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1. Introduction. As motivation, we begin by considering three ques-
tions which initially appear to be unrelated, but whose answers turn out to
have a deep connection.

Question 1.1. For each 0 < ε < 1, let Mε be the middle-ε Cantor set
obtained by starting with the interval [0, 1] and repeatedly deleting from
each interval appearing in the construction the middle open interval of rel-
ative length ε. As ε→ 0, the sets Mε are getting “larger” in the sense that
their Hausdorff dimensions tend to 1. Do they also get “larger” in the sense
of containing longer and longer arithmetic progressions as ε→ 0? How does
the length of the longest arithmetic progression in Mε behave as ε→ 0?

Question 1.2. What is the Hausdorff dimension of the set of ε-badly
approximable vectors

BAd(ε) := {x ∈ Rd : ∀p/q ∈ Qd |x− p/q| > εq−(d+1)/d}?
Here | · | denotes a fixed norm on Rd.

Question 1.3. For each n ∈ N, let Fn denote the set of irrational num-
bers in (0, 1) whose continued fraction partial quotients are all ≤ n (1). The
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(1) The continued fraction expansion of an irrational number is the unique expression

a0 +
1

a1 +
1

a2 +
.. .

with a0 ∈ Z, a1, a2, . . . ∈ N, whose value is equal to that number. The numbers a1, a2, . . .
are called the partial quotients.
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union of Fn over all n is the set of badly approximable numbers in (0, 1), i.e.
(0, 1) ∩

⋃
ε>0 BA1(ε), which is known to have full dimension in the ternary

Cantor set C = M1/3, so in particular we have Fn∩C 6= ∅ for all sufficiently
large n. What is the smallest n for which Fn ∩ C 6= ∅?

What these questions have in common is that they can all be (partially)
answered using Schmidt’s game, a technique for proving lower bounds on
the Hausdorff dimensions of certain sets known as “winning sets”, as well
as on the dimensions of their intersections with other winning sets and with
various nice fractals. In particular, the class of winning sets (see e.g. [17] for
the definition) has the following properties:

(a) The class of winning sets is invariant under bi-Lipschitz maps and in
particular under translations.

(b) The intersection of finitely many winning sets is winning (2).
(c) Winning sets in Rd have full Hausdorff dimension and in particular are

nonempty.
(d) The set of badly approximable numbers is winning, both in R and on

the Cantor set.

These properties already hint at why Schmidt’s game might be relevant to
Questions 1.1–1.3. Namely, properties (a), (b), and (c) imply that any win-
ning subset of R contains arbitrarily long arithmetic progressions (since if

S is winning, then for any t, k the set
⋂k−1
i=0 (S− it) is winning and therefore

nonempty), and properties (c) and (d) imply that the set of badly approx-
imable numbers has full Hausdorff dimension both in R and on the Cantor
set. The middle-ε Cantor set Mε is not winning, but by showing that it is
“approximately winning” in some quantitative sense, we will end up getting
a lower bound on the maximal length of arithmetic progressions it contains,
thus addressing Question 1.1. Similarly, the set BAd(ε) of ε-badly approx-
imable points in Rd is not winning, but since the union

⋃
ε>0 BAd(ε) is the

set of all badly approximable points, it is winning and thus the dimension of
BAd(ε) tends to d as ε tends to 0. Again, showing that BAd(ε) is “approxi-
mately winning” will yield a lower bound on its Hausdorff dimension, thus
addressing Question 1.2. In view of a known relationship between BA1(ε)
and Fn, this yields lower bounds on the Hausdorff dimensions of both Fn
and Fn ∩ C. For n for which the second of these lower bounds is positive,
we have Fn ∩ C 6= ∅, which addresses Question 1.3.

To make the above paragraph rigorous, we will need to have a clear notion
of what it means for a set to be “approximately winning” in a quantitative

(2) If α > 0 is fixed, then the intersection of countably many α-winning sets is α-
winning (see [17] for the definition of α-winning). But if α is not fixed, then it may only
be possible to intersect finitely many winning sets.
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sense. One idea is to use Schmidt’s original definition of “(α, β)-winning”
sets (see [17]) as a quantitative approximation of winning sets. This is par-
ticularly natural because the notion of being (α, β)-winning is the basis of
Schmidt’s definition of the class of winning sets. However, it turns out that
the class of (α, β)-winning sets is not very nice from a quantitative point
of view (see Remark 3.6). Thus, we will instead consider two variants of
Schmidt’s game, the absolute game introduced by McMullen [15] and the
potential game introduced in [8, Appendix C]. The natural notions of “ap-
proximately winning” for these games turn out to be more suited to proving
quantitative results.

2. Main results. Before listing our main results, we will state what
we expect the answers to Questions 1.1–1.3 to be, relying on the follow-
ing heuristic: if S1, S2 are two fractal subsets of Rd, then if S1 and S2 are
“independent” we expect that

(2.1) dimH(S1 ∩ S2) = max(0,dimH(S1) + dimH(S2)− d),

or equivalently

(2.2) codimH(S1 ∩ S2) = min(d, codimH(S1) + codimH(S2)),

where codimH(S) = d−dimH(S). This is roughly because if we divide [0, 1]d

into Nd blocks of size 1/N , then we should expect that S1 will intersect
NdimH(S1) of these blocks and S2 will intersect NdimH(S2) of them, so if S1
and S2 are independent then we should expect

NdimH(S1)NdimH(S2)

Nd
= NdimH(S1)+dimH(S2)−d

blocks to be intersected by both S1 and S2. We can expect that most such
blocks will also intersect S1∩S2. Of course, if the exponent is negative then
we should expect that S1 ∩ S1 = ∅ and in particular dimH(S1 ∩ S2) = 0.

