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Introduction. One way to see how geometry enters the theory of second order PDEs
in one dependent and n independent variables is to regard the Hessian matrix (pij) as an
n-dimensional subspace

〈
ei + pijε

j | i = 1, . . . , n
〉
in the space Rn ⊕ Rn∗. Obviously this

correspondence is not accidental: its motivations will be thoroughly surveyed in Section 2.
However, a crucial fact can already be noticed: the symmetry of the Hessian matrix
corresponds to the subspace

〈
ei + pijε

j
〉
being isotropic with respect to the canonical

symplectic form on Rn⊕Rn∗. In other words, the aforementioned subspace is Lagrangian,
that is an element of the Lagrangian Grassmannian LGr(n, 2n).

The object LGr(n, 2n) exists independently of theories of PDEs. It is indeed a very
well-known projective variety, displaying a lot of interesting properties, smoothness and
homogeneity above all else. As such, it can be studied per se, and this is precisely the
purpose of Section 1. Due to the algebro-geometric origin of LGr(n, 2n), we shall examine
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the real case (relevant for applications to PDEs) as much as possible in parallel with the
complex case.

The entire content of this paper can be found elsewhere scattered throughout the
existing literature. Our main goal was to squeeze a plethora of tiny small elements—facts,
formulas, lemmas, properties, remarks—into a short self-contained introductory paper.
Taken individually they may seem trivial, but their appropriate combination against the
motivating background of PDEs form an unexpectedly rich and coherent picture.

The present paper serves yet another purpose. It is included in the Banach Center
Publications volume dedicated to the workshop titled Geometry of Lagrangian Grassman-
nians and Nonlinear PDEs and held in Warsaw in September 2016. The volume is de-
signed in such a way as to provide a source book for a monographic graduate/postgraduate
course, as well as a reference for recent research in the discipline (Section 2.9). The present
paper may represent a good departing point for the novice. It may also guide the expert
finding his/her way in the rest of the volume (see Section 3).

Background, motivations and acknowledgements. One of the main driving forces
behind the present paper, the volume it belongs to and the homonymous workshop has
been a conjecture, formulated in 2010 by Ferapontov and his collaborators about the class
of second order hydrodynamically integrable PDEs. Essentially, the conjecture states that
multidimensional hydrodynamically integrable second order PDEs of Hirota type are of
Monge–Ampère type, see [16, Section 1]. Intrigued by Ferapontov’s problem, two of us
(GM and GM) started a systematic study of the notion of hydrodynamic integrability
and soon realised that there was a lot of differential and algebraic geometry at play. More
complementary competences were needed. A first informal meeting was held in 2014 in
Milan, bringing the problem to the attention of Musso and Russo (both contributors
to this volume). Interesting links with the geometry of special projective varieties and
homogeneous spaces were highlighted. In 2015 one of us (Moreno) was granted a two-year
Maria Skłodowska-Curie Fellowship at IMPAN (Warsaw) for continuing the study of the
geometry of hypersurfaces in the Lagrangian Grassmannian and second order PDEs. It
was during this period that the authors of the present paper began their cooperation. In
2016 they organised the aforementioned workshop and started editing the present volume.

To date, the conjecture is still open, even though it triggered an enormous amount
of side and related works, eventually leading to interesting independent results. The
authors wish first of all to thank Professor Ferapontov for his deep and insightful analysis
of the phenomenon of hydrodynamic integrability and regret he could not make it to a
workshop built, in a sense, around a his idea. Many thanks go also to all the other speakers
and contributors to this volume, to Professors: Hwang for his surprise visit, Bryant and
Ciliberto for important remarks and valuable advices. The authors thank also Professor
Mormul for reviewing the manuscript.

The authors acknowledge the support of the Maria Skłodowska-Curie fellowship SEP-
210182301 “GEOGRAL”, the Institute of Mathematics of the Polish Academy of Sciences,
the Banach Centre, the project “FIR (Futuro in Ricerca) 2013 – Geometria delle equazioni
differenziali”, the grant 346300 for IMPAN from the Simons Foundation and the matching
2015–2019 Polish MNiSW fund. Giovanni Moreno has been also partially founded by the



12 J. GUTT, G. MANNO AND G. MORENO

Polish National Science Centre grant under the contract number 2016/22/M/ST1/00542.
Gianni Manno was partially supported by a “Starting Grant per Giovani Ricercatori”
53_RSG16MANGIO of the Polytechnic of Turin. Gianni Manno and Giovanni Moreno
are members of G.N.S.A.G.A of I.N.d.A.M.

1. Geometry of the (real and complex) Lagrangian Grassmannian

1.1. Preliminaries. One of the harshest lessons from earlier studies in Mathematics
is the impossibility to identify a vector space with its dual in a canonical way. This is
mirrored in Physics by the profound difference between vectors and covectors. The former
correspond geometrically to those fancy arrows emanating from 0, whereas the latter are
hyperplanes passing through 0.

However, if a “balanced mixture” of vectors and covectors is given, such as in the space
V ⊕ V ∗, then there is an obvious way to identify the space with its dual. Just perform
a “counterclockwise rotation by π

2 ”, having identified the horizontal axis with V and the
vertical axis with V ∗. The evident analogy with the multiplication by i in the complex
plane led to the coinage of the term symplectic by Hermann Weyl in 1939 [47, page 165].
Indeed the preposition “sym” is the Greek analog of the Latin preposition “cum”, see,
e.g., [10, pp. xiii–xiv] and [39].

From now on, V is a linear vector space of dimension n, and ω is the 2-form on V ⊕V ∗
corresponding to the canonical identification (V ⊕V ∗)∗ ≡ V ⊕V ∗. The pair (V ⊕V ∗, ω) is,
up to equivalences, the unique linear symplectic space of dimension 2n. When coordinates
are required, we fix a basis {ei}i=1,...,n in V and we consider its dual {εi}i=1,...,n in V ∗.
If the results do not depend on the ground field, we leave it unspecified—that is, it may
be either R or C.

In the above coordinates, the matrix of ω is

I :=
(

0 − Id
Id 0

)
, (1)

and it is known as the standard symplectic matrix. Indeed,
V ⊕ V ∗ ω−→ V ∗ ⊕ V = (V ⊕ V ∗)∗,

v + α 7−→ −α+ v,

with respect to the bases (e1, . . . , en, ε
1, . . . , εn) and (ε1, . . . , εn, e1, . . . , en) of V ⊕V ∗ and

V ∗ ⊕ V , respectively.
We stress that (1) is not a rotation matrix—it is the matrix corresponding to the

two-form
ω = εi ∧ ei. (2)

Observe that in (2), as well as in the rest of the paper, we use the Einstein convention
for repeated indexes, unless otherwise specified.

1.2. Definition of the Lagrangian Grassmannian. It is well-known that the set
Gr(n, V ⊕ V ∗) := {L ⊂ V ⊕ V ∗ |L linear subspace, dimL = n} (3)

possesses the structure of an n2-dimensional smooth manifold, known as the Grass-
mannian (manifold/variety) (see, e.g., [23, Lecture 6] for an algebro-geometric proof or
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[33, Lemma 5.1] for a differential-geometric proof). The key is the injective map1

V ∗ ⊗ V ∗ = Hom(V, V ∗) −→ Gr(n, V ⊕ V ∗),
h 7−→ arctan h := 〈v + h(v) | v ∈ V 〉 , (4)

which allows one to define an n2-dimensional chart in Gr(n, V ⊕ V ∗). This chart is also
dense—whence the name big cell which we shall use from now on.

If h = hijε
i ⊗ εj , then

arctan h :=
〈
ei + hijε

j | i = 1, . . . , n
〉
. (5)

Let us impose that arctan h be isotropic with respect to the two-form ω, that is
ω|arctanh ≡ 0. (6)

In view of (5), condition (6) reads
ω(ei1 + hi1j1ε

j1 , ei2 + hi2j2ε
j2) = 0, ∀i1, i2 = 1, . . . , n. (7)

Since ω(ei1 +hi1j1ε
j1 , ei2 +hi2j2ε

j2) = hi1i2 −hi2i1 , it is obvious that (6) is fulfilled if and
only if the matrix hij is symmetric, that is h ∈ S2V ∗.

The Lagrangian Grassmannian (manifold/variety) LGr(n, V ⊕ V ∗) can be defined
as the closure of the subset S2V ∗ of the big cell V ∗ ⊗ V ∗. From this point of view,
LGr(n, V ⊕ V ∗) is a compactification of the space of symmetric forms on V . In the
geometric theory of PDEs based on jet spaces [28], the additional “points at infinity”
correspond to the so-called singularities of solutions [46, Section 2.2], see Fig. 1.

Fig. 1. In the framework of contact geometry, the distinction between dependent (u) and in-
dependent (x, y) variables simply disappears. The smooth surface depicted here—the graph of
y = f(u, x), with f smooth—cannot be interpreted as a “regular” solution in the sense of a func-
tion u = u(x, y). There is a locus, highlighted as a thick black line, where the tangent planes to

1Observe that arctan h is nothing but the graph of h. The symbol “arctan” has been chosen
in order to be consistent with Smith’s contribution to this very volume, see [T3, Section 2].
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the surface project degenerately to the (x, y)-plane (e.g., the projection of the thick white curve
crosses the projection of the thick black line at zero speed, regardlessly of its parametrisation).
Such a locus is called a singularity of the solution. We warn the reader that the terminology is
misleading, since the surface is perfectly smooth.

From now on, the open subset

S2V ∗ ⊂ LGr(n, V ⊕ V ∗) (8)

will be referred to as the big cell of the Lagrangian Grassmannian LGr(n, V ⊕ V ∗).

1.3. Coordinate-free definition of the Lagrangian Grassmannian. On a deeper
conceptual level, the symplectic form ω can be found by decomposing the space of two-
forms on V ⊕ V ∗ into GL(V )-irreducible representations:

∧2(V ⊕ V ∗) = ∧2V ⊕ (V ⊗ V ∗)⊕ ∧2V ∗. (9)

Then ω is precisely the element of the left-hand side corresponding to the element 0+id +0
of the right-hand side. Then one can set

LGr(V ⊕ V ∗) :=
{
L ⊂ V ⊕ V ∗ |L linear subspace, dimL = n, ω|L ≡ 0

}
. (10)

1.4. The Plücker embedding. While S2V ∗ provides a convenient local description of
LGr(V ⊕ V ∗), the rich global geometry of LGr(V ⊕ V ∗) is invisible from the point of
view of the big cell. Global features become evident when the object is embedded into a
“flat” environment. In the present case the role of such an environment is played by an
appropriate projective subspace of P(∧n(V ⊕ V ∗)).

The trick to obtain the desired embedding consists in regarding an n-dimensional
subspace L ∈ LGr(V ⊕ V ∗) as a line in ∧n(V ⊕ V ∗). Indeed, a basis {l1, . . . , ln} of L
defines, up to a projective factor, a unique (nonzero) n-vector l1∧ . . .∧ ln. The projective
class of the latter is then unambiguously associated with L, and we will call it the volume
of L and denote it by vol(L).

