASE k = 22: Any F = (algpi+a2<p%+a3X12)£1510+a4tpi@14+a5g06¢16+
ageWi6 + a7Poo satisfies

1
O(F) = — (a1 F3 + azEg)A<O 8)

10
= —{(a1+a2)q7+(696a1—1032a2)q3—|—(104652a1+245196a2)qi—|—' -} <O 0>.
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Since @(F) € M24(F1)Z<p), we have
a1+ ag € Z(p), 696a1 — 1032as € Z(p).

These imply
1

a1 = 555 {1032(a1 + a) + (69601 — 1032a2)} € Zy),
1
ag = W{696(a1 +az) — (69641 —1032az)} € Zgy).

Moreover,

W (F — (a1} + a2¢08)®10)

o imam A [ACE) Be() 0
— - (128 A (A0 P A(T,)>
e Ee (! Eo(T)A(T)Es(T") A(T) 0
s (DB B 0 A0 Bl )
asq-q- + (a3 — a5)q2qy + -
:_12<5qq + (a3 10032 5)0747 + ) 0 , )
asqrqr + (a3 — 1032a5)q-q;, +

Since v, (W (F — (a1} + a2pg)P10)) > 0, we get az and a5 € Z,) and hence
vp(F — (a193 + a2t + a3 X12)P10 — aspePis) > 0. Since

aspi®14 + agpePi + ardas

2a4 + 2a¢ 0 —a4 — ag %a4 + %aﬁ ]
= qrqs’ + 1 1 £z
0 2a4 + 2a¢ 504 + 506 —Q4 — 06

< —a4 — Qg —%a4 — ;a(;) >
—§a4 — §a6 —a4 — Qg
9 <<1404a4 — 2052a¢ 0 >
+ qTqT/
0 168a4 — 408ag
(—704a4 + 1024a¢ 352a4 — 512a6) _1
352a4 — 512as  —88ay + 200ag)
N <7O4a4 +1024a¢ —352a4 + 512a6>
—352a4 + 512a  —88a4 + 200ag )
n ( 2a4 + 2a6 —2a4 — 2a6> _9 n <2a4 + 2ag 2a4 + 2a6> 2)
—2a4 — 2a¢  Adag + 4dag ) 2a4 + 2a¢  4dag + dag)

4 2 ((75776@4 + 329216a¢ + 36a7 0 >
Iri 0 75776a4 + 329216ag + 36a7
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. —33960a4 — 144840a¢ — 16a7 239160a4 + 511608as + 70a7> 1
w

239160a4 + 511608ag + 70a7 —33960a4 — 144840a¢ — 16a7

_l’_

—33960a4 — 144840a¢ — 16a7 —239160a4 — 511608a¢ — 70a7>
239160a4 — 511608ag — 70a7 —33960a4 — 144840a¢ — 16a7 e

(3840&4 — 19968a¢ — 2ar 1920a4 + 9984a¢ + ar ) _9

_|_

192004 + 9984ag +a;  —3840as — 19968ag — 2a7)
38404 — 19968ag — 2ay  —1920as — 9984ag — ar \ ,
19204y — 9984a — a7 —3840ay — 19968ag — 2a7) e
_88ay +200ag  —264as —l—312a6> i
—264a, + 312a5  —88a4 + 200ag /

(—88a4 +200ag 264a4 — 312a6> 3>
264ay — 312ag —88ay + 200ag/)

we have

_l’_

_l’_

a4+ ag € Z(p), 352a4 — 512a¢ € Z(p),
1920a4 + 9984a¢ + a7 € Z(p).
These imply

1
ag = 25f33{512(a4 + a6) + (352a4 — 512a6)} € Zy),

1
ag = W{352(a4 + aﬁ) - (352@4 — 512&6)} € Z(p),
a7 € Z(p).
Thus,
Ma22(1%)z,,, = ZpyPiP10 ® L) 0510 ® Lpy X12910
D Zp)0iP14 @ L) p6P16 D Ly 06 P16 D ZpyPaa.
This completes the proof of Theorem 1. u
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