To use this heuristic to estimate the maximal length of an arithmetic
progression on Mε, note that if {a, a+t, . . . , a+(k−1)t} is such an arithmetic
progression, then we have

k−1⋂
i=0

(Mε − it) 6= ∅.

If the sets Mε,Mε − t, . . . ,Mε − (k − 1)t are independent, then we expect
the Hausdorff dimension of their intersection to be

max(0, 1− k codimH(Mε)),

which is positive if and only if k < 1/ codimH(Mε). Since codimH(Mε) ∼ ε,
this means that we expect the maximal length of an arithmetic progression
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on Mε to be approximately 1/ε (3). Similarly, since codimH(Fn) ∼ 1/n,
we expect the maximal length of an arithmetic progression on Fn to be
approximately n. We are able to prove the following bounds rigorously:

Theorem 2.1. Let LAP(S) denote the maximal length of an arithmetic
progression in the set S. For all ε > 0 sufficiently small and n ∈ N suffi-
ciently large, we have

1/ε

log(1/ε)
. LAP(Mε) ≤ 1/ε+ 1,(2.3)

n

log(n)
. LAP(Fn) . n2.(2.4)

Here and hereafter, A . B means that there exists a constant K (called
the implied constant) such that A ≤ KB, and A � B means A . B . A.

Remark. When 1/ε is an integer, the lower bound of (2.3) was first
proven by Jon Chaika [5].

Theorem 2.1 does not give any information about the implied constants
of (2.3) and (2.4), so for example it cannot tell us how small ε has to be
before we can be sure that Mε contains an arithmetic progression of length 3
(i.e. a nontrivial arithmetic progression). However, using similar techniques
we can show:

Theorem 2.2. For all 0 < ε ≤ 1/49, we have LAP(Mε) ≥ 3, i.e. Mε

contains an arithmetic progression of length 3. Also, F49 contains an arith-
metic progression of length 3 (and thus so does Fn for all n ≥ 49).

Remark. It was pointed out to us by Pablo Shmerkin that one can
get a better result using Newhouse’s gap lemma [16, p. 107], namely that
LAP(Mε) ≥ 4 for all 0 < ε ≤ 1/3 (4). Note that for all ε > 1/3, we have
LAP(Mε) = 2 (the proof is similar to the proof of the upper bound of (2.3)).

Question 1.3 can also be addressed via the independence assump-
tion (2.1). Namely, we have dimH(F2) ∼ 0.531 [9, Theorem 10] and dimH(C)

= log(2)
log(3) ∼ 0.631, so we should expect

dimH(F2 ∩ C) ∼ 0.531 + 0.631− 1 = 0.162 > 0,

and in particular F2∩C 6= ∅. This guess appears to be confirmed by computer

(3) There is an additional degree of freedom with respect to t that this heuristic
argument does not take into account, but its contribution to the expected maximal length
of an arithmetic progression is not very significant.

(4) Namely, Newhouse’s gap lemma implies that there exists t ∈ (Mε− 1
2
)∩ 1

3
(Mε− 1

2
),

and then { 1
2
− 3t, 1

2
− t, 1

2
+ t, 1

2
+ 3t} is an arithmetic progression in Mε of length 4.
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estimates, which give dimH(F2 ∩ C) ∼ 0.14 (5). It appears quite ambitious
to prove such a statement, but we can prove the following weaker one:

Theorem 2.3. For each n ∈ N, let Fn denote the set of irrational num-
bers in (0, 1) whose continued fraction partial quotients are all ≤ n, and let
C denote the ternary Cantor set. Then F19 ∩ C 6= ∅.

Yann Bugeaud pointed out to us that his Folding Lemma [4, Theo-
rem D.3] can be used to prove the stronger result that F9 ∩ C 6= ∅ (6).

Question 1.2 is different from our other two questions in that a fairly
precise answer is already known: we have

(2.5) codimH(BAd(ε)) ∼ kdεd,
where kd is an explicit constant of proportionality and A ∼ B means that
A/B → 1 as ε → 0 [19] (7) (see also [13, 10, 3, 20]). However, from a
historical perspective the first proof that dimH(BAd(ε)) → d as ε → 0 is
Schmidt’s proof using his eponymous game [18], so it is interesting to ask
what the best bound is that can be proven using Schmidt’s game or its
variants. Kleinbock and the first-named author used a variant of Schmidt’s
game (specifically the hyperplane absolute game) to prove that

codimH(BAd(ε)) .
ε1/2

log(1/ε)

(5) We estimated the dimension of F2 ∩ C by searching for a disjoint cover of F2 by
intervals of the form Iω = [[0;ω, 1], [0;ω, 3]] or Iω = [[0;ω, 3], [0;ω, 1]] (see (6.7) for the
notation), where ω is a finite word in the alphabet {1, 2}, such that either

(A) Iω ∩C 6= ∅ and |Iω| < ε ≤ |Iω′ |, where ω′ is the word resulting from deleting the last
letter of ω; or

(B) Iω ∩ C = ∅.