The map

LGr(V ⊕ V ∗) −→ P(∧n(V ⊕ V ∗)), (11)
L 7−→ vol(L),

is called the Plücker embedding. The basic properties of (11) are easily checked.
First, the element vol(L) is represented by a decomposable n-vector, that is an n-vector

ξ satisfying the equation ξ ∧ ξ = 0. The latter is a quadratic condition, symmetric for n
even and skew-symmetric for n odd.

Second, the representative ξ is transversal to ω, in the sense that

ιω(ξ) := ωyξ = 0. (12)

This means that, in fact ξ belongs to the linear subspace

ker ιω = ker
(
∧n(V ⊕ V ∗) ιω−→ ∧n−2(V ⊕ V ∗)

)
(13)

of ∧n(V ⊕ V ∗).
Third, (11) is injective.
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1.5. The Plücker embedding space. The fact that ker ιω is not the smallest linear
subspace of ∧n(V ⊕V ∗) whose projectivization contains the image of (11) is less evident
and requires more care.

To this end, observe that

∧n(V ⊕ V ∗) =
n⊕
i=0
∧i(V ∗)⊗ ∧n−i(V ) '

n⊕
i=0
∧i(V ∗)⊗ ∧i(V ∗), (14)

in view of the Poincaré duality ∧n−i(V ) = Hom(∧i(V ),∧n(V )). It is then easy to realise
that the representative ξ of vol(L) belongs to

n⊕
i=0

S2(∧i(V ∗)) (15)

via the map (11). Puzzlingly enough, (15) is not yet the minimal subspace we were
looking for. Though it is so for n = 2, 3. Let n = 2 and let L be the Lagrangian 2-plane
(5) corresponding to the symmetric 2× 2 matrix (hij). Then vol(L) = [ξ], with

ξ = e1 ∧ e2 + h11e1 ∧ ε1 + h12e1 ∧ ε2 + h21e2 ∧ ε1 + h22e2 ∧ ε2 + det(hij)ε1 ∧ ε2 (16)

as an element of ∧2(V ⊕ V ∗), and

ξ = 1 + hijε
i � εj + det(hij)ε1 ∧ ε2 (17)

as an element of (15). That is,

(1, h11, h12, h22, h11h22 − h2
12) (18)

are the coordinates of ξ in the standard basis of (15). Observe that in (18) there appear
all the minors of the matrix (hij), namely: minors of order 0 (the constant 1), minors of
order 1 (the very entries of the matrix) and minors of order 2 (the determinant).

Similarly, for n = 3, one finds

ξ = 1 + hijε
i � εj + h#

ij(ε
1 ∧ ε̂i ∧ ε3)� (ε1 ∧ ε̂j ∧ ε3) + det(hij)ε1 ∧ ε2 ∧ ε3, (19)

where (h#
ij) denotes the cofactor matrix of (hij) and the hat indicates a removed element.

One gets then the 14 coordinates

(1, h11, h12, h13, h22, h23, h33, h
#
11, h

#
12, h

#
13, h

#
22, h

#
23, h

#
33,det(hij)) (20)

corresponding to the point ξ.
It is then easy to realise that, in the case n = 4, one has

(1, . . . , hij , . . . , 2× 2 minors, . . . , h#
ij , . . . ,det(pij)). (21)

A 4 × 4 symmetric matrix contains exactly: 1 minor of order 0 and of order 4, 4·5
2 = 10

minors of order 1 and 3, 6·7
2 = 21 minors of order 2, where 6 =

(4
2
)
is the number of

choices of 2 rows (columns). Therefore, (21) consists exactly of 1 + 10 + 21 + 10 + 1 = 43
entries. The subtle point here is that, as opposed to the cases n = 2 and n = 3, not all the
minors are linearly independent. More precisely there is exactly one linear combination
of 2× 2 minors, namely

−(h13h24 − h14h23) + (h12h34 − h14h23)− (h12h34 − h13h24), (22)
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which vanishes [35]. Therefore, there is a (proper, for n ≥ 4) linear subspace of (15),
henceforth denoted by

∧n0 (V ⊕ V ∗) :=
n⊕
i=0

S2
0(∧i(V ∗)), (23)

which contains all the ξ’s and it is minimal with respect to this property. Summing up,

n = 2⇒ ∧2
0(V ⊕ V ∗) = ∧0(V ∗)⊕ S2(V ∗)⊕ ∧2(V ∗) has dimension 5,

n = 3⇒ ∧3
0(V ⊕ V ∗) = ∧0(V ∗)⊕ S2(V ∗)⊕ S2(∧2(V ∗))⊕ ∧3(V ∗) has dimension 14,

n = 4⇒ ∧4
0(V ⊕ V ∗) = ∧0(V ∗)⊕ S2(V ∗)⊕ S2

0(∧2(V ∗))⊕ S2(∧3(V ∗))⊕ ∧4(V ∗)
has dimension 42.

Therefore, the minimal projective embedding of the 3-(resp., 6- and 10-)dimensional
Lagrangian Grassmannian LGr(2, 4) (resp., LGr(3, 6) and LGr(4, 8)) is P4 (resp., P13

and P41).
In general, to find the Plücker embedding space of the n(n+1)

2 -dimensional Lagrangian
Grassmannian LGr(n, 2n), one has to count how many minors a symmetric n×n matrix
possesses, minors of order 0 and n included. This, in principle, is an easy task. The
problem is to look for dependencies of the form (22) among minors. The number of minors
needs to be diminished by the number of these relations. The result, further decreased
by one, represents the (projective) dimension of the sought-for space. In Section 1.12
below we explain how the very same space can be obtained by exploiting the theory of
representations.

1.6. The Plücker relations. Expressions (18), (20) and (21) represent the parametric
description of LGr(2, 4), LGr(3, 6) and LGr(4, 8) in P4, P13 and P41, respectively. Let us
denote by

[z0 : z1 : . . . : zN ] (24)

the standard projective coordinates on PN . Then it is easy to realise that points of
LGr(2, 4) satisfy the quadratic relation

z1z3 − z2
2 − z0z4 = 0, (25)

capturing the fact that, on LGr(2, 4), the fourth coordinate is the determinant of the
symmetric matrix whose entries are z1, z2 and z3. Observe that z0, which is 1 on the big
cell of LGr(2, 4), serves the sole purpose of homogenising the relation

z4 = det
(
z1 z2
z2 z3

)
. (26)

Indeed, (25) is the equation cutting out LGr(2, 4) in P4. Therefore, LGr(2, 4) is a quadric.
The codimension of LGr(3, 6) in P13, on the contrary, is quite high: 7. The corre-

sponding equations are essentially the Laplace rule for the determinant of a symmetric
3× 3 matrix. More precisely, if

Z :=

 z1 z2 z3
z2 z4 z5
z3 z5 z6

 , (27)
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then the seven quadratic equations
z0z7 = Z#

11

z0z8 = Z#
12

z0z9 = Z#
13

z0z10 = Z#
22

z0z11 = Z#
23

z0z12 = Z#
33

z0z13 = tr(Z · Z#)
cut out LGr(3, 6) in P13. Similarly, it can be proved that LGr(n, 2n) is cut out by quadratic
relations in its own Plücker embedding space P(∧n0 (V ⊕V ∗)), similar to (25) and the seven
equations above (see, e.g., [32, Theorem 14.6]). These relations are usually referred to as
the Plücker relations, whereas the expressions (18), (20), (21), as well as the analogous
ones for higher values of n, are called the Plücker coordinates of the point L ∈ LGr(n, 2n).

1.7. The dual variety. The case of LGr(2, 4) is somewhat special in that the dimension
of the Plücker embedding space P4 exceeds only by one the dimension of LGr(2, 4). Then
the tangent spaces to LGr(2, 4) are projective hyperplanes in P4. The latter form a set,
usually denoted by P4 ∗ and called the dual of P4, which is (non-canonically) identified
with P4 itself. Thus, the set of tangent hyperplanes to LGr(2, 4) constitutes a subset

LGr(2, 4)∗ ⊆ P4 ∗ (28)
of the set of all hyperplanes, accordingly called the dual variety of LGr(2, 4).

We warn the reader that an element π ∈ LGr(2, 4)∗ is a linearly embedded P3, which
has contact of order one in some point with LGr(2, 4). In the language of jets,

LGr(2, 4)∗ = {π ∈ P4 ∗ | j1
x(π) = j1

x(LGr(2, 4)) in some point x ∈ LGr(2, 4)}. (29)
Therefore, the same π, which is tangent at x ∈ LGr(2, 4), may intersect unpredictably
LGr(2, 4) someplace else. In fact, as we shall see later on, elements of LGr(2, 4)∗ allow
constructing special hypersurfaces in LGr(2, 4) called hyperplane sections. Hence, the
notion of an element of the dual variety is different from (though related to) the notion
of a tangent space to LGr(2, 4), that is a fibre of an abstract linear bundle of rank 3.

Another peculiarity of LGr(2, 4) is that—exceptionally among all Lagrangian Grass-
mannians—its dual variety is smooth and canonically isomorphic to LGr(2, 4) itself. That
is, it is cut by the very same equation (25), appropriately interpreted as an equation
in P4 ∗. This also follows from the fact that LGr(2, 4) has codimension one in P4, and
that LGr(2, 4) is smooth. Indeed, to any point x ∈ LGr(2, 4) one associates the unique
element πx ∈ P4 ∗ which is tangent to LGr(2, 4) at x. This realises the desired one-to-one
correspondence.

The case of LGr(3, 6) is already much more involved. Indeed, at any x ∈ LGr(3, 6)
there is certainly a unique tangent 6-dimensional subspace but there does not need to
be a unique tangent hyperplane (i.e., a 12-dimensional subspace). Actually, there is a
6-dimensional family of them, making the dual variety LGr(3, 6)∗ 12-dimensional. It can
be proved that it is cut out by a single quartic relation in P13 ∗ [T4, Section 5].
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There is still a certain correspondence between LGr(3, 6) and its dual LGr(3, 6)∗. The
former is isomorphic to the singular locus2 of the latter, viz.

LGr(3, 6) ≡ Sing(LGr(3, 6)∗). (30)

This should help to convince oneself of the validity of (30). Let us describe an element
π ∈ P14 ∗ by projective coordinates

π ≡ [A : . . . : Bij : . . . : . . . : Cij : . . . : D]. (31)

Then, the intersection π ∩ LGr(3, 6), in the Plücker coordinates (20), is given by

A+Bijhij + Cijh#
ij +D det(hij) = 0. (32)

The key remark is that a particular case of an expression of the form (32) can be obtained
by means of another symmetric 3× 3 matrix, say H = (Hij). More precisely,

det(h−H) = 0 (33)

is a particular form of equation (32) above, where the fourteen coefficients A,Bij , Cij , D
depend on the six coefficients Hij . It is not hard to realise that, after the substitutions

A := detH, B := H#, C := H, D := 1, (34)

the equation (32) becomes (33). On the top of that, the hyperplane πH , with coefficients
given by (34) is tangent to LGr(3, 6). This is not hard to see: the left-hand side of (33),
regarded as a function of h, vanishes at h = H, together with its first derivatives.

In other words π ∈ LGr(3, 6)∗ because πH is tangent to LGr(3, 6) at the point xH
given, in the coordinates (20), by H itself. The correspondence

πH 7−→ xH (35)

basically allows us to regard the same matrix H as a special element πH of LGr(3, 6)∗ as
well as an element xH of LGr(3, 6) itself, thus realising the desired isomorphism (30).

