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Abstract. These notes introduce Lie sphere geometry of surfaces in Euclidean 3-space. A similar
article with a different point of view is: G. R. Jensen, Dupin hypersurfaces in Lie sphere geometry,
in: Geometry and Analysis on Manifolds, Progr. Math. 308, Birkhäuser/Springer, Cham, 2015,
383–394. More details are in the book: G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in Clas-
sical Geometries, Universitext, Springer, Cham, 2016, Chapter 15. An exposition of Lie sphere
geometry in all dimensions is in: Th. E. Cecil, Lie Sphere Geometry, Universitext, Springer, New
York, 2008.

1. Transformations of surfaces in R3. Euclidean geometry studies properties of im-
mersions x : M → R3 (curve or surface) invariant under the Euclidean group

E(3) = R3 o O(3),

which acts transitively on R3 by (y, A)x = y +Ax. The map

π : E(3)→ R3, π(y, A) = (y, A)0 = y

is the projection of a principal O(3)-bundle. A moving frame is a local section.
Throughout this note, ε0, ε1, ε2, ε3, ε4, ε5 is the standard orthonormal basis of signa-

ture + + + + −− of R4,2. Then R3 is the span of ε1, ε2, ε3, while R4 is the span of
ε0, . . . , ε3, and R4,1 is the span of ε0, . . . , ε4.

Conformal geometry extends the Euclidean group, as well as the isometry groups
of spherical and hyperbolic geometries, to all conformal transformations of R3. Their
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description uses stereographic projection, the conformal diffeomorphism

S : S3 \ {−ε0} → R3, S
( 3∑

0
xiεi

)
= 1

1 + x0

3∑
1
xiεi,

where S3 is the unit sphere in R4. Any (even local) conformal transformation f : R3 →
R3 is given by

f = S ◦ F ◦ S−1,

where F is an element in the group Conf(S3) of all conformal diffeomorphisms of S3.
This group is isomorphic to SO(R4,1) by

SO(R4,1) 3 T ↔ F = f−1
+ ◦ T ◦ f+ ∈ Conf(S3),

where we have used the diffeomorphism

f+ : S3 →M = {[m] ∈ P(R4,1) : 〈m,m〉 = 0}, f+(x) = [x + ε4].

The group SO(R4,1) acts transitively onM∼= S3. Let δ0 = 1
2 (ε4 +ε0) ∈ R4,1 and choose

[δ0] to be the origin ofM. Extend δ0 to the Möbius frame of R4,1

δ0, δ1 = ε1, δ2 = ε2, δ3 = ε3, δ4 = ε4 − ε0.

In this frame the inner product of R4,1 is given by

〈u,v〉 = −u0v4 − u4v0 +
3∑
1
uivi = tugv,

where

g =

 0 0 −1
0 I3 0
−1 0 0

 .

The Möbius group
Möb = {T ∈ GL(5,R) : tTgT = g}

is SO(R4,1) represented in this Möbius frame. If Möb0 is the isotropy subgroup at [δ0],
then

π : Möb→M, π(T ) = T [δ0]

is the projection of a principal Möb0-bundle. A Möbius frame field is a local section of
this bundle.

Note that f+ ◦ S−1(R3) = M \ {[δ4]}, so [δ4] corresponds to the point at infinity
of R3. We calculate

f+ ◦ S−1(x) =
[

1
2(1− |x|2)ε0 + x + 1

2(1 + |x|2)ε4

]
=
[
δ0 + x + |x|

2

2 δ4

]
.

In addition to conformal transformations of surfaces, we want to consider the following.
If an immersion x : M2 → R3 has unit normal e3 : M → S2, and if r ∈ R is constant,
then a parallel transformation of x is

x̃ = x + re3 : M → R3.
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It fails to be an immersion at any point of M where 1/r is a principal curvature. For a
circular torus it could be just a curve. For a sphere it could be just a point. A parallel
transformation is not a diffeomorphism of R3. It depends on points (x, e3) ∈ R3 × S2.

2. Space of oriented spheres and planes in R3. For r ∈ R and p ∈ R3, let

Sr(p) = {x ∈ R3 : |p− x|2 = r2}

denote the sphere oriented by the unit normal

n(x) = p− x
r

,

if r 6= 0 (inward normal if r > 0, outward if r < 0). If r = 0 it denotes the point sphere
{p}, which has no orientation.

For h ∈ R and n ∈ S2, the oriented plane with unit normal n and height h is

Πh(n) = {x ∈ R3 : x · n = h}.