Here ε > 0 is a free parameter determining the accuracy of the computation. We then
used the heuristic estimate

dimH(F2 ∩ C) ∼ log(Nε)

− log(ε)
,

where Nε is the calculated number of intervals of type (A). The right-hand side varies
with respect to ε but remains within the range [0.13, 0.15] for ε ∈ [10−18, 10−8].

(6) The proof is as follows. For the notation see (6.7). Call a rational p/q good if

• q is a power of 3, and
• p/q = [0; 1, 1, a3, . . . , ah] with h ≥ 4, ah ≥ 2, h odd, and ai ≤ 3 for all i = 3, . . . , h.

By direct calculation, the rational 17/27 = [0; 1, 1, 1, 2, 3] is good. Moreover, by the Folding
Lemma [4, Theorem D.3], if p/q is good then so is f(p/q) := p/q− 1/3q2. Thus fn(17/27)
is good for all n and thus x := limn→∞ f

n(17/27) is in F3 ⊂ BA( 1
5
) (cf. [11, Theorems 6

and 9] for the subset relation). Let y = 2 − 2x =
∑

k≥2 2/32k−1 ∈ C. Since x ∈ BA1( 1
5
),

we have y ∈ BA1( 1
10

) ⊂ F9. So y ∈ F9 ∩ C.

(7) Note that κ in the notation of [19], and c in the notation of [3], are both equal to
εd in our notation (and cn in the notation of [20]).
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(see [3, Theorem 1.2]). We are able to improve their result by proving the
following using the hyperplane potential game instead of the hyperplane
absolute game:

Theorem 2.4. For all ε > 0 we have

codimH(BAd(ε)) . ε.

Note that this upper bound is the correct order of magnitude when d = 1
but not for larger d.

We can also ask about the intersection of BAd(ε) with a fractal set.
Recall that a compact set J ⊂ Rd is called Ahlfors regular of dimension δ if
there exists a measure µ with topological support equal to J such that for
all x ∈ J and 0 < ρ ≤ 1, we have

C−1ρδ ≤ µ(B(x, ρ)) ≤ Cρδ

where C is an absolute constant. It was proven in [7] that if J ⊂ R is any
Ahlfors regular set, then the union BA1 :=

⋃
ε>0 BA1(ε) has full dimension

in J . We can prove the following quantitative version of this result:

Theorem 2.5. Let J ⊂ R be an Ahlfors regular set of dimension δ > 0.
Then for all ε > 0, we have

dimH(Mε ∩ J) ≥ δ −Kεδ,
dimH(BA1(ε) ∩ J) ≥ δ −Kεδ,

where K is a constant depending on J .

Note that if BA1(ε) and J are independent in the sense of (2.1), then

dimH(BA1(ε) ∩ J) = δ − codimH(BA1(ε)) = δ − k1ε+ o(ε),

where k1 is as in (2.5). This means that Theorem 2.5 can be considered close
to optimal when δ = 1 but not for smaller δ.

We also prove a higher-dimensional analogue of Theorem 2.5, where the
set J needs to satisfy an additional condition known as absolute decay ; see
Sections 5–6 for details.

Quantitative versions of variants of Schmidt’s game also have applica-
tions to the proof of the existence of Hall’s Ray. We recall that Hall’s Ray
is a set of the form [t0,∞) such that for all t ∈ [t0,∞), there exists x ∈ R
such that

lim sup
q→∞

1

q‖qx‖
= t,

where ‖·‖ denotes distance to the nearest integer. The proof of the existence
of Hall’s Ray proceeds via a lemma stating that F4 +F4 = [

√
2−1, 4

√
2−4]

(see e.g. [6, Chapter 4]). The proof of this lemma is ordinarily via a “hands-
on” argument, but we are able to prove the following weaker version of the
lemma in a more conceptual way using the absolute game:
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Theorem 2.6. F49 + F49 ⊃ [1/6, 11/6].

This weaker version is still sufficient to prove the existence of Hall’s Ray,
although it would yield a worse bound for t0 than a proof using the original
lemma.

3. The absolute game and its applications. We will prove most of
our results using two different variations of Schmidt’s game: the absolute
game and the potential game. In this section we define the absolute game
and use it to prove Theorems 2.2, 2.3, and 2.6. The version of the absolute
game that we give below is slightly different from the standard definition as
found in e.g. [15]. Specifically, the following things are different:

• We introduce a parameter ρ limiting Bob’s initial move by preventing him
from playing too small a ball at first.
• We use two separate parameters α, β to limit Alice and Bob’s moves

during the game, rather than a single parameter β as in the classical
definition of the absolute game.
• We introduce a parameter k allowing Alice to delete a fixed finite number

of balls rather than a single ball.
• We use the convention that if a player has no legal moves, he loses.

Note that this convention means that the implication “winning implies
nonempty” will only be true for certain sets of parameters.

The first three changes are for the purpose of recording more precise quanti-
tative information about winning sets, while the last change allows for more
elegant general statements (cf. Remark 3.5), as well as making the absolute
game more similar to the potential game that we define in Section 4.