The duality (35) manifests itself for any LGr(n, 2n), though the isomorphism (30)
now must be recast as

LGr(n, 2n) ≡ Sing(· · · Sing(︸ ︷︷ ︸
n−2 times

LGr(n, 2n)∗) · · · ). (36)

The underlying structure responsible of this duality is the natural bilinear form

∧n0 (V ⊕ V ∗)× ∧n0 (V ⊕ V ∗) −→ ∧2n(V ⊕ V ∗),
(α, β) 7−→ α ∧ β, (37)

which is scalar-valued and is symmetric (resp., skew-symmetric) for n even (resp., odd).
Indeed, the above-defined bilinear form is non-degenerate, thus allowing a point-hyper-
plane correspondence in the (de-projectivised) Plücker embedding space ∧n0 (V ⊕ V ∗).
After projectivisation, this correspondence coincides precisely with (35). It is interesting
to notice that such a correspondence is equivalent to the fact that the cone over LGr(n, 2n)
be isotropic with respect to (37).

2By singular locus of an algebraic variety X = {f1 = 0, . . . , fm = 0} of codimension m we
mean the subset of X where the differentials df1, . . . , dfm are not linearly independent.
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The dual P(∧n0 (V ⊕V ∗))∗ of the Plücker embedding space parametrises the hyperplane
sections of the Lagrangian Grassmannian, which correspond to the so-called Monge–
Ampère equations, see Section 2.5 below. The stratification of P(∧n0 (V ⊕ V ∗))∗ by the
dual variety LGr(n, 2n)∗ and its singular loci will correspond to special (Sp2n-invariant,
see next Section 1.8) classes of such PDEs (see Section 2.7).

The study of these special classes of PDEs corresponds precisely to the study of the
orbits in P(∧n0 (V ⊕ V ∗))∗ of the natural groups acting on ∧n0 (V ⊕ V ∗) (see Section 1.8
below). In particular, there is a unique close orbit with respect to the symplectic group,
and this is precisely the “very singular” locus LGr(n, 2n) (see Section 1.9).

1.8. Natural group actions on LGr(V ⊕ V ∗). Recall that the “arctangent map” (4)
allowed us to define a canonical embedding of S2V ∗ into the Lagrangian Grassmannian
LGr(V ⊕ V ∗), whose image corresponds to the big cell (8). Let us further restrict our
scope by considering only the non-degenerate elements of the big cell. That is, the open
subset

U := {h ∈ S2V ∗ | det(h) 6= 0} ⊂ LGr(V ⊕ V ∗).
One obvious group action on U is easily found. Indeed, any element D ∈ GL(V ) acts
naturally on symmetric forms,

h 7−→ Dt · h ·D, (38)
where the same symbol h denotes both the matrix and the form itself. As a matter of
fact, (38) acts on the whole big cell, preserving the subset U .

Another group action on U is due to the linear structure of the big cell. Indeed, an
element C of the Abelian group S2V ∗ can act on S2V ∗ itself as a translation:

h 7−→ h+ C. (39)
Observe that, unlike (38), the action (39) does not preserves U .

One last, somewhat less evident, group action on U is given by
h 7−→ h · (Id +B · h)−1, (40)

where now B ∈ S2V . Above correspondence (40) can be explained as follows. There is
an analogue of the arctangent map (4), defined on S2V , instead of S2V ∗, that is

S2V 3 k 7−→ arctan(k) := 〈α+ k(α) |α ∈ V ∗〉 . (41)
Observe that the common image of arctan and arctan is precisely U . Therefore, (40) is
nothing but the translation

h−1 7−→ h−1 +B, (42)
by B of h−1, understood as an element of S2V via arctan. Indeed,

arctan(h−1 +B) =
〈
α+ (h−1 +B)(α) |α ∈ V ∗

〉
=
〈
h(v) + (h−1 +B)(h(v)) | v ∈ V

〉
= 〈h(v) + (Id +B · h)(v) | v ∈ V 〉

=
〈
h((Id +B · h)−1(v)) + (Id +B · h)((Id +B · h)−1(v)) | v ∈ V

〉
=
〈
v + (h(Id +B · h)−1)(v) | v ∈ V

〉
= arctan(h · (Id +B · h)−1),

where we used the facts that h is invertible and that, at least locally around 0, Id +B · h
is invertible as well.
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The three actions (38), (39) and (40) above may seem accidental and unrelated. On the
contrary, they share a common background. Consider a linear transformation of V ⊕V ∗,
represented, in the aforementioned basis, by the (2n)× (2n) matrix

M :=
(
A B

C D

)
. (43)

In the same basis, the (2n)× n matrix(
Idn
h

)
≡ arctan(h) (44)

represents the n-dimensional linear subspace arctan(h). Indeed, the n columns of the
matrix (44) corresponds to the n generators appearing in the definition (5) of arctan(h).
Observe that (

Idn
h

)
,

(
A

h ·A

)
(45)

represent the same subspace, for any A ∈ GL(V ).
We need now to make the crucial assumption thatM belongs to a small neighbourhood

of the identity. This allows us to act by M on arctan(h) as follows:

M · arctan(h) =
(
A B

C D

)
·
(

Idn
h

)
=
(
A+B · h
C +D · h

)
=
(

Idn
(C +D · h)(A+B · h)−1

)
= arctan((C +D · h)(A+B · h)−1). (46)

Directly from the definition of a Lagrangian subspace of V ⊕ V ∗ it follows that
(C + D · h)(A + B · h)−1 is again a symmetric form if and only if the transformation
M preserves the symplectic form ω, that is,

M t · I ·M = I, (47)
where I is the symplectic matrix (1). A matrix M fulfilling (47) is called symplectic
transformation. The three matrices(

(Dt)−1 0
0 D

)
,

(
1 0
C 1

)
,

(
1 B

0 1

)
, (48)

with D ∈ GL(V ), C ∈ S2V ∗ and B ∈ S2V are easily checked to satisfy (47) and they
correspond to the actions (38), (39) and (40), respectively.

Actually, the three matrices (48) generate the entire subgroup
Sp2n ≡ Sp(V ⊕ V ∗) ⊂ GL(V ⊕ V ∗) (49)

of symplectic transformations, that is what is usually called the symplectic group. Such
an “inner structure” of the symplectic group becomes even more evident on the level of
the corresponding Lie algebras, viz.

sp2n ≡ sp(V ⊕ V ∗) = S2V ∗ ⊕ gl(V )⊕ S2V. (50)
This structure is the source of all the structures on LGr(V ⊕ V ∗) we shall find later on.
The homogeneous one, to begin with.
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1.9. The homogeneous structure of LGr(V ⊕V ∗). Formula (46) immediately shows
that

M · arctan(0) = arctan(0)⇔ A = Idn, C = 0. (51)

In other words, the stabiliser subgroup

P := StabSp2n
(arctan(0)) =

{(
Idn B

0 D

) ∣∣∣ B ∈ S2V, D ∈ GL(V )
}
, (52)

which coincides with the semidirect product

P = GL(V ) o S2V, (53)

encompasses the transformations of the form (38) and (40). Those of the form (39), that
is S2V ∗ acting by translations on the big cell S2V ∗, clearly allow us to move the origin
arctan(0) into any other point arctan(h) of the big cell. So, the orbit Sp2n /P contains
the big cell S2V ∗. However, since Sp2n is compact and P is closed, it must be

Sp2n /P = S2V ∗ = LGr(n, 2n). (54)

That is, the Sp2n-action is transitive and LGr(n, 2n) is a homogeneous space of the Lie
group Sp2n.

Having ascertained the transitivity of the Sp2n-action, we can switch to the local point
of view and analyse the infinitesimal action of sp2n. Assume that

Mε =
(
Aε Bε
Cε Dε

)
(55)

passes through the identity at ε = 0, and differentiate formula (46):
d

d ε

∣∣∣∣
ε=0

Mε · h = d
d ε

∣∣∣∣
ε=0

(Cε +Dε · h)(Aε +Bε · h)−1

= (Ċ0 + Ḋ0 · h)(A0 +B0 · h)−1 − (C0 +D0 · h)(Ȧ0 + Ḃ0 · h)(A0 +B0 · h)−2

= Ċ0 + Ḋ0 · h− h · (Ȧ0 + Ḃ0 · h), (56)

as well as (47):

0 = d
d ε

∣∣∣∣
ε=0

M t
ε · I ·Mε = Ṁ t

0 · I ·M0 +M t
0 · I · Ṁ0

= Ṁ t
0 · I + I · Ṁ0

=
(
Ȧt0 Ċt0
Ḃt0 Ḋt

0

)
·
(

0 − Id
Id 0

)
+
(

0 − Id
Id 0

)
·
(
Ȧ0 Ḃ0
Ċ0 Ḋ0

)
=
(
Ċt0 −Ȧt0
Ḋt

0 −Ḃt0

)
+
(
−Ċ0 −Ḋ0
Ȧ0 Ḃ0

)
. (57)

From (57) we obtain

sp2n =
{
Ṁ0 =

(
−Ḋt

0 Ḃ0
Ċ0 Ḋ0

) ∣∣∣ Ḃ0 ∈ S2V, Ċ0 ∈ S2V ∗, Ḋ0 ∈ gl(V )
}
, (58)

whence (56) become

Ṁ0 · h = Ċ0 + Ḋ0 · h+ h · Ḋt
0 − h · Ḃ0 · h. (59)
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The decomposition (50) is implicitly written already in (58), and it should be interpreted
as a |1|-grading,3 i.e.,

sp2n = S2V ∗︸ ︷︷ ︸
deg=−1

⊕ gl(V )︸ ︷︷ ︸
deg=0

⊕ S2V︸︷︷︸
deg=+1

. (60)

In particular, it follows from (60) that both S2V ∗ and S2V are Abelian Lie algebras
with a (natural) structure of gl(V )-module. Accordingly, the subgroup P defined by (53)
corresponds infinitesimally to the non-negative part of the grading:

p = gl(V )⊕ S2V. (61)

The remaining part, that is S2V ∗, is canonically identified with the tangent space at
arctan(0) to LGr(n, 2n):

Tarctan(0) LGr(n, 2n) ≡ S2V ∗. (62)

Identification (62) will play a crucial role in the sequel. We stress here that, due to the
presence of a quadratic term in h in (59), the isotropy action of P on the tangent space
Tarctan(0) LGr(n, 2n) reduces to the natural action of its 0-graded part, that is gl(V ),
on S2V ∗. The action of its 1-graded part, that is S2V , becomes visible only when the
principal bundle

Sp2n

P

��
LGr(n, 2n)

(63)

is identified with a sub-bundle of the second-order frame bundle of LGr(n, 2n) (see Section
1.11 below).

1.10. The tautological and the tangent bundle of LGr(n, 2n). We discuss now
two important linear bundles that can be naturally associated with LGr(n, 2n)—the
tautological (rank-n) bundle and the tangent bundle (whose rank is n(n+1)

2 ). The key
observation is that the latter can be identified with the second symmetric power of the
dual of the former. Definitions can be easily given in terms of associated bundles to the
P -principal bundle (63) introduced above. The key identification, on the other hand, is
more evident from a local perspective.