The Lie quadric is
Q = {[q] ∈ P(R4,2) : 〈q,q〉 = 0}.

Note that Möbius spaceM⊂ Q as

ε⊥5 = {[q] ∈ Q : 〈q, ε5〉 = 0}.

The set of all oriented spheres and planes of R3 is in one-to-one correspondence with
Q \ {[δ4]} by

Sr(p)↔
[

1
2(1− |p|2 + r2)ε0 + p + 1

2(1 + |p|2 − r2)ε4 + rε5

]
,

and
Πh(n)↔ [−hε0 + n + hε4 + ε5].

The set of all point spheres corresponds toM\ {[δ4]}.
This correspondence is more transparent between the set of oriented spheres of S3

and Q. An oriented sphere in S3 with center m ∈ S3 and radius r ∈ [0, 2π) is

{x ∈ S3 : x ·m = cos r},

with unit normal
n = m− cos r x

sin r .

Interpret this as the point sphere m if r = 0 and −m if r = π. The set of oriented spheres
in S3 is S3 × S1. Its correspondence with Q is

(m, (cos r, sin r))↔ [m + cos r ε4 + sin r ε5].

Combine this with stereographic projection to get the correspondence between Q and
the oriented spheres and planes of R3. The formulas are more complicated in this case
because stereographic projection takes oriented spheres to oriented spheres or planes, but
it does not take the center to the center in general.

A pencil of oriented spheres in R3 is the set of all oriented spheres and planes through
a given point p ∈ R3 with given normal n ∈ S2. It is determined by a point of the unit
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tangent bundle T1R3 = R3 × S2. A point (p,n) ∈ R3 × S2 determines the pencil

{Sr(p + rn) : r ∈ R} ∪ {Πp·n(n)}.

Any pencil contains a unique point sphere and oriented plane and these determine (p,n).
A pencil corresponds to a line in Q. The above pencil corresponds to the line in Q

parametrized by r ∈ R ∪ {∞},[
1
2(1− |p + rn|2 + r2)ε0 + p + rn + 1

2(1 + |p + rn|2 − r2)ε4 + rε5

]
= [S0(p) + rΠp·n(n)].

Two points [q], [q̃] ∈ Q span a line in Q if and only if 〈q, q̃〉 = 0. Let Λ denote the set of
all lines in Q. This is a smooth manifold of dimension five. The point projection map is

π : Λ→ R3 ∪ {∞},

which sends a line λ to the unique point sphere in it, which is λ∩M followed by stereo-
graphic projection. If [δ4] is on the line λ, then π(λ) =∞.

The set of pencils in R3, which is R3 × S2, is a dense open subset Λ′ of Λ. It is the
complement of the set of lines through [δ4] in Q.

There is a natural contact structure on R3 × S2 given by the 1-form α(x,n) = dx · n.
It is an elementary exercise to prove that α∧ dα∧ dα is never zero on R3×S2. We shall
extend this contact structure to a contact structure on Λ. A surface immersion λ : M → Λ
is Legendre if λ∗α = 0 on M .

An immersion x : M2 → R3 with unit normal e3 has a natural Legendre lift,

λ : M → Λ′, λ = [S0(x),Πx·e3(e3)].

Under the identification Λ′ ∼= R3 × S2, we have λ = (x, e3), so λ∗α = dx · e3 = 0, so the
lift is a Legendre map. The Legendre lift of a curve in R3 is the Legendre lift of its unit
normal bundle.

3. The Lie sphere group. A Lie sphere transformation is a diffeomorphism of Q that
sends lines to lines.

A linear transformation in O(R4,2) is a Lie sphere transformation. In his 1872 thesis
[Lie72], S. Lie proved this is all of them.

The conformal transformations O(R4,1) form a natural subgroup of O(R4,2) as the
subgroup fixing ε5.

Here is an important example of a Lie sphere transformation which is not a conformal
transformation. Fix t ∈ R and let T : Q→ Q be defined by

TSr(p) = Sr+t(p), TΠh(n) = Πh−t(n).

Given (x,n) ∈ R3×S2, T sends the pencil through x with normal n to the pencil through
x− tn with normal n. In fact,

TSr(x + rn) = Sr+t(x + rn) = Ss(x− tn + sn),

if s = r + t, and
TΠx·n(n) = Π(x−tn)·n(n).
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Therefore, T is a Lie sphere transformation, for all t ∈ R. How does it act on a surface
immersed in R3?