Definition 3.1. Let X be a complete metric space. Given α, β, ρ > 0
and k ∈ N, Alice and Bob play the (α, β, ρ, k)-absolute game as follows:

• The turn order is alternating, with Bob playing first. Thus, Alice’s mth
turn occurs after Bob’s mth turn and before Bob’s (m + 1)st turn. It is
thought of as a response to Bob’s mth move.
• On the mth turn, Bob plays a closed ball Bm = B(xm, ρm), and Alice

responds by choosing at most k different closed balls A
(i)
m , each of radius

≤ αρm. She is thought of as “deleting” these balls.
• On the first (0th) turn, Bob’s ball B0 = B(x0, ρ0) is required to satisfy

(3.1) ρ0 ≥ ρ,
while on subsequent turns his ball Bm+1 = B(xm+1, ρm+1) is required to
satisfy

(3.2) ρm+1 ≥ βρm and Bm+1 ⊂ Bm \
⋃
i

A(i)
m .
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If Bob cannot choose a ball consistent with these rules, then he loses
automatically.

After infinitely many turns have passed, Bob has chosen an infinite descend-
ing sequence of balls

B0 ⊃ B1 ⊃ · · · .
If the radii of these balls do not tend to zero, then Alice is said to win by
default. Otherwise, the balls intersect at a unique point x∞ ∈ X, which is
called the outcome of the game.

Now fix a set S ⊂ X, called the target set. Suppose that Alice has
a strategy guaranteeing that if she does not win by default, then x∞ ∈ S.
Then the set S is called (α, β, ρ, k)-absolute winning. A set is called (α, β, ρ)-
absolute winning if it is (α, β, ρ, 1)-absolute winning. If a set is (α, β, ρ)-
absolute winning for all α, β, ρ > 0, then it is called absolute winning.

Note that the last part of this definition, defining the term “absolute win-
ning” with no parameters, defines a concept identical to the standard concept
of absolute winning, even though the intermediate concepts are different.

We warn the reader that despite the terminology, an (α, β, ρ, k)-absolute
winning set is not necessarily absolute winning. To prevent confusion, we
will sometimes call an absolute winning set strongly absolute winning, and
a set which is (α, β, ρ, k)-absolute winning for a suitable choice of α, β, ρ, k
weakly or approximately absolute winning.

Finally, note that if α ≥ 1, then Alice can win in one turn by simply

choosing A
(1)
m = Bm, regardless of the target set.

3.1. Properties of the absolute game. The most basic properties
of the absolute game are the finite intersection property, monotonicity with
respect to the parameters, and invariance under similarities.

Proposition 3.2 (Finite intersection property). Let J be a finite index
set, and for each j ∈ J let Sj be (α, β, ρ, kj)-absolute winning. Let k =∑

j∈J kj. Then S =
⋂
j∈J Sj is (α, β, ρ, k)-absolute winning.

Proof. Alice can play all of the strategies corresponding to the sets Sj
simultaneously by deleting all of the balls she is supposed to delete in each
of the individual games. The formula k =

∑
j∈J kj guarantees that this

strategy will be legal to play.

Proposition 3.3 (Monotonicity). If S is (α, β, ρ, k)-absolute winning

and α ≤ α̃, β ≤ β̃, ρ ≤ ρ̃, and k ≤ k̃, then S is also (α̃, β̃, ρ̃, k̃)-absolute
winning.

Proof. Switching from the (α, β, ρ, k)-game to the (α̃, β̃, ρ̃, k̃)-game in-
creases Alice’s set of legal moves while decreasing Bob’s, making it easier
for Alice to win.
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Proposition 3.4 (Invariance under similarities). Let f : X → Y be a
bijection that satisfies

d(f(x), f(y)) = λd(x, y) ∀x, y ∈ X.
Then a set S ⊂ X is (α, β, ρ, k)-absolute winning if and only if the set
f(S) ⊂ Y is (α, β, λρ, k)-absolute winning.

Proof. Any strategy for Alice on X (resp. Y ) may be transformed via f
(resp. f−1) to a strategy on Y (resp. X). In other words, the (α, β, λρ, k)-
game on Y with target set f(S) is a disguised version of the (α, β, ρ, k)-
game on X with target set S, with the moves Bm, Am in the latter game
corresponding to the moves f(Bm), f(Am) in the former game.

Remark 3.5. In the proof of Proposition 3.2 we crucially used the fact
that Bob is considered to lose if he cannot play. This is because although
the formula k =

∑
j∈J kj proves that the strategy described will be legal for

Alice to play, it does not show that Bob necessarily has any legal responses to
it. A similar comment applies to the proof of Proposition 3.3. The question
of what circumstances guarantee that Bob has legal responses will be dealt
with in Lemma 3.7 below.

Remark 3.6. The proof of Proposition 3.2, which proceeds by combining
different strategies used on the same turn of two different games, is very
different from the proof of the countable intersection property of the classical
Schmidt’s game (see [17, Theorem 2]), which proceeds by splicing different
turns of different games together to get a sequence of turns in a new game
with different parameters. This difference is in fact the key advantage of the
absolute game over the classical Schmidt’s game for quantitative purposes.
By modifying the argument given in [17, Theorem 2] one can use the classical
Schmidt’s game to prove results such as LAP(Mε) & log(1/ε) and LAP(Fn)
& log(n), but these bounds are so much worse than the ones appearing in
Theorem 2.1 that we do not include their proof.