From the P -principal bundle (63) one immediately obtains the linear bundle
Sp2n×PS2V ∗ by letting P act on S2V ∗ naturally through its 0-graded part and trivially
through the rest. By definition, the associated bundle is precisely the tangent bundle to
LGr(n, 2n), viz.

T LGr(n, 2n) = Sp2n×PS2V ∗. (64)

We can regard (64) as a generalisation of (62) above, in the sense that the former,
evaluated at arctan(0), gives the latter. The very identification (64) indicates also how

3See [11, Definition 3.1.2] for the general definition of a |k|-grading.
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to define a linear rank-n bundle, whose dualised symmetric square coincides with the
tangent bundle to LGr(n, 2n). It suffices to rewrite (64) as

T LGr(n, 2n) = S2(Sp2n×PV )∗. (65)

Indeed, at the right-hand side of (65), we see now the symmetric square of the dual of
the following rank-n bundle

L := Sp2n×PV

��
LGr(n, 2n).

(66)

We call (66) the tautological bundle and we denote it by the symbol L. The choice of
the letter L is not accidental: if the same symbol L denotes both the total space of the
bundle (66) over LGr(n, 2n) and a point L ∈ LGr(n, 2n), then

LL = L, (67)

that is, the fibre of L at L is again L—whence the modifier “tautological”. With this
notation, (65) becomes simply

T LGr(n, 2n) = S2L∗. (68)

Observe that by
TL LGr(n, 2n) = S2L∗ (69)

we mean that the bundle identification (68) has been evaluated at the particular point
L ∈ LGr(n, 2n), thus becoming an identification of linear spaces. The reader should be
aware that (68) is an identification of bundles, whereas (69) is an identification of linear
spaces, in spite of the usage of the same symbol L.

The importance of (68) is that it allows us to speak about the rank of a tangent vector
to LGr(n, 2n), which is the rank of the corresponding bilinear form on the tautological
bundle. In particular, rank-one vectors will be tightly connected to the key notion of
a characteristic of a second-order PDE (see Sections 1.14 and 1.15).

For the reader feeling uncomfortable with the language of induced bundles we propose
another explanation of the identification (69). Regard L as a point of the Grassmannian
Gr(n, V ⊕V ∗) of n-dimensional subspaces of V ⊕V ∗ (see (3)) and observe that the arctan
map (4) can be generalised by choosing an arbitrary complement Lc of L in V ⊕ V ∗ and
by defining

arctanL : Hom(L,Lc) −→ Gr(n, V ⊕ V ∗) (70)

exactly the same way as arctan. Now the symplectic form ω allows us to identify Lc with
the dual L∗, whence Hom(L,Lc) with L∗ ⊗ L∗. The differential at 0 of (70) gives then
an isomorphism between L∗ ⊗L∗ and TL Gr(n, V ⊕ V ∗), which one shows not to depend
upon the choice of Lc. Finally, by similar reasonings as those in Section 1.2 one finds
out that the subspace S2L∗ corresponds precisely to the subspace TL LGr(n, 2n), thus
obtaining (69).
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1.11. The second-order frame bundle. For any L ∈ LGr(n, 2n) we define the space4
of second-order frames at L as

F2
L := {j2

0(φ) |φ : S2V ∗ → LGr(n, 2n), φ(0) = L, φ local diffeomorphism at 0}, (71)

and the second-order frame bundle of LGr(n, 2n) by

F2 :=
∐

L∈LGr(n,2n)

F2
L. (72)

This bundle allows us to “see” the action of the positive-degree part of the group P .
Recall that, by its definition (52), P consists of diffeomorphisms of LGr(n, 2n) preserving
arctan(0). In particular, each q ∈ P can be regarded as a local diffeomorphism q : S2V ∗ →
LGr(n, 2n) sending 0 into arctan(0). Therefore, j2

0(q) ∈ F2
arctan(0) and we found the map

P −→ F2
arctan(0),

q 7−→ j2
0(q). (73)

Obviously, F2
arctan(0) is a group, and it can be proved that (73) above is a group em-

bedding. Therefore, the structure group P of the bundle Sp2n → LGr(n, 2n) embeds
into the structure group of the bundle F2 → LGr(n, 2n). Then the P -principal bundle
Sp2n → LGr(n, 2n) can be regarded as a reduction of the second-order frame bundle of
LGr(n, 2n).

The reduction is easier grasped on the Lie algebra level. Indeed, the Lie algebra of
the group F2

arctan(0) is
gl(S2V ∗)⊕ (S2(S2V ∗)⊗ S2V ) (74)

and it contains p as a subalgebra. The embedding is indicated by (59). The 0-degree
component of p embeds naturally into gl(S2V ∗). An element B ∈ S2V , that is the
1-degree component of p, is mapped into the bilinear map

S2V ∗ × S2V ∗ −→ S2V,

(h, k) 7−→ h ·B · k.

Regarding Sp2n as a sub-bundle of the second-order frame bundle of LGr(n, 2n) is
an indispensable step when it comes to the problem of equivalence of hypersurfaces in
LGr(n, 2n). Such a problem is usually dealt with, in the spirit of Cartan, via the moving
frame methods, i.e., restrictions of Fk to the embedded hypersurfaces at hand.

1.12. Representation theory of Sp2n and its subgroup GLn. The standard choice
of a Cartan subalgebra of sp2n is given by the n-dimensional Abelian subalgebra

h :=
〈
εi ⊗ ei | i = 1, . . . , n

〉
(75)

of diagonal matrices in gl(V ). The fundamental weights are then

λj :=
j∑
i=1

ei ⊗ εi, j = 1, . . . , n (76)

4See, e.g., [27, Chapter IV], [26, Example 5.2], for more details on frame bundles.
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(see [11, Section 2.2.13]) where ei ⊗ εi ∈ h∗ is the basis element dual to εi ⊗ ei ∈ h. For
any j = 1, . . . , n, the fundamental weight λj appears as the weight of the highest weight
vector

vλj := e1 ∧ . . . ∧ ej (77)

in ∧j(V ⊕ V ∗). Observe that

[vλn
] = vol(arctan(0)), (78)

that is, the Plücker image of the origin arctan(0) ∈ LGr(n, 2n) is the line through the
highest weight vector in ∧n(V ⊕ V ∗). The subtle point is that ∧n(V ⊕ V ∗) is not the
highest weight module Vλn

of vλn
. Indeed, ∧n(V ⊕ V ∗) is not irreducible and

Vλn
= ∧n0 (V ⊕ V ∗) (79)

is precisely the subspace introduced in (23) above. Therefore, PVλn is the representation-
theoretic way of describing the Plücker embedding space.

Since GL(V ) ⊂ Sp(V ⊕ V ∗), any irreducible representation of Sp(V ⊕ V ∗) becomes
a (not necessarily irreducible) representation of GL(V ). In particular, the irreducible
Sp(V ⊕V ∗)-representation Vλ with highest weight λ splits into several GL(V )-irreducible
representations. Only one of the latter contains the weight vector vλ and therefore it will
be denoted by Lλ:

Lλ = the unique GL(V )-irreducible component of Vλ containing vλ.

For instance, Vλ1 is the 2n-dimensional fundamental representation V ⊕V ∗, whereas Lλ1

is simply V . Similarly, Vλn
is the (very large) de-projectivised Plücker embedding space

for LGr(2n, n), whereas Lλn
is the one-dimensional line vol(arctan(0))!

1.13. The tautological line bundle and r-th degree hypersurface sections. Hav-
ing at one’s disposal the P -principal bundle (63) and regarding the GLn-irreducible rep-
resentation Lλ as a representation of P , one can form the associated vector bundle

Sp2n×PLλ. (80)

For instance, with λ = λ1 one obtains the tautological bundle introduced earlier (cf.
(66), (67)) and with λ = λn one obtain the tautological line bundle OLGr(n,2n)(−1). The
readear should bear in mind that the former is a rank-n bundle, whereas the latter has
rank 1. Indeed, there are two “tautological” principles at play here, following from the
fact that LGr(n, 2n) is made of n-dimensional linear subspaces, and PVλn

consists of
lines, respectively.

By definition, OLGr(n,2n)(−1) is the pull-back via the Plücker embedding of the
tautological line bundle over the Plücker embedding space PVλn

. Indeed, the fibre of
OLGr(n,2n)(−1) at L ∈ LGr(n, 2n) is vol(L) itself, understood not as a point of PVλn , but
as an abstract one-dimensional linear space. Such is the standard notation of Algebraic
Geometry: over the projective space P(W ) one has a group (isomorphic to Z) of linear
bundles

O(−1)[w] := 〈w〉 , O(1) := O(−1)∗, O(±r) := O(±1)⊗r, ∀[w] ∈ PW, r ∈ N.
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Given a hyperplane π ∈ PV ∗λn
, we may form the hyperplane section Σπ := π∩LGr(n, 2n).

The same hypersurface Σπ can be described as the zero locus of a suitable section of
OLGr(n,2n)(1), the dual of OLGr(n,2n)(−1). Indeed, let α ∈ V ∗λn

be a linear form such
that π = P(kerα). Then α can be restricted to each line vol(L), thus yielding a section
(still denoted by α) of OLGr(n,2n)(1). The value of the section α at L is simply α|vol(L).
Therefore, the zero locus of α is made precisely by those L, such that vol(L) ⊂ kerα,
that is, vol(L) ∈ π, which is precisely Σπ.

A central question in the geometry of PDEs is: how to recognise a hyperplane section?
In the above language of induced bundles, this is the same as asking: when a section of
OLGr(n,2n)(1) comes from a linear form α ∈ V ∗λn

?
In general, the map

SrV ∗λn
−→ Γ

(
LGr(n, 2n),OLGr(n,2n)(r)

)
(81)

associating with a degree-r homogeneous polynomial on Vλn
a (global) section of

OLGr(n,2n)(r), the r-th power of OLGr(n,2n)(1), can be resolved. More precisely, there
exists a differential operator �r acting on sections of OLGr(n,2n)(r), whose kernel is pre-
cisely the image of (81). The construction of �r is by no means trivial and it is based on
the so-called BGG resolution [22, Theorem 5.9].

From the point of view of PDEs, the operator �r is to be understood as a test, that
is, as a criterium to establish whether a given second-order PDE F (pij) = 0 belongs to
the well-defined (Sp2n-invariant) class of r-th degree hypersurface sections. Running the
test entails applying �r to the function F defining the equation at hand. Therefore, the
above class of second-order PDEs is to be understood as the set of solutions of the special
differential equation �r(F ) = 0. The same idea will be applied to another important class
of PDEs, the integrable ones, see Section 2.8 below.

1.14. Rank-one vectors. An immediate consequence of the fundamental isomorphism
(68) is that the projectivized tangent bundle PT LGr(n, 2n) contains a proper sub-bundle,
namely the bundle

R := {[v] ∈ PT LGr(n, 2n) | rank v = 1} (82)

of (projective classes of) rank-one vectors. Indeed, (68) allows us to speak of the rank of
the vector v, and such a notion is well-defined and depends only on the projective class
of v.