If x : M → R3 is a surface immersion with unit normal e3, then its Legendre lift
λ : M → Λ is given by λ = [S0(x),Πx·e3(e3)] and

T ◦ λ = [St(x),Π(x−te3)·e3(e3)]

is the pencil through x − te3 with normal e3, which is the Legendre lift of x̃ = x − te3,
the parallel transformation of x by −t.

O(R4,2) acts transitively on Λ. As an origin of Λ we chose [λ0,λ1], where

λ0 = 1
2(ε4 + ε0), λ1 = 1

2(ε5 + ε1).

These are orthogonal null vectors, so they span a line in Q. Complete this pair to the
basis of R4,2

λ0, λ1, λ2 = ε2, λ3 = ε3, λ4 = ε5 − ε1, λ5 = ε4 − ε0.

This is a Lie frame, meaning the matrix of inner products

(〈λa, λb〉) = ĝ =

 0 0 −L
0 I2 0
−L 0 0

 ,

where L =
(

0 1
1 0

)
.

The Lie sphere group

G = {T ∈ GL(6,R) : tT ĝT = ĝ}

is O(R4,2) represented in this basis. Its Lie algebra is

g = {X ∈ gl(6,R) : tXĝ + ĝX = 0}.

If T ∈ G then its columns T0, . . . ,T5 form a Lie frame of R4,2. The map

π : G→ Λ, π(T ) = T [λ0,λ1] = [T0,T1],

is the projection of a principal G0-bundle, where the isotropy subgroup of G at [λ0,λ1]
is

G0 =
{
k(c,B, Z, b) =

c tZ b

0 B BZtc−1L

0 0 Ltc−1L

 ∈ G}
where c, Z, b ∈ R2×2, det c 6= 0, B ∈ O(2), and bLtc + cLtb = tZZ. A Lie frame field is
a local section of this bundle. Lie sphere geometry is the study of properties of Legendre
immersions λ : M2 → Λ = G/G0 invariant under the action of G.
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The Maurer–Cartan form of G is the left-invariant g-valued 1-form ω = T−1dT = (ωa
b )

on G, where a, b, c = 0, . . . , 5. Then tωĝ + ĝω = 0 implies that

ω = (ωa
b ) =



ω0
0 ω0

1
ω1

0 ω1
1

ω0
2 ω0

3
ω1

2 ω1
3

ω0
4 0

0 −ω0
4

ω2
0 ω2

1
ω3

0 ω3
1

0 −ω3
2

ω3
2 0

ω1
2 ω0

2
ω1

3 ω0
3

ω4
0 0

0 −ω4
0

ω2
1 ω3

1
ω2

0 ω3
0

−ω1
1 −ω0

1
−ω1

0 −ω0
0


, (1)

whose 15 distinct entries form a basis of left-invariant one-forms on G. Now dT = Tω

means

dTa =
5∑
0

Tbω
b
a,

where Ta =
∑5

0 T
b
aλb is column a of T in the Lie frame, for a, b = 0, . . . , 5. We can

calculate the forms ωa
b from the inner products

〈dTa,Tc〉 =
5∑
0
〈Tb,Tc〉ωb

a.

For example,
α = ω4

0 = −〈dT0,T1〉, β = ω0
4 = −〈dT4,T5〉.

The structure equations of G are

dωa
b = −

5∑
0
ωa

c ∧ ωc
b ,

which come from taking d of ω = T−1dT . Applying this to ω4
0 and using the relations

expressed in (1), we get

dω4
0 = −ω4

0 ∧ (ω0
0 + ω1

1) + ω2
1 ∧ ω2

0 + ω3
1 ∧ ω3

0 .

Let g0 denote the Lie algebra of the isotropy subgroup G0. Then g0 is the kernel of the
derivative dπ of the projection map at 1 ∈ G. A basis of forms spanning g/g0 is

ω2
0 , ω

2
1 , ω

3
0 , ω

3
1 , ω

4
0 .

A contact structure is defined on Λ as follows. If T : U ⊂ Λ → G is a local section of
π : G → Λ, then T ∗ω4

0 is a contact form on U . If T̃ : U → G is another section, then
T̃ = Tk(c,B, Z, b), where k : U → G0, and one calculates

T̃ ∗ω4
0 = (det c)T ∗ω4

0 .

From the expression for dω4
0 above,

T ∗(ω4
0 ∧ dω4

0 ∧ dω4
0) 6= 0

at every point of U . On R3 × S2 ⊂ Λ let

T0(x,n) = λ0 +
3∑
1
xiλi −

1
2x

1λ4 + |x|
2

2 λ5,
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and
T1(x,n) = (n1 + 1)λ1 + n2λ2 + n3λ3 + (1− n1)

2 λ4 + (x · n)λ5.