A key fact about (strongly) absolute winning sets is that in a sufficiently
nice (e.g. Ahlfors regular) space, they have full Hausdorff dimension and in
particular are nonempty. (This follows from the corresponding property for
classical winning sets; see e.g. [7, Theorem 3.1].) The following lemma is a
quantitative version of this property:

Lemma 3.7. Let S ⊂ X be (α, β, ρ, k)-absolute winning, and suppose
that every ball B ⊂ X contains N > k disjoint subballs of radius β rad(B)
separated by distances of at least 2α rad(B). Let B0 be a ball of radius ≥ ρ.
Then S ∩B0 6= ∅, and

(3.3) dimH(S ∩B0) ≥
log(N − k)

− log(β)
·



298 R. Broderick et al.

For our purposes, the important part of this lemma is the assertion that
S ∩B0 6= ∅, but we include the bound (3.3) because it can be proven easily.
Note that the formula S ∩ B0 6= ∅ follows from (3.3) when N > k + 1 but
not when N = k + 1.

Proof of Lemma 3.7. For each ball B ⊂ X, let f1(B), . . . , fN (B) denote
the disjoint subballs of radius β rad(B) guaranteed by the assumption. We
will consider strategies for Bob that begin by playing B0 and continue play-
ing using the functions f1, . . . , fN ; that is, on the turn after playing a ball
B Bob will play one of the balls f1(B), . . . , fN (B). We remark that these
moves are possible moves for Bob. As Alice has a winning strategy by as-
sumption, her strategy will have responses for these possible moves. Some
of these strategies are ruled out by the rules of the absolute game, but the
separation hypothesis guarantees that at most k of them are ruled out, and
thus at least N − k are left. In particular, since N > k Bob always has at
least one legal play, it is possible for him to play the entire game legally
starting with the move B0. The outcome of the corresponding game is a
member of S ∩B0, and in particular this set is nonempty.

To demonstrate (3.3), we observe that since Bob actually had at least
N − k legal moves at each stage, the resulting Cantor set consisting of all
possible outcomes of games where Bob plays according to the strategies
described above is produced by a branching construction in which each ball
of radius r has at least N−k children of radius βr. It is well-known (see e.g.
[1, Corollary 1]) that the Hausdorff dimension of a Cantor set constructed

in this way is at least log(N−k)
− log(β) . This completes the proof.

Corollary 3.8. Let S ⊂ R be (α, β, ρ, k)-absolute winning, and suppose
that kα+(k+1)β ≤ 1. Let I0 be an interval of length ≥ 2ρ. Then S∩I0 6= ∅.

Proof. We need only verify that the hypotheses of Lemma 3.7 are sat-
isfied. Every interval I in R can be subdivided into k + 1 equally spaced
intervals of length β|I| such that the left endpoint of the leftmost interval
is equal to the left endpoint of I, and the right endpoint of the rightmost
interval is equal to the right endpoint of I. There are k gaps between these
intervals, so the common gap size ε satisfies kε + (k + 1)β|I| = |I|. By as-
sumption kα+ (k+ 1)β ≤ 1, so we have α|I| ≤ ε, i.e. the gap size is at least
α|I| = 2α rad(I).

3.2. Applications

Remark 3.9. In Section 6 we will introduce a slightly more sophisticated
game, the Potential Game. We chose to start with the Absolute Game, as
its definitions and properties are more well-known. See Remark 4.2 for the
connection between the games.
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Lemma 3.10. For all 0 < ε < 1 and 0 < β < 1, the set Mε ∪ (−∞, 0)
∪ (1,∞) is (α, β, ρ)-absolute winning where

(α, β, ρ) =
(

2ε
1−εβ

−1, β, 1−ε2 β/2
)
.

Proof. To describe Alice’s strategy, let B be a move for Bob and we will
describe Alice’s response. Let λ = 1−ε

2 , and let n ≥ 0 be the largest integer
such that λn+1 ≥ |B|, if such an integer exists. At the (n+ 1)st stage of the
construction of Mε, all remaining intervals are of length λn+1, which means
that the distances between the removed intervals of the first n stages are
all at least λn+1. So B intersects at most one of these intervals, and Alice’s
strategy is to remove this interval if it is legal to do so, and otherwise not to
delete anything. If the integer n does not exist, then Alice does not delete
anything.

To show that this strategy is winning, we must show that if Alice did not
win by default, then the outcome of the game x∞ is in Mε∪(−∞, 0)∪(1,∞).
Suppose that, on the contrary, x∞ exists but is not in Mε∪(−∞, 0)∪(1,∞).
Then x∞ is in some interval I that was removed during the construction
of Mε. We will show that Alice deleted I at some stage of the game, which
contradicts the fact that x∞ was obtained by a sequence of legal plays for
Bob.

Indeed, let n ≥ 0 be the stage of the construction of Mε at which I
was removed, so that |I| = λnε, and let m ≥ 0 be the smallest integer
such that λn+1 ≥ |Bm|. If m > 0, then |Bm| ≥ β|Bm−1| > λn+1β, while if
m = 0 then |Bm| ≥ 2ρ = λβ ≥ λn+1β. (The length of the ball/interval Bm
is equal to twice its radius.) So either way we have |Bm| ≥ λn+1β. Thus,
|I| = λnε = αλn+1β ≤ α|Bm|, so on turn m Alice is allowed to delete the in-
terval I. Her strategy specifies that she does so, which completes the proof.