We provide now an interesting characterisation of rank-one tangent vectors. Let L ∈
LGr(n, 2n) be an arbitrary point, and v a tangent vector at L to LGr(n, 2n). Let γ = γ(ε)
be a curve passing through L with speed v. Then, each point γ(ε) can be interpreted as a
Lagrangian subspace of V ⊕V ∗, and in particular γ(0) = L. Observe that, even for small
values of ε, the intersection γ(ε) ∩ γ(0) needs not to be nontrivial.

Here it comes the peculiarity of rank-one vectors: v is rank-one if and only if the curve
γ can be chosen in such a way as the intersection γ(0)∩ γ(ε) is a fixed hyperplane Σ ⊂ L
(that is, not depending on ε) for all ε in a small neighbourhood of zero. In other words,
there is a correspondence between rank-one tangent vectors at L and hyperplanes Σ ⊂ L,
that is, elements of PL∗. In one direction, such a correspondence is quite evident.
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Thanks to the homogeneity of LGr(n, 2n) we can work at the origin arctan(0) (see
Section 1.9 above). Let [α] ∈ P arctan(0)∗ represent the hyperplane Σα := kerα. We need
to describe the generic Lagrangian plane L, which is “close” to arctan(0), and intersects
the latter precisely along Σα. Since L has to be “close” to arctan(0), we can assume it to
belong to the big cell, that is, to be of the form arctan(h), for some h ∈ S2V ∗. The key
remark, rather obvious, is that

arctan(0) ∩ arctan(h) = kerh. (83)
So, the above intersection coincides with Σα if and only if kerα = kerh. That is, if and
only if the quadratic form h is proportional to the square of the linear form α. Therefore,
the correspondence between hyperplanes in L and rank-one tangent vectors to LGr(n, 2n)
at L is nothing but

PL∗ −→ PS2L∗

[α] 7−→ [α2], (84)
one of the most fundamental maps in classical Algebraic Geometry: the Veronese em-
bedding [23, Example 2.4]. The above map (84), in the context of second order PDEs,
allows us to establish an important relationship between objects depending on second
order derivatives (elements of S2L∗ are reminiscent of Hessian matrices) and objects de-
pending on first order derivatives (elements of L∗ correspond to covectors on the space
of independent variables). This point of view will be clarified in Section 2.6.

1.15. Characteristics. In compliance with the terminology found, e.g., in [2, Formula
(3.1)], [8, Chapter VI] and [T3, Part II], we denote by

Σ(1) := {L ∈ LGr(n, 2n) |L ⊃ Σ} (85)
the prolongation of the hyperplane Σ ∈ PL∗. As we have already pointed out, Σ(1) is
a line passing through L itself (see Section 1.14). In fact, via Plücker embedding, Σ(1)

becomes an actual projective line in PVλn , see, e.g., [2, Proposition 2.1].
Moreover, if Σ = kerα, with α ∈ L∗, then

TLΣ(1) =
〈
α2〉 , (86)

as a subset of S2L∗ = TL LGr(n, 2n) (recall formula (69)). Let E ⊆ LGr(n, 2n) be a
submanifold and L ∈ E . Then Σ is called a characteristic (resp., strong characteristic)
for E at L if Σ(1) is tangent to (resp., contained in) E . These notions will be essential in
the analysis of the well-posedness of initial value problems for PDEs, see Section 2.4.

1.16. The Lagrangian Chow transform. So far we have worked with Lagrangian—
i.e., maximally isotropic—subspaces L of V ⊕V ∗. The hyperplanes Σ appearing in Section
1.15 are the first instances of sub-maximal isotropic subspaces (in this case, (n − 1)-
dimensional). In fact, nothing forbids considering the sets

LGr(i, V ⊕ V ∗) := {L ∈ Gr(i, V ⊕ V ∗) |ω|L ≡ 0}, i = 1, . . . , n, (87)
which we may call “Lagrangianoid Grassmannians”, as well as the corresponding inci-
dence correspondences:

Fliso(V ⊕ V ∗; i, j) := {(L1, L2) ∈ LGr(i, V ⊕ V ∗)× LGr(j, V ⊕ V ∗) |L1 ⊂ L2}, (88)
where 1 ≤ i < j ≤ n.
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In particular, an important role is played by LGr(1, V ⊕ V ∗) ≡ P(V ⊕ V ∗) and
LGr(n− 1, V ⊕V ∗). Indeed, in the geometric theory of PDEs, the former describes rank-
one subdistributions of the contact distribution, and the latter describes infinitesimal
Cauchy data. The two notions coincide for n = 2.5

A classical observation in Algebraic Geometry is that all these “Lagrangianoid Grass-
mannians” are tied together by means of the incidence correspondences (88). Indeed, the
above-defined sets of isotropic flags fit into the following double fibration:

Fliso(V ⊕ V ∗; i, j)
pi

uu

pj

))
LGr(i, V ⊕ V ∗) LGr(j, V ⊕ V ∗),

(89)

with i < j. For instance, with i = n− 1 and j = n diagram (89) reads

Fliso(n− 1, n, V ⊕ V ∗)
pn−1

tt

pn

))
LGr(n− 1, V ⊕ V ∗) LGr(n, V ⊕ V ∗),

(90)

and for any Σ ∈ LGr(n−1, V ⊕V ∗), the “double fibration transform” pn(p−1
n−1(Σ)) of Σ is

precisely the prolongation Σ(1) defined by (85). Conversely, for any L ∈ LGr(n, V ⊕ V ∗),
the “inverse double fibration transform” pn−1(p−1

n (L)) of L is nothing but PL∗.
Another interesting example is obtained with i = 1 and j = n. Diagram (89) then

reads
Fliso(V ⊕ V ∗; 1, n)

p1

vv

pn

))
P(V ⊕ V ∗) LGr(n, V ⊕ V ∗).

(91)

The above diagram allows us to recast a simple but useful theorem, known in Algebraic
Geometry as the Chow form/transform: ifX ⊂ P(V⊕V ∗) is a smooth variety of dimension
n − 1, then its “double fibration transform” pn(p−1

1 (X)) is a smooth hypersurface in
LGr(n, V⊕V ∗), of the same degree asX [3, Lemma 23]. The latter will be referred to as the
Lagrangian Chow transform of X. We stress that the notion of degree in LGr(n, V ⊕ V ∗)
refers to the surrounding Plücker embedding space.

As a nice example consider an n-dimensional (not necessarily Lagrangian) subspace
D ⊂ V ⊕ V ∗. Then PD is a (smooth) (n − 1)-dimensional variety in P(V ⊕ V ∗) whose
Lagrangian Chow transform reads

det(D − h) = 0, (92)

where D is the (not necessarily symmetric) n×n matrix corresponding to the subspace D
in the big cell V ∗⊗V ∗ of Gr(n, V ⊕V ∗) and h is the symmetric n×nmatrix corresponding

5The classical reference in the book [37]. Different treatments of the subject, sometimes closer
in spirit to the present paper, can be found, e.g., in [46, 34, 2].



LAGRANGIAN GRASSMANNIANS AND PDEs 29

to the generic element of the big cell S2V ∗ of LGr(n, V ⊕V ∗). Observe that (92), though
containing all the minors of h, is linear in the Plücker coordinates, as predicted by the
theorem.

The second order PDEs corresponding to the Lagrangian Chow transforms of the
n-dimensional sub-distributions of the contact distribution are the so-called Goursat-type
Monge–Ampère equations, introduced by E. Goursat in 1899 [21], way before the inception
of the Chow transform, see Section 2.6 below. It is precisely thanks to the introduction
of the Lagrangian Chow transform that the notion of a Goursat-type Monge–Ampère
equation can be generalised to arbitrary conic sub-distributions of the contact distribution
[T5, Section 9].

1.17. A few remarks on LGr(2, 4) and LGr(3, 6). We conclude this survey of the rich
geometry of LGr(n, 2n) by pointing out the peculiarities of two low-dimensional examples,
namely when n = 2 or n = 3. The case n = 2 is examined from top to bottom in the
paper [43]. Even if the case n = 3 does not boast its own treatise, the reader will find
specific facts and results in [T4, Section 5] and [22, Section 4.2]. We do not review here
all that can be found in the aforementioned works—we rather highlight the origin of the
interestingness and diversity of these two cases.

The departing point is the fact, already pointed out, that LGr(n, 2n) is always
isotropic with respect to the natural two-form defined on the (de-projectivised) Plücker
embedding space Vλn

, see (79).
In the case n = 2, this two-form is symmetric (see (37)) and we denote it here by g.

Therefore, since the codimension of LGr(2, 4) in PVλ2 ≡ P4 is one, LGr(2, 4) must coincide
with the (projectivised) null cone of g in P4.

In the real case, g has signature (+ + +−−) and then LGr(2, 4) inherits a conformal
structure of signature (+ +−). Such an Sp4(R)-invariant conformal structure is precisely
the one that has been used by The to carry out a classification of hypersurfaces in
LGr(2, 4) by the method of moving frames [43]. The same structure has also been used by
the authors to characterise the hyperplane sections of LGr(2, 4) in terms of the trace-free
second fundamental form [22, Corollary 4.2].

Another peculiarity of LGr(2, 4) which is worth recalling is that LGr(2, 4) is iso-
morphic to the so-called Lie quadric. This is the moduli space of all circles in R2, i.e.,
including also those with zero or infinite radius. Such an isomorphism was essentially
known to S. Lie himself [42, Lie’s Memoir on a Class of Geometric Transformations, Sec-
tion 9], though it can be rephrased in modern language by using Hopf fibration, see [5,
Section 5] and [6].

Passing to the case n = 3, we see that the 6-dimensional LGr(3, 6) does not carry
any natural conformal structure in the usual sense. Nevertheless a “trivalent” analogue
of a conformal structure can still be defined on LGr(3, 6). Such a structure has been
exploited by the authors to characterise hyperplane sections of LGr(3, 6) in terms of a
suitable generalisation of the trace-free second fundamental used in the case n = 2 [22,
Section 4.2].

Another really intriguing feature of LGr(3, 6), or rather of its Plücker embedding
in P13, is that such an embedding can be regarded as an appropriate generalisation of
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the twisted cubic in P3, whereby the field of complex number has been replaced by the
Jordan algebra of symmetric 3× 3 matrix. This analogy played a fundamental role in a
recent analysis of PDEs with prescribed group of symmetries [44]. A gentle introduction
to it can be found in [T4, Section 5].

2. Hypersurfaces in the (real) Lagrangian Grassmannian and second order
PDEs. In the second part of this paper we examine more in depth the geometry of
hypersurfaces in the Lagrangian Grassmannian LGr(n, 2n). Some of the key notions, like
those of a hyperplane section (Section 1.7), of an r-th degree section (Section 1.13) and of
the characteristic of a hypersurface (Section 1.15), have already been introduced above.
It was also anticipated that these ideas were going to have interesting incarnations in the
context of second order PDEs. All of this will be explained below.

From now on, we work in the real smooth category.

2.1. Contact manifolds and second order PDEs. The idea of framing second order
PDEs against the general background of contact manifolds and their prolongations is
rather old and, in a sense, it belongs to the mathematical folklore. An excellent treatise
of this topic is the book [30] though a slenderer introduction can be found in [17].