Then [T0,T1] : R3 × S2 → Λ is a smooth immersion which can be extended to a local
frame field T : R3 × S2 → G and

〈dT0,T1〉 = n · dx
shows T ∗ω4

0 extends the contact structure of R3 × S2 to all of Λ.

4. Lie sphere geometry. Study Legendre immersions λ : M2 → Λ = G/G0. At a
point of M , λ is a line in Q. The spheres in this line are called tangent spheres of λ at the
point. A Lie frame field along λ is a smooth map T : U ⊂M → G such that [T0,T1] = λ

at each point of U .
Any other Lie frame on U is given by T̃ = Tk(c,B, Z, b), where k : U → G0 is smooth.

In particular,
(T̃0, T̃1) = (T0,T1)c,

where c : U → GL(2,R). For real functions s, t : U → R, a tangent sphere S = sT0 +tT1
of λ is a curvature sphere if dS has rank ≤ 1 modulo {T0,T1}. We motivate this definition
with a brief review.

4.1. Review of Euclidean geometry. Let x : M2 → R3 be an immersion. Let (x, e) :
U ⊂M → E(3) be a frame field along it, so e = (e1, e2, e3) is an orthonormal basis of R3

and

dx =
3∑
1
θiei, dei =

3∑
1
ωj

i ej ,

where the E(3)-valued 1-form ((θi), (ωi
j)) is the pull-back by (x, e) of the Maurer–Cartan

form of E(3). The frame is first order if θ3 = 0 on U , in which case θ1, θ2 is a coframe
field in U and

0 = dθ3 = −ω3
1 ∧ θ1 − ω3

2 ∧ θ2

implies that ω3
i =

∑2
1 hijθ

j for smooth functions hij = hji : U → R. The frame field is
second order if

ω3
1 = aθ1, ω3

2 = cθ2,

for smooth functions a, c : U → R, called the principal curvatures of x. The lines of
curvature of a are the integral curves of θ2 = 0, while the lines of curvature of c are
the integral curves of θ1 = 0. A principal curvature satisfies the Dupin condition if it is
constant along its own lines of curvature. For example, a satisfies the Dupin condition if
and only if da is a multiple of θ2. If both principal curvatures satisfy the Dupin condition,
then x is called Dupin.

Here is a characterization of the principal curvatures when they are not zero. For a
tangent sphere Sr(x + re3) along x, where r : U → R is smooth,

d(x + re3) = (1− ra)θ1e1 + (1− rc)θ2e2 + dr e3

has rank ≤ 1 mod e3 at a point if and only if r is the reciprocal of one of the principal
curvatures at the point.



218 G. R. JENSEN

The Dupin condition for a 6= 0 is that da is a multiple of θ2, which is equivalent to

d

(
x + 1

a
e3

)
=
(

1− c

a

)
θ2e2 −

da

a2 e3 has rank ≤ 1.

4.2. Back to Lie sphere geometry. Define a curvature sphere for λ : M → Λ to be a
tangent sphere T0 of λ for which dT0 modλ has rank ≤ 1. We assume distinct curvature
spheres [T0] and [T1], in which case they are smooth maps M → Q. Then λ = [T0,T1]
on M . For a point in M , there exists an open subset U ⊂ M on which we can extend
T0,T1 : U → R4,2 to a Lie frame field T : U → G. Then each of

dT0 ≡ ω2
0T2 + ω3

0T3, dT1 ≡ ω2
1T2 + ω3

1T3 mod{T0,T1}
has rank ≤ 1 implies

ω2
0 ∧ ω3

0 = 0 = ω2
1 ∧ ω3

1

on U . Taking d of ω4
0 = 0 and using the structure equations, we also find

ω2
1 ∧ ω2

0 + ω3
1 ∧ ω3

0 = 0.
Because of these relations, B : U → O(2) can be chosen so that if T̃ = Tk(I2, B, 0, 0),
then the only change in T is

(T̃2, T̃3) = (T2,T3)B,
and ω̃2

0 = 0 = ω̃3
1 on U . In this case ω̃2

1 ∧ ω̃3
0 6= 0 at each point of U .

A frame field T : U → G along λ is first order if

(1) [T0] and [T1] are curvature spheres,
(2) ω2

0 = 0 = ω3
1 and ω2

1 ∧ ω3
0 6= 0 at each point of U .