Lemma 3.11. For all 0 < ε < 1/2 and
(

ε
1−ε
)2 ≤ β < 1, the set BA1(ε)

is (α, β, ρ)-absolute winning, where

(α, β, ρ) =
(

2ε
1−2εβ

−1, β, β/2
)
.

Proof. For each p/q ∈ Q let

∆ε(p/q) = B(p/q, εq−2)

and note that
BA1(ε) = R \

⋃
p/q∈Q

∆ε(p/q).

Now we have ∣∣∣∣p1q1 − p2
q2

∣∣∣∣ ≥ 1

q1q2

for all p1/q1 6= p2/q2. Now fix ` > 0 and let

C` := {∆ε(p/q) : ` < (1− 2ε)q−2 ≤ β−1`}.
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If ∆ε(p1/q1), ∆ε(p2/q2) are two distinct members of C` with q1 ≤ q2, then
the distance between them is∣∣∣∣p1q1−p2q2

∣∣∣∣− ε

q21
− ε

q22
≥ 1

q1q2
− ε

q21
− ε

q22
=

1

q22

[
q2
q1
−ε
(
q2
q1

)2

−ε
]
≥ 1

q22
(1−2ε) > `,

where the second-to-last inequality is derived from the fact that x−εx2−ε ≥
1 − 2ε for all x ∈ [1, 1/ε − 1] and in particular for all x ∈ [1, β−1/2]. Thus
each interval of length ` intersects at most one member of C`.

Now Alice’s strategy can be given as follows: If Bob chooses an interval
Bm of length ` = |Bm|, then Alice deletes the unique member ∆ε(p/q) of
the collection C` that intersects Bm. By construction, the length of this
member is

|∆ε(p/q)| =
2ε

q2
≤ 2ε

1− 2ε
β−1` = α|Bm|,

meaning that it is legal to play. To show that this strategy is winning, we
observe that the length of Bob’s first interval B0 is at least 2ρ = β, and
thus β−1|B0| ≥ 1 ≥ q−2 for all p/q ∈ Q. So if m is the smallest integer such
that |Bm| < q−2, then |Bm| < q−2 ≤ β−1|Bm| and thus Alice must delete
∆ε(p/q) on turn m.

Lemma 3.12. For all n ≥ 2 and 1
n2 ≤ β < 1, the set (−∞, 0)∪Fn∪(1,∞)

is (α, β, ρ)-absolute winning, where

(α, β, ρ) =
(

2
n−1β

−1, β, β/2
)
.

Proof. This follows immediately from Lemma 3.11 together with the
inclusion

[0, 1] ∩ BA1(
1

n+1) ⊂ Fn
(see e.g. [11, Theorems 6 and 9]).

We now use the above lemmas to prove Theorems 2.2, 2.3, and 2.6.

Proof of Theorem 2.2. We will in fact show that every a ∈ Mε is con-
tained in some arithmetic progression of length 3. Indeed, apply Lemma 3.10
with 0 < ε ≤ 1/49 and β = 1/6 and combine with Proposition 3.3 to see that
S1 := (−∞, 0)∪Mε∪ (1,∞) is (1/4, 1/6, 1/24)-absolute winning. By Propo-
sition 3.4 it follows that S2 := 2S1 − a is (1/4, 1/6, 1/12)-absolute winning
and thus by Proposition 3.2, S1 ∩ S2 is (1/4, 1/6, 1/12, 2)-absolute winning.
Since 2(1/4) + 3(1/6) = 1, Corollary 3.8 shows that S1 ∩ S2 ∩ [0, 1/6] 6= ∅
and S1 ∩ S2 ∩ [5/6, 1] 6= ∅; in particular S1 ∩ S2 ∩ [0, 1] \ {a} 6= ∅. If
t ∈ S1 ∩ S2 ∩ [0, 1] \ {a}, then

{
a, a+t2 , t

}
is an arithmetic progression of

length 3 on Mε. The proof for F49 is similar, using Lemma 3.12 instead of
Lemma 3.10.

Proof of Theorem 2.3. Apply Lemma 3.12 with n = 19 and β = 1/3 to
get that (−∞, 0) ∪ F19 ∪ (1,∞) is (1/3, 1/3, 1/6)-absolute winning. Now in
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the (1/3, 1/3, 1/6)-absolute game, Bob can start by playing the interval [0, 1]
and on each turn can legally play an interval appearing in the construction of
the Cantor set (cf. the proof of Corollary 3.8). The outcome of the resulting
game will be a member of F19 ∩ C, so we have F19 ∩ C 6= ∅.