The departing point is a contact manifold (M, C), that is a (2n + 1)-dimensional
smooth manifold equipped with a one-codimensional distribution C, such that the Levi
form,

ω : C ∧ C −→ TM/C,
(X,Y ) 7−→ [X,Y ] + C, (93)

is non-degenerate. The so-called Darboux coordinate may help to clarify the picture:M is
(locally) described by the coordinates

(x1, . . . , xn, u, p1, . . . , pn), (94)

the distribution C is (locally) spanned by the 2n vector fields

D1 := ∂x1 + p1∂u, . . . , Dn := ∂xn + pn∂u︸ ︷︷ ︸
“total” derivatives

, ∂p1 , . . . , ∂pn︸ ︷︷ ︸
“vertical” derivatives

,

and (locally)
ω = dxi ∧ dpi . (95)

The next step consists in regarding each contact plane Cp, with p ∈ M , as a symplectic
linear space (thanks to the symplectic form ωp) and in constructing the corresponding
Lagrangian Grassmannian LGr(Cp) := LGr(n, Cp). One readily verifies that the total
derivatives and the vertical derivatives are dual to each other via ω, that is, they can
be identified with the vectors ei and the covectors εi introduced in Section 1.1, respec-
tively. Then, following the same procedure as in Section 1.2, we obtain coordinates pij
on LGr(Cp). Doing the same for any point p one obtains a bundle

LGr(C) :=
∐
p∈M

LGr(Cp) −→M (96)
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with fibre coordinates pij , known as the Lagrangian Grassmannian bundle of M or the
first prolongation of M and sometimes denoted by M (1).

Then a hypersurface E ⊂M (1), being locally represented as

E : F (x1, . . . , xn, u, p1, . . . , pn, . . . , pij , . . . ) = 0, (97)

clearly corresponds to a second order PDE. Perhaps it is less evident that a solution of E is
captured by a Lagrangian submanifold L ⊂M , such that its tangent lift TL is contained
into E . In the coordinates (94) of Darboux, L = Lf := {x, f(x), . . . , (∂xif)(x), . . . },
where f is a function of x = (x1, . . . , xn), and it is not hard to prove that TL (the set of
all the tangent n-dimensional subspaces to L) coincides with

L
(1)
f := {x, f(x), . . . , (∂xif)(x), . . . , . . . , (∂xi∂xjf)(x), . . . } ⊂M (1), (98)

so that L(1)
f ⊂ E if and only if the function f fulfills the (familiar looking) PDE appearing

in (97).
From now on we make the (non-restrictive) assumption that E is actually a sub-bundle

of M (1). Then the fibres Ep of E are hypersurfaces in the corresponding Lagrangian
Grassmannians LGr(Cp), with p ∈ M . So, we are in position of utilising the theoretical
machinery developed in the first part. Essentially, we are going to work with a family
of symplectic spaces, Lagrangian Grassmannians and hypersurfaces of the latter, rather
than with a fixed one. Besides the appearance of a fancy index “p”, the techniques remain
unchanged.

A subtler point, which may have escaped the hasty reader, is that passing from the
point-wise perspective (“microlocal”, as some love to say) to the global framework, the
equivalence group has changed from the finite-dimensional Lie group Sp2n to the infinite-
dimensional contact group Cont(M).

2.2. Nondegenerate second order PDEs and their symbols. If one’s ultimate
goal is to be able to setup the equivalence problem for second order PDEs, then there is
one rough distinction that can be made from the very beginning.

A hypersurface E ⊂ LGr(n, 2n) is called non-degenerate at L if the tangent hyperplane
TLE , understood as a line in S2L via the dual of identification (68) is made of non-
degenerate elements. Then E is called non-degenerate if it is non-degenerate at all points.
Finally, a second order PDE E ⊂M (1) is non-degenerate if so are all its fibres. Obviously,
the property of being non-degenerate is Cont(M)-invariant and hence defines a well-
behaved class of second order PDEs.

The fundamental correspondence (68) reads now, in terms of the local Darboux co-
ordinates (94),

S2L∗ −→ TL LGr(n, 2n),
dxi � dxj 7−→ ∂pij

|L . (99)

Therefore, if E = {F = 0} is a hypersurface in LGr(n, 2n), then dL F can be regarded as
an element of S2L, viz.

dL F = ∂F

∂pij

∣∣∣∣
L

d pij ←→
∂F

∂pij

∣∣∣∣
L

∂xi � ∂xj . (100)
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The symmetric rank-two contravariant tensor appearing at the right-hand side of (100)
is of paramount importance in the theory of PDEs. It is called the symbol of F at L. If
the dependence upon L is discarded then one has a section of the bundle S2L|E (beware
of the syncretism of the symbol L, cf. (68) and (69)), still called the symbol of F . Finally,
if E ⊂M (1) is a second order PDE, then the symbol of F must be understood as a section
of a bundle over E , whose restriction to the fibre Ep is the aforementioned bundle S2L|Ep

.
Such a proliferation of “bundles upon bundles” is a congenital feat of the theory and the
reader must cope with it, see also [T3, Section 3]. Using the same symbol for the various
incarnations of the same concept, far from bringing in more confusion, is the only way to
keep the notation bearable.

Now we must face a fundamental problem in the theory of hypersurfaces, that is the
fact that F is not, of course, uniquely determined by E and it is E that we wish to study,
not F . Usually things are simpler with F , but then one has to ensure the result to be
independent upon the choice6 of F in the ideal of E . Another way out is to prove results
directly on E , but this usually demands a deeper abstraction.

For instance, the symbol of the equation E at L ∈M (1) is the element
SmblL(E) := [dL F ] ∈ P(S2L), (101)

whereas the previously defined symbol of F at L is just a representative of it. One is
more conceptual, the other more treatable. Nevertheless, both allow us to rephrase the
notion of non-degeneracy: the PDE E is non-degenerate at L if its symbol at L is a
generic element of P(S2L) or, equivalently, if the symbol of any representative F of E is
a non-degenerate rank-two symmetric tensor on L.

2.3. Symplectic second order PDEs. The various versions of the above notion of
non-degeneracy (in a point, in a fibre, everywhere) stressed the main issue of passing from
the study of hypersurfaces in LGr(n, 2n) to the study of second order PDEs E ⊂ M (1):
the fibres of E may fulfill some special property (e.g., that of being non-degenerate) over
some subset U ⊂M and, simultaneously, may not fulfill it over M \ U . This is the main
source of additional difficulties: two equations of “mixed type” may not be Cont(M)-
equivalent for topological reasons (e.g., because the locus U of the first equation is not
homeomorphic to the analogous locus of the second equation).

A reasonable compromise between the Sp2n-equivalence problem and the Cont(M)-
equivalence problem is provided by the sub-class of second order PDEs that locally look
like

E : F (. . . , pij , . . . ) = 0, (102)
that is, exactly like (97), but without explicit dependency upon x1, . . . , xn, u, p1, . . . , pn.
Such a class will be called the class of symplectic second order PDEs in compliance
with the terminology adopted, e.g., in [16, 41, 15].7 More geometrically, one can speak
about symplectic second order PDEs when the bundle M (1) −→ M is trivial, i.e.,

6Borrowing a terminology from Algebraic Geometry, we call the ideal of E the ideal in
C∞(M (1)) of functions vanishing on E .

7According to another school, this is the class of Hirota-type second order PDEs, see e.g.,
[18, 19].
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M (1) = M × LGr(n, 2n) and E is the pull-back of a hypersurface (still denoted by E)
in LGr(n, 2n). Hence, the modifier “symplectic” alludes to the fact that the equivalence
group is still Sp2n, even though the equation is defined over the contact manifoldM . From
now on, unless otherwise stated, all second order PDEs are assumed to be (everywhere)
non-degenerate and symplectic. The same symbol E will be used both for the sub-bundle
of M (1) and for an its generic fibre. The context will help the reader to know which is
which.

It may happen that very hard questions for general second order PDEs become almost
trivial in the context of symplectic second order PDEs. For instance, the problem of
linearisability of a general parabolic Monge–Ampère equation, up to contactomorphisms,
was raised by R. Bryant [9] and to date it is still open, whereas its analogue for symplectic
Monge–Ampère equations is (relatively) trivial, see [T4, Theorem 1.4]. Obviously, the
class of symplectic second order PDEs is not Cont(M)-invariant.

2.4. The characteristic variety. Before introducing the simplest yet nontrivial class
of PDEs, we recast the notion of a characteristic in the present context of PDEs. Recall
that, for any point L ∈ E , a hyperplane Σ ∈ PL∗ is called a characteristic (resp., strong
characteristic) for E at L if the rank-one line Σ(1) ⊂ TL LGr(n, 2n) it tangent to E at L
(resp., contained into E), see Section 1.15. Let now E ⊂M (1) be a PDE, and L ∈ E . The
subset

ΞL(E) := {Σ ∈ PL∗ |Σ(1) is tangent to E at L} ⊂ PL∗ (103)
is called the characteristic variety of E at L. Their (disjoint) union, for all L ∈ E , forms
a bundle over E called simply the characteristic variety and denoted by Ξ(E).

The conceptual definition (103) may be abstruse, but Darboux coordinates make
it easily accessible to computations. It is easy to see that (103) can be equivalently
formulated as

ΞL(E) = {[α] |α ∈ L∗, SmblL(F )(α2) = 0}. (104)
Here SmblL(F ) is the symbol of F at L, as in the right-hand side of (100). Observe that
the condition at the right-hand side of (104) is independent upon the choice of F in the
ideal of E .

In this section we merely provide the definition of the characteristic variety Ξ(E).
A careful examination of all the properties of Ξ(E) and ramifications would fill a separate
treatise. For more information, we refer the reader to [T3] in this very volume and to [46]
and references therein. We just make two final remarks.

First, the characteristic variety Ξ(E) can be used to carry out a rough classification
of PDEs. For instance, E is non-degenerate at L iff ΞL(E) is a non-degenerate8 quadric.
Similarly, E is elliptic at L iff ΞL(E) is empty. In the case n = 2, E is parabolic at L iff
ΞL(E) consists of two lines. And this list of examples may continue.

Second, the characteristic variety Ξ(E) plays a fundamental role in the initial value
problem. Assume, to make things even simpler, that a characteristic Σ is strong. Then
the entire line Σ(1) is contained into E . This means that there is a family, parametrised
by P1, of infinitesimal solutions to E admitting the same initial (infinitesimal) datum Σ.

8Beware that non-degenerate does not mean non-irreducible.
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In other words, if the initial datum is tangent to Σ (in which case the initial datum is
called characteristic), then the Cauchy–Kowalewskaya theorem fails in uniqueness. More
examples clarifying this property of Ξ(E) can be found in the above-cited paper [46].

2.5. Hyperplane sections and PDEs of Monge–Ampère type. In the literature,
the Monge–Ampère equation is usually understood to be

det(pij) = f(xi, u, pi). (105)
It is at the very heart of a feverish research activity: for instance, the book [45], concerning
the problem of the optimal mass transportation, gathered almost one thousand citations
in a dozen of years. Besides countless scientific and technological applications, the problem
of optimal mass transportation can be formulated in important economical models, in the
form of optimal allocation of resources. This led, among many other things, to a Nobel
prize in the economic sciences for Kantorovich [25, 24, 1, 17].