If T : U → G is first order, then any other is given by T̃ = Tk, where k : U → G1 is
any smooth map into the subgroup G1 ⊂ G0 defined by

c =
(
r 0
0 s

)
, B =

(
ε 0
0 δ

)
,

where r, s : U → R are smooth functions with rs never 0 and ε, δ ∈ {±1}.
Differentiating ω2

0 = 0 = ω3
1 and using the structure equations, we get

ω1
0 = A2ω

2
1 +A3ω

3
0 , ω0

1 = B2ω
2
1 +B3ω

3
0 ,

where the coefficients are smooth functions on U , and
ω2

3 = −A3ω
2
0 +B2ω

3
0 = −ω3

2 .

For a change of first order frame T̃ = Tk, where k : U → G1, we compute
ω̃2

1 = εsω2
1 , ω̃3

0 = δrω3
0 ,

and the coefficients in the new frame are given by

Ã2 = εr

s2A2, Ã3 = δA3 − Z1
3

s
, B̃2 = εB2 − Z0

2
r

, B̃3 = δs

r2B3.

There are three basic orbit types for this action on A2 and B3.

A) A2 and B3 are never zero on U (generic case).
B) A2 identically zero, B3 never zero on U ; or vice-versa (canal immersions).
C) A2 and B3 both identically zero on U (Dupin immersions).



LIE SPHERE GEOMETRY 219

Consider the condition A2 identically zero on U . Then ω1
0 = A3ω

3
0 on U , so

dT0 ≡ (A3T1 + T3)ω3
0 mod T0,

on U , which means [T0] is constant on the ω3
0 = 0 curves. This is the Dupin condition

for the curvature sphere [T0].

4.3. Dupin case. A second order frame field along λ is a first order frame field T : U→G

such that
ω1

0 = 0, ω0
1 = 0, ω2

3 = 0 = ω3
2

on U . Differentiating these forms and using the structure equations we get

ω0
2 = Dω2

1 , ω1
3 = −Dω3

0 ,

for some smooth function D : U → R. Any other second order frame field on U is given
by T̃ = Tk, where k : U → G2 and G2 is the subgroup of G1 for which

tZ =
(

0 Z0
3

Z1
2 0

)
, b =

(
b0

4
1

2r (Z0
3 )2

1
2s (Z1

2 )2 − s
r b

0
4

)
,

where Z0
3 , Z

1
2 , b

0
4 : U → R are arbitrary smooth functions. We calculate that

D̃ = 1
rs

(D − sb0
4).

We define a third order frame to be a second order frame for which ω0
2 = 0 = ω1

3 on U .
Differentiating these forms and using the structure equations we get in addition that
ω0

4 = 0 on U . Differentiating this leads to no further conditions on the Maurer–Cartan
forms of G. The frame reduction is complete. If T : U → G is a third order frame field
along λ, then any other is given by T̃ = Tk, where k : U → G3, where G3 is the subgroup
of G2 for which b0

4 = 0. This is a four-dimensional subgroup, since now r, s, Z0
3 , Z

1
2 are

arbitrary (with rs 6= 0).
In summary, T : U → G is third order if [T0], [T1] are the curvature spheres and

(1) ω2
0 = 0 = ω3

1 , and ω2
1 ∧ ω3

0 6= 0,
(2) ω1

0 = ω0
1 = ω2

3 = 0,
(3) ω0

2 = ω1
3 = ω0

4 = 0.

The left-invariant 6-dimensional distribution D on G given by these 8 equations together
with ω4

0 = 0 is completely integrable. It defines a 6-dimensional Lie subalgebra h ⊂ g,
with connected Lie subgroup H ⊂ G. Integral submanifolds of D are the right cosets AH,
for A ∈ G, of H.

If λ : M2 → Λ is a connected Dupin immersion with T : M → G a third order Lie
frame field along it, then T : M → G is an integral surface for D and T (M)G0

3 is an
integral submanifold of D, where G0

3 is the connected component of the identity of G3.
Therefore, T (M)G0

3 ⊂ AH, for some element A ∈ G, which means

λ(M) = π(T (M)G0
3) ⊂ AH[λ0,λ1] = Aπ(H),

thus showing that λ(M) is Lie sphere congruent to an open submanifold of π(H).
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4.4. Examples. The circular cylinder with unit normal e3 = cosx ε1 + sin x ε2,

Xcyl : R2 → R3, Xcyl(x, y) = (cosx, sin x, y),

has constant principal curvatures −1 and 0, so it is Dupin. Its curvature spheres are

S−1(yε3) = [S0] =
[

2− y2

2 ε0 + yε3 + y2

2 ε4 − ε5

]
and, since Xcyl · e3 = 1,

Π1(e3) = [S1] = [−ε0 + cosx ε1 + sin x ε2 + ε4 + ε5].