Proof of Theorem 2.6. Apply Lemma 3.12 with n = 49 and β = 1/6 to
find that S1 := (−∞, 0) ∪ F49 ∪ (1,∞) is (1/4, 1/6, 1/12)-absolute winning.
Now fix t ∈ [1/6, 11/6] and observe that by Proposition 3.4 the set S2 :=
t − S1 is also (1/4, 1/6, 1/12)-absolute winning, and thus S = S1 ∩ S2 is
(1/4, 1/6, 1/12, 2)-absolute winning. Since t ∈ [1/6, 11/6], the length of the
interval I := [max(0, t − 1),min(1, t)] is at least 2ρ = 1/6. On the other
hand, we have 2(1/4) + 3(1/6) = 1, and thus S ∩ I 6= ∅ by Corollary 3.8.
But S ∩ I ⊂ F49 ∩ (t − F49), so we get t ∈ F49 + F49, which completes the
proof.

Although the absolute game is good at getting simple quantitative results
when small numbers are involved, the bounds coming from Lemma 3.7 get
worse asymptotically as the Hausdorff dimension of the sets in question
tends to 1, and in particular are not good enough to prove Theorem 2.1. To
get a better asymptotic estimate we need to introduce another game, the
potential game.

4. The potential game and its properties. We now define the poten-
tial game. In the next two sections we will use it to prove Theorems 2.1, 2.4,
and 2.5. As in the previous section, the version of the potential game we give
below is slightly different from the original one found in [8, Appendix C].
The first two changes are the same as for the absolute game (introducing
the parameter ρ, and splitting β into two different parameters), and we also
introduce the possibility that the parameter c is equal to zero, to provide a
clearer relation between the absolute game and the potential game.

Definition 4.1 (Cf. [8, Definition C.4]). Let X be a complete metric
space and let H be a collection of closed subsets of X. Given α, β, ρ > 0 and
c ≥ 0, Alice and Bob play the (α, β, c, ρ,H)-potential game as follows:

• As before, the turn order is alternating, with Bob playing first.
• On the mth turn, Bob plays a closed ball Bm = B(xm, ρm), and Alice

responds by choosing a finite or countably infinite collection Am of sets
of the form N (Li,m, ρi,m), with Li,m ∈ H and ρi,m > 0, satisfying

(4.1)
∑
i

ρci,m ≤ (αρm)c,

where N (Li,m, ρi,m) denotes the ρi,m-thickening of Li,m, i.e.

N (Li,m, ρi,m) = {x ∈ X : d(x,Li,m) ≤ ρi,m}.
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As before we say that Alice “deletes” the collection Am, though the mean-
ing of this will be slightly different from what it was in the absolute game.
If c = 0, then instead of requiring (4.1), we require the collection Am to
consist of a single element, which must have thickness ≤ αρm.
• On the first (0th) turn, Bob’s ball B0 = B(x0, ρ0) is required to satisfy

(4.2) ρ0 ≥ ρ,

while on subsequent turns his ball Bm+1 = B(xm+1, ρm+1) is required to
satisfy

(4.3) ρm+1 ≥ βρm and Bm+1 ⊂ Bm,

with no reference made to the collection Am chosen by Alice on the pre-
vious turn.

As before, the result after infinitely many turns is an infinite descending
sequence of balls B0 ⊃ B1 ⊃ · · · , and if the radii of these balls do not
tend to zero we say that Alice wins by default, while otherwise we call the
intersection point x∞ the outcome of the game. However, we now make the
additional rule that if the outcome of the game is a member of any “deleted”
element N (Li,m, ρi,m) of one of the collections Am chosen throughout the
game, then Alice wins by default.

Now let S ⊂ X, and suppose that Alice has a strategy guaranteeing
that if she does not win by default, then x∞ ∈ S. Then the set S is called
(α, β, c, ρ,H)-potential winning.

Remark 4.2. Let P be the collection of singletons in X. When c = 0
and H = P, the potential game is similar to the absolute game considered
in the previous section. The only difference is that while in the absolute
game Bob must immediately move to avoid Alice’s choice, in the potential
game he must only do so eventually. This is a significant difference because
it means that Bob gets a much larger advantage from having α small, since
it means he can wait several turns before avoiding a region.

Thus, every (α, β, 0, ρ,P)-potential winning set is (α, β, ρ)-absolute win-
ning, but the converse is not true. However, the proofs of Lemmas 3.10–3.12
in fact show that the sets in question are (α, β, 0, ρ,P)-potential winning,
since the proofs only use the fact that the outcome is not in any deleted set,
not that the deleted sets are disjoint from Bob’s subsequent moves. This
fact will be used in the applications below.

Notation 4.3. In what follows we will use the notation

thi(N (L, ρ)) = ρ,

i.e. thi(N (L, ρ)) is the “thickness” of N (L, ρ).
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The basic properties of the potential game are similar to those for the
absolute game. The proofs are essentially the same as the proofs of Propo-
sitions 3.2–3.4.

Proposition 4.4 (Countable intersection property). Let J be a count-
able (finite or infinite) index set, and for each j ∈ J , let Sj be an
(αj , β, c, ρ,H)-potential winning set, where c > 0. Then the set S =

⋂
j∈J Sj

is (α, β, c, ρ,H)-potential winning, where

(4.4) αc =
∑
j∈J

αcj ,

assuming that the series converges.

Proof. Alice can play all of the strategies corresponding to the sets Sj
simultaneously by deleting all of the balls she is supposed to delete in each
of the individual games. The formula (4.4) guarantees that this strategy will
be legal to play.