On a more speculative level, one can ask for which functions f in (105) one obtains
a (Cont(M)-invariant) class of PDEs. For instance, there exists a family of functions f
such that the corresponding equation (105) can be brought into the linear form9

p11 = 0, (106)
by means of a (partial) Legendre transformation (that is a particular element of
Cont(M)), see, e.g., [17, 2]. This is the easiest example of a Cont(M)-invariant sub-
class of Monge–Ampère equations—those having an integrable characteristic distribution.
A linear (symplectic) second order PDE

E : F (pij) = Bijpij = 0, Bij ∈ R, (107)
is such that its representative F fulfills the system of second-order PDEs

∂2F

∂pij∂phk
= 0, ∀i, j, h, k. (108)

Equation (108), that is a PDE imposed on the left-hand side of another PDE (in this
case, E), is what we shall call a test later on. The key feature of (108) is that it is not
Cont(M)-invariant. Making (108) into a Cont(M)-invariant test is not an easy task, and
the heavy machinery used in [22] confirms that; see also [36]. Nevertheless, the result is
surprisingly simple, and even easy to guess. If we declare that E passes the Monge–Ampère
test if and only if

∂2F

∂p(ij∂phk)
= 0, ∀i, j, h, k, for some representative F of E , (109)

then this test is Cont(M)-invariant. The curious reader may run it on (105) just for fun.
In the paper [22] the authors have proved that a (symplectic) second order PDE E

passes the Monge–Ampère test if and only if E = {F = 0}, with
F = A+Bijpij + C•(2× 2 minors) + . . .+Dijp#

ij +D det(pij), (110)
which coincides with the classical definition of a (general) Monge–Ampère equation with
constant coefficients, see, e.g. [2, Formula (0.5)]. Bearing in mind the definition of Plücker

9The simplest case of such a function is f = 0.
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coordinates (see (18), (20) and (21)), it is easy to see the geometry behind formula (110): it
is nothing but the equation of a hyperplane section of LGr(n, 2n), namely the intersection
of LGr(n, 2n) with the hyperplane

[A : Bij : C• : . . . : Dij : D] ∈ P(V ∗λn
). (111)

The correct way to formulate the Monge–Ampère test is via the so-called BGG resolution.
The same technique provides a similar test for hypersurface sections of higher degree, that
is, with F being a (homogeneous) polynomial of all the minors of pij of a certain degree
r > 1. Observe that this notion of (algebraic) degree has nothing to do with the order of
the PDE, which is always 2. For instance, (105) and p2

11 are both quadratic in the pij ’s,
however the former is linear in the Plücker coordinates, whereas the latter is quadratic.
The aforementioned BGG technique is explained in the paper [22].

2.6. Goursat-type Monge–Ampère equations. A similar expression to (105) de-
scribes the so-called Goursat-type (resp., symplectic Goursat-type) Monge–Ampère equa-
tion

det(pij −Dij) = 0, (112)

where Dij is a (not necessarily symmetric) n × n matrix of functions on M (resp., of
constants). It is natural to ask oneself whether the class of (symplectic) Goursat-type
Monge–Ampère equations is a proper subclass of the class of (symplectic) Monge–Ampère
equations. A straightforward count of the parameters immediately says yes. Let us begin
with n = 2. It was already pointed out that the space parametrising the hyperplane
sections of LGr(2, 4)—that is, (symplectic) Monge-Ampère equations in two variables—
is the dual P4 ∗ of the Plücker embedding space, see Section 1.7. On the other hand, the
space of matrices Dij is also 4-dimensional, so that, topological obstruction aside, the
two classes of PDEs may well coincide.

Over the complex field, they indeed do.
Over the reals, we have E = {F = 0}, with

F = det(pij −Dij) = det(pij)−D22p11 + (D12 +D21)p12 −D11p22 + det(Dij)
= E det(pij) +Ap11 + 2Bp12 + Cp22 + ∆ (113)

and, independently on D, the equation E is always non-elliptic since10

(AC −∆E −B2) = −
(
D12 −D21

2

)2
≤ 0. (114)

In other words, for n = 2, the subclass of Goursat-type Monge–Ampère equations co-
incides with the open subclass of non-elliptic Monge–Ampère equations. For n = 3 a
simple dimension count shows that this is no longer possible: the class of (symplectic)
Goursat-type Monge–Ampère equations is (3 · 3 = 9)-dimensional, whereas all (symplec-
tic) Monge–Ampère equations are parametrised by P13∗.

10Here we have employed the same notation used in [9, p. 588] for the definition of ellip-
tic/parabolic/hyperbolic Monge–Ampère equations in two dimensions—up to the replacement
of symbols ∆↔ D. Observe that the inequality (114) becomes an equality (that is, E is parabolic)
if and only if the matrix D is symmetric.
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From a geometrical standpoint, as we have already stressed in Section 1.16, the equa-
tion (112) is nothing but the Lagrangian Chow form of the (n− 1)-dimensional (linear)
variety PD in P(V ⊕ V ∗). Then we are just saying that, in general, not all the hyper-
plane sections are the Lagrangian Chow transform of a linearly embedded Pn−1 inside
the projectivised symplectic space.

The reader should be aware of the fact that, in the general context of second order
PDEs—i.e., when the hypothesis of being symplectic has been dropped—the n×n matrix
D is allowed to depend on the point of M . In other words, the n-dimensional subspace
D (which we keep denoting by the same symbol D) is actually an n-dimensional subdis-
tribution of the contact distribution on M . It is Cont(M)-equivariantly associated to the
equation (112) itself. The context will always make it clear, whether D is a distribution
or an n-dimensional subspace.

Recall that, for n = 2, the two double fibration pictures (90) and (91) coincide. Then
the Lagrangian Chow transform can be “inverted” simply by taking the characteristic
lines (which for n = 2 are the same as hyperplanes). More precisely, given any E ⊂
LGr(2, 4), one defines

XE := {Σ ∈ P(V ⊕ V ∗) |Σ(1) is tangent to E in some point}. (115)
In other words, XE is the union of all the characteristics of E in all its points. More
precisely, for any L ∈ E consider the characteristic variety ΞL(E): the points of the latter
are, by definition, hyperplanes in L, that is lines in L. But L is contained into V ⊕V ∗, so
that lines in L are also lines in V ⊕ V ∗, that is points of P(V ⊕ V ∗). So, definition (115)
can be rephrased as

XE =
⋃
L∈E

ΞL(E). (116)

We stress that the characteristic variety Ξ(E) is a bundle over E , whereas XE is a one-
dimensional sub-distribution of P(C), that is a 2-dimensional conic sub-distribution of the
contact distribution C [T5, Section 7].

If the equation E is the Goursat-type Monge–Ampère equation associated, according
to (112) to the subdistribution D ⊂ C, then

XE = PD ∪ PD⊥, (117)
where . . .⊥ means the symplectic orthogonal.

Observe that the equation (112) above remains unchanged if D is replaced by its
orthogonal—the matrix counterpart of taking the symplectic orthogonal. Then it is not an
exaggeration to claim that a Goursat-type Monge–Ampère equation E is unambiguously
determined by its “inverse Lagrangian Chow form” XE . Due to the invariance of the
framework, the sub-distribution XE of C can by all means replace E in the treatment of
the equivalence problem. This point of view is at the basis of many works about invariants
and classification of Goursat-type Monge–Ampère equations, see, e.g., [4, 15, 9, 13, 29, 30].

It is worth noticing that the analogous construction of XE for multidimensional PDEs
is slightly more complicated [2]. The class of PDEs “that are the Lagrangian Chow
transform of their own inverse Lagrangian Chow transform”—reconstructable, for short—
contains in fact more than the Goursat-type Monge–Ampère equations, but it has not
yet been explored completely.
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2.7. Low-dimensional examples. Let us recall that, for n = 2, the space P4∗ natu-
rally parametrises hyperplane sections of LGr(2, 4), that is (symplectic) two-dimensional
Monge–Ampère equations, see Section 1.7 and Section 2.5. Inside P4∗ there sits the three-
dimensional dual variety LGr(2, 4)∗, viz.,

LGr(2, 4)∗︸ ︷︷ ︸
parabolic Monge–Ampère

⊂ P4∗︸︷︷︸
all Monge–Ampère

, (118)

and it corresponds precisely to the sub-class of parabolic (Goursat-type symplectic)
Monge–Ampère equations, see Section 2.6. Indeed, when D is Lagrangian, i.e., symmet-
ric, the symbol of F has a double root, see Section 2.2 and (113). Since we are working
over the reals, between the subset and the whole space there is also the open domain
made of non-elliptic Monge–Ampère equations, that is all Goursat-type Monge–Ampère
equations (112).

For n = 3 the stratification becomes more interesting, since the dual variety is singular.
We are now in position of interpreting (30) in terms of Monge–Ampère equations:

Sing(LGr(3, 6)∗)︸ ︷︷ ︸
parabolic Monge–Ampère

⊂ LGr(3, 6)∗︸ ︷︷ ︸
linearisable Monge–Ampère

⊂ P13∗︸︷︷︸
all Monge–Ampère

. (119)

The (9-dimensional) domain of Goursat-type Monge–Ampère equations is between the
first two strata. A proof of the fact that the 12-dimensional variety LGr(3, 6)∗ corre-
sponds to linearisable Monge–Ampère equation can be found in [18, Section 3.6] or in
[T4, Theorem 1.4].

The cases n = 3 and n = 4 are important in that another class of Monge–Ampère
equations, which is trivial for n = 2, begins to show up. This is the class of integrable
Monge–Ampère equations (by the method of hydrodynamic reductions), which will be
briefly explained in Section 2.8 below. For n = 3 these coincide with the linearisable
ones. From (119) it follows that there exist non-integrable Monge–Ampère equations.
In fact, these are the general ones, since they form two open orbits, represented by

det(pij) = 1, det(pij) = tr(pij), (120)

see [18, Equation (13)]. In the same paper it is proved that the space of integrable
Monge–Ampère equations has dimension 21. Since linearisable (that is the same as inte-
grable) Monge–Ampère equations correspond to the 12-dimensional variety LGr(3, 6)∗,
pure dimensional considerations show that there is a lot of integrable second order PDEs
that are not of Monge–Ampère type.

The picture begins to change starting from n = 4. First of all, integrable Monge–
Ampère equations do not coincide with the linearisable ones, [T4, Theorems 1.4, 1.5,
1.6]. Second, the size of the space parametrising integrable second order PDEs does not
grow, as a function of n, as fast as the size of the sub-variety of LGr(n, 2n)∗ parametriz-
ing integrable Monge–Ampère equations. This simple observation led Ferapontov and
Doubrov to conjecture, in 2010, that from n ≥ 4 a (symplectic) integrable second order
PDE must be necessarily an (integrable) Monge–Ampère one [16, Section 1]. Even though
the case n = 4 has been recently solved by Ferapontov, Kruglikov and Novikov [19], to
date the conjecture is still unanswered in general.
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2.8. Integrability by the method of hydrodynamic reductions. As the reader
may have noticed, our survey of the geometry of Lagrangian Grassmannians, their hy-
persurfaces and second order PDEs has begun to border with ongoing research activities
and open problems. It is then the appropriate moment to end it. We will just mention a
few recent research results and current projects to the benefit of the most curious readers,
see Section 2.9 below.