The Legendre lift of Xcyl is then λcyl = [S0,S1]. Express S0 and S1 in the Lie frame
of R4,2. Take their exterior derivative and impose the first order frame condition to
determine S2 and S3. Take their exterior derivative and impose the third order frame
condition to determine the last two columns of a third order Lie frame field S : R2 → G,

S(x, y) =



1 0 0 0 0 0
−1 1 + cosx − sin x 0 1−cos x

2 0
0 sin x cosx 0 − sin x

2 0
y 0 0 1 0 0
− 1

2
1−cos x

2
sin x

2 0 1+cos x
4 0

y2−1
2 1 0 y 1

2 1


,

along λcyl : R2 → Λ. It takes values in the right coset S(0, 0)H, so

λcyl(R2) = π(S(R2)) ⊂ π(S(0, 0)H).

The circular torus

Xtor : R2 → R3, Xtor(x, y) = ((2 + cosx) cos y, (2 + cosx) sin y, sin x)

is obtained by rotating the circle of radius 1 and center (2, 0, 0) in the ε1ε3-plane about
the ε3-axis. Its principal curvatures are 1, whose lines of curvature are the y = constant
curves, and cos x

2+sin x , whose lines of curvature are the x = constant curves, which shows
that Xtor is Dupin. Its oriented curvature spheres are

S1(2 cos y, 2 sin y, 0) = T0 = [−ε0 + 2 cos y ε1 + 2 sin y ε2 + 2ε4 + ε5],

and

S 2+cos x
cos x

(0, 0,−2 tan x) = T1

= [(2 + 3 cosx)ε0 − 2 sin x ε3 − 2(1 + cosx)ε4 + (2 + cosx)ε5].

The Legendre lift of Xtor is then λtor = [T0,T1]. Express T0 and T1 in the Lie frame,
take their exterior derivative and impose the first order frame condition to determine
T2 and T3. Take their exterior derivative and impose the second and third order frame
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conditions to complete these vector fields to a third order Lie frame field, T : R2 → G,

T =



1 cosx − sin x
2 0 − cos x

8
1
8

1 + 2 cos y 2 + cosx − sin x
2 − sin y 2−cos x

8
1−2 cos y

8
2 sin y 0 0 cos y 0 − sin y

4
0 −2 sin x − cosx 0 sin x

4 0
1−2 cos y

2
2+cos x

2
− sin x

4
sin y

2
2−cos x

16
1+2 cos y

16
3
2

−4−5 cos x
2

5 sin x
4 0 −4+5 cos x

16
3

16


,

along λtor. It takes values in the right coset T (0, 0)H, so
λtor(R2) = π(T (R2)) = π(T (0, 0)H),

where the final equality holds because T (R2) is compact. Setting V = S(0, 0)T (0, 0)−1 =

3/16 3/16 0 0 −1/8 1/8
−1/16 −1/16 0 0 3/8 −3/8

0 0 0 −1 0 0
0 0 1 0 0 0

−75/32 21/32 0 0 25/16 7/16
−25/32 7/32 0 0 75/16 21/16


,

we have
V λtor(R2) = π(V T (0, 0)H) = π(S(0, 0)H) ⊃ λcyl(R2).

In fact,

V λtor(x, y) = [VT0, VT1] =





1+cos y
2

−1−cos y
2
0

2 sin y
−1−cos y

4
15−17 cos y

4


,



0
1 + cosx

2 sin x
0

2(1− cosx)
5−3 cos x

2




.

Now [
∑5

0 q
iλi] is a point sphere if and only if 1

2q
1 + q4 = 0. The point projection of the

point sphere is then 1
q0

∑3
1 q

iεi. The point sphere at (x, y) is then [sVT0 + tVT1], where
s = 5− 3 cosx, t = 1 + cos y,

and the point projection is thus

π(V λtor(x, y)) =
(
−3 + 5 cosx
5− 3 cosx ,

4 sin x
5− 3 cosx,

4 sin y
1 + cos y

)
,

so π(V λtor(R × (−π, π)) = λcyl(R2). Thus, the circular cylinder is Lie sphere congruent
to the circular torus.
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