Before that, we briefly outline the notion of hydrodynamic integrability, in view of
the central role played here by the Ferapontov conjecture. The special classes of Monge–
Ampère equations introduced so far—including the integrable ones—can all be inter-
preted as suitable Sp2n-invariant subsets in PV ∗λn

. Nevertheless, the notion of hydro-
dynamic integrability was born originally at the antipodes of Algebraic Geometry in
response to a rather tangible problem, which is worth recalling.

The first historically recorded “hydrodynamic reduction” of a three-dimensional
quasi-linear system of PDEs dates back to 1860 and it is due to Riemann. His paper
[40] provides a mathematical treatment of a problem of nonlinear acoustics proposed by
von Helmholtz—the propagation of planar air waves. The system of PDEs describing the
problem expressed the temperature T as a function of the three independent variables
ρ, p, v—density, pressure and velocity. Riemann’s method consisted in postulating the ex-
istence of solutions depending on two auxiliary independent variables r and s, and then
solving the so-obtained reduced system.

In 1996, a similar method was employed by Gibbons and Tsarev in order to obtain
a “chain of hydrodynamic reductions” [20] out of a famous multidimensional system
of PDEs introduced by Benney in the seventies [7]. Unlike Riemann’s work, the so-
obtained chain of hydrodynamic reductions does not lead to actual solutions of the original
system of PDEs, but the fact that each reduction is compatible reflects a (still unspecified)
property of integrability of the system itself.

The idea that a multidimensional (system of) PDEs may be called “integrable” if
the corresponding “hydrodynamic reductions”—obtained from it by a suitable (though
straightforward) generalization of the original Riemann’s method—are compatible finally
reached its maturity in the early 2000’s thanks to the works of Ferapontov and his col-
laborators (see [18] and references therein). They observed that the condition of being
integrable (in the sense of hydrodynamic reductions) singles out a nontrivial subclass in
the class of second order symplectic PDEs, that is precisely the one mentioned in Section
2.7. They also obtained, for three-dimensional systems, an integrability test, that is a
PDE imposed on the left-hand side of an unknown symplectic second order PDE, which
is satisfied if and only if the unknown PDE is hydrodynamically integrable. Unlike the
aforementioned Monge–Ampère test (109), which is a consequence of the general con-
struction of the BGG resolution,11 Ferapontov’s method was based on computer-algebra
computations and this is why the integrability test is now known only for small values

11Due to obvious limitations, the details of the Monge–Ampère test based on the BGG reso-
lution cannot be reviewed here. In Section 1.13 above we have sketched the idea behind it, but
for a full account of it the reader should consult [22].
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of n (to date, only 3 and 4). In terms of these tests, Ferapontov conjecture may be recast
as follows:

(Monge–Ampère test) + (integrability test) ≡ (integrability test) ∀n ≥ 4. (121)

It then all boils down to formalise (121) in a framework which is rich and general enough
to make it possible elaborate an answer. A promising technique is based on the COn-
structure associated with a non-degenerate hypersurface in LGr(n, 2n), see Section 2.9.

In order to see what really means for a (symplectic) PDE E = {F (pij) = 0} to be
integrable in the aforementioned hydrodynamical sense, we need to explain in detail the
notion of a k-phase solution of E . Since E is symplectic, we can identify E with its fibre,
that is a hypersurface in LGr(n, 2n). Then f ∈ C∞(Rn) is a solution to E if its Hessian
matrix, understood as a Lagrangian plane parametrised by points of Rn, takes values
into E (combine (98) and (102)). In the streak of the aforementioned Riemann’s original
work, we understand a k-phase solution as a solution f which depends on the independent
variables (x1, . . . , xn) ∈ Rn through the auxiliary variables (R1, . . . , Rk) ∈ Rk, in such
a way that the coordinate vector fields ∂

∂Ri have rank one, see Section 1.14. In terms of
commutative diagrams,

Rk U // E ⊂ LGr(n, 2n)

Rn .
R

aa

hess(f)

88

(122)

It is no coincidence that these Ri’s are called Riemann invariants. A k-phase solution
of E is precisely a solution f of E making commutative the above diagram, with

rank
[
U∗

(
∂

∂Ri

)]
= 1, ∀i = 1, . . . , k. (123)

Basically, a PDE E is declared to be integrable if it possesses “sufficiently many” k-phase
solutions, for all k (even if it suffices to check it just for k = 2, 3). More precisely, one
couples the given equation E with auxiliary equations expressing the existence of the
functions U and R and, most importantly, encoding the rank-one condition (123). Then
E is declared to be integrable if the so-obtained system is compatible. More details can
be found, e.g., in [18].

It is worth observing that the (physically motivated) notion of a k-phase solution
corresponds to the purely algebro-geometric concept of a k-secant variety. This interesting
parallel is the main motivation behind the recent work of Russo [T4].

2.9. A selection of recent research results. The main consequence of the non-
degeneracy of a hypersurface E in LGr(n, 2n) is the presence of a COn-structure on E . This
is essentially due to the reduction of GL(V ), the zero-degree part of P , to CO(Smbl(E)),
the subgroup of GL(V ) preserving the line Smbl(E), see definition (101). Because the
P -principal bundle Sp2n −→ LGr(n, 2n) is made of second-order frames (see Section
1.11), such a COn-structure on E is not a conformal metric. This makes things even more
intriguing.
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There is not yet in the literature a systematic treatment of such COn-structures and
this is not the appropriate place to start one. Worth to mention however is the skilful
work [41] by Smith, where n is assumed to be 3 and hence CO3-structures are the same
as GL2-structures. There the author even goes beyond the class of hypersurfaces (5-folds)
in LGr(3, 6), and studies the equivalence problem of arbitrary GL2-structures in dimen-
sion 5. Invariants are extracted from a preferred principal connection which is associated
with each such structure. In particular, he finds the embeddability conditions (i.e., those
ensuring that an abstract GL2-structure in dimension 5 can be realised as a hypersurface
in LGr(3, 6)) and lists several non-equivalent classes of second order symplectic PDEs in
three independent variables.

An analogous treatment of the 4-dimensional case is still lacking in the literature.
Nevertheless it is worth to mention the recent preprint by Ferapontov, Kruglikov and
Novikov, who answered the Ferapontov conjecture for n = 4 [19].

Concerning the Lagrangian Chow form and the correspondence between substructures
of the contact distribution and second order PDEs, it is worth to mention the work [44] by
The and the almost simultaneous work [3] by the authors and Alekseevsky. The problem
dealt with there is that of constructing a PDE admitting a prescribed simple (complex)
Lie group of symmetries. The departing point is the so-called sub-adjoint variety [T5,
Section 8] of a rational homogeneous contact manifold, which is an example of a conic sub-
distribution of the contact distribution, see Section 1.16. Besides these highly symmetric
cases, there is still no systematic treatment of “higher degree” analogues of Goursat-type
Monge–Ampère equations.

Especially to the reader who is wondering “why always second order” we may suggest
the paper [31] where an analogous approach to the one proposed here has been applied
to the natural third order analogues of Monge–Ampère equations.

3. Appendix: a guide to reading this volume. The present paper was entirely ded-
icated to the geometry of the Lagrangian Grassmannian and its hypersurfaces. However,
it should not be forgotten that the Lagrangian Grassmannian bundleM (1) over a contact
manifold M is but an example of the variety of integral elements of an Exterior Differen-
tial System (EDS). The theory of EDS’es represents one of the most general frameworks
for studying (system of) PDEs from the point of view of differential geometry (an alter-
native approach is based on jet spaces [28]). It was born with the pioneering works of
Pfaff [38], Frobenius and Darboux [14] and Cartan [12]. Later it was perfected through
many contributions. All details about the modern incarnation of theory can be found in
the excellent book [8] by Bryant, Chern, Gardner, Goldschmidt and Griffiths. However,
the size of the volume may be discouraging for those who seek a swift and workable
introduction to the topic. McKay’s paper [T2] serves precisely such a purpose.

Smith’s paper [T3] is, in a sense, complementary to McKay’s one. While the latter is
concerned with differential ideals and PDEs, the former focuses instead on the geometry
of the set of integral elements of an EDS, understood as a sub-bundle of the Grassmannian
bundle. The vertical bundle of these sub-bundles, known as tableaux, the characteristic
variety and its incidence correspondence are all examined in detail.
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The paper [T4] by Russo is a natural companion to the works by Ferapontov and
his collaborators on the geometry of hydrodynamic integrability [16, 18]. The author
carefully explains several algebro-geometric notions and theorems that are made use of,
more or less explicitly, in Ferapontov’s works. In particular, some classical results on the
geometry of secant varieties are reviewed, and a nice technique is employed to deal with
the cases of LGr(3, 6) and LGr(4, 8): the analogy of these cases with the twisted cubic
in P3 and the rational normal curve in P4, respectively.

The notion of a contact structure does not pertain exclusively to the realm of differ-
entiable manifolds. The parallel idea of a complex contact manifold is reviewed in [T5],
by Buczyński and one of us (Moreno). However, the main purpose of the paper is that
of underlying important and unexpected bridges between the complex-analytic and the
real-differentiable setting. In particular, there are discussed the twistor correspondence
for quaternion-Kähler manifolds and certain substructures of the contact distribution
that can be studied via the Cartan’s method of equivalence.

Panasyuk’s paper [T6] reviews an interesting correspondence, basically due to
Gelfand and Zakharevich, between the notion of a bi-Hamiltonian system and the no-
tion of a Veronese web. The former is a powerful tool, widely exploited in the theory
of integrable systems, that are PDEs admitting a particularly rich and well-behaved set
of (higher) symmetries and/or conservation laws. The latter is a purely geometric con-
struction, generalising that of a web: it is a family, parametrised by P1, of foliations such
that the annihilators describe a rational normal curve in the projectivised cotangent bun-
dle. Such a geometric interpretation adds some clarity to the integrable systems’ area of
research, which features many excellent techniques but sometimes lacks theoretical rigor.

The reader who was surprised by the identification of LGr(2, 4) with the Lie quadric
may appreciate Jensen’s short review of Lie sphere geometry [T7], which deals with the
space S(R3) of generalised spheres in the Euclidean space R3. “Generalised” means that
it encompasses the spheres of zero radius (points) and those of infinite radius (planes)
as well. Consider the pseudo-Euclidean vector space V = R4,2 of signature (4, 2). Then
S(R3) is identified with the points of the Lie quadric Q = PV0, that is the projectivisation
of the isotropic cone V0 in V . The author studies the quadric as a homogeneous space
Q = O(4, 2)/P where P is the parabolic subgroup that stabilises an isotropic line. Lines
in Q correspond to two-dimensional absolutely isotropic 2-planes in V .

Finally, Musso and Nicolodi’s paper [T8] provides a lucid introduction to Laguerre
geometry with a clean presentation of the fundamental constructions. It contains helpful
comparisons to surface theory in other, classical geometries. Its subject represents a
perfect arena to show the potential of the standard method of moving frames and of
EDS’es. The reader will be pleased to see how geometry adds some perspective and helps
to demystify the more technical aspects of the Cartan–Kähler theorem as well as of the
frame adaptation.
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