Proposition 4.5 (Monotonicity). If S is (α, β, c, ρ,H)-potential win-

ning and α ≤ α̃, β ≤ β̃, c ≤ c̃, ρ ≤ ρ̃, and H ⊂ H̃, then S is (α̃, β̃, c̃, ρ̃, H̃)-
potential winning.

Proof. By the Hölder inequality(∑
i

αc̃i

)1/c̃
≤
(∑

i

αci

)1/c
when c ≤ c̃,

switching from the (α, β, c, ρ, k)-game to the (α̃, β̃, c̃, ρ̃, k̃)-game increases
Alice’s set of legal moves while decreasing Bob’s, making it easier for Alice
to win.

Proposition 4.6 (Invariance under similarities). Let f : X → Y be a
bijection that satisfies

d(f(x), f(y)) = λd(x, y) ∀x, y ∈ X.
Then a set S ⊂ X is (α, β, c, ρ,H)-absolute winning if and only if the set
f(S) ⊂ Y is (α, β, c, λρ, f(H))-absolute winning.

Proof. The (α, β, c, λρ, k)-game on Y with target set f(S) is a disguised
version of the (α, β, c, ρ, k)-game on X with target set S, with the moves
Bm, Am in the latter game corresponding to the moves f(Bm), f(Am) in the
former game.

5. Hausdorff dimension of potential winning sets. In this section
we will address the question: what is the appropriate analogue of Lemma 3.7
for the potential game? In other words, what quantitative information about
Hausdorff dimension can be deduced from the assumption that a certain set
is potential winning? To answer this question, we first need some definitions.
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Definition 5.1. Given δ > 0, a measure µ on a complete metric space X
is said to be Ahlfors δ-regular if there exists ρ > 0 such that for every x ∈ X,
and for every sufficiently small ball B(x, ρ) centered in the topological sup-
port of µ, we have µ(B(x, ρ)) � ρδ. The topological support of an Ahlfors
δ-regular measure is also said to be Ahlfors δ-regular.

Given η > 0 and a collection of closed sets H in X, the measure µ is
called absolutely (η,H)-decaying if for every sufficiently small ball B(x, ρ)
centered in the topological support of µ, for every L ∈ H, and for every
ε > 0, we have

µ(B(x, ρ) ∩N (L, ερ)) . εηµ(B(x, ρ)).

When X = Rd and H is the collection of hyperplanes, then µ is called
absolutely η-decaying.

Finally, the Ahlfors dimension of a (not necessarily closed) set S ⊂ R is
the supremum of δ such that S contains a closed Ahlfors δ-regular subset.
We will denote it by dimA(S). The Ahlfors dimension of a set is a lower
bound for its Hausdorff dimension.

Example 5.2. Every Ahlfors δ-regular measure is absolutely (δ,P)-de-
caying, where P is the collection of singletons in X.

Example 5.3. Lebesgue measure on Rd is absolutely 1-decaying.

The following theorem is a combination of known results:

Theorem 5.4. Let X = Rd, let H be the collection of hyperplanes, and
let J be the support of an Ahlfors δ-regular and absolutely (η,H)-decaying
measure µ. Suppose that S ⊂ X is (α, β, c, ρ,H)-potential winning for all
α, β, c, ρ > 0. Then dimA(S ∩ J) = δ.

Proof. The set S is H-potential winning in the terminology of [8, Ap-
pendix C], and thus by [8, Theorem C.8] it is also H-absolute winning,
or in other words hyperplane absolute winning. So by [2, Propositions 4.7
and 5.1], S is winning on J , and thus by [8, Proposition D.1] we have
dimA(S ∩ J) = δ.

In this paper we will be interested in the following quantitative version
of Theorem 5.4:

Theorem 5.5. Let X be a complete metric space, H a collection of
closed subsets of X, and J ⊂ X be the topological support of an Ahlfors
δ-regular and absolutely (η,H)-decaying measure µ. Then there exist K1

and K2 such that if S ⊂ X be (α, β, c, ρ,H)-potential winning, with c < η
and β ≤ 1/4. Then for every ball B0 ⊂ X centered in J with rad(B0) ≥ ρ,
we have

(5.1) dimA(S ∩ J ∩B0) ≥ δ −K1
αη

|log(β)|
> 0 if αc ≤ 1

K2
(1− βη−c).
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Remark 5.6. Theorem 5.5 implies that Theorem 5.4 is true for every
complete metric space X and every collection H of closed subsets of X.
In particular, the condition [8, Assumption C.6], which is crucial for es-
tablishing [8, Theorem C.8], turns out not to be necessary for proving its
consequences in terms of Hausdorff dimension.

Proof of Theorem 5.5. For each n ≥ 0 let ρn = βnρ, let En ⊂ J be a
maximal ρn/2-separated subset, and let

En = {B(x, ρn) : x ∈ En}.

Let πn : En+1 → En be a map such that for all B ∈ En+1, we have

(5.2) B ⊂ πn(B).

Such a map exists since β ≤ 1/2. (We will later impose a further restriction
on the map πn.) When m < n and B ∈ En, we will abuse notation slightly
by writing πm(B) = πm ◦ πm+1 ◦ · · · ◦ πn−1(B).

For each B ∈ En, consider the sequence of moves in the (α, β, c, ρ,H)-
potential game where for each m = 0, . . . , n, on the mth turn Bob may
choose to play the move πm(B), and Alice responds according to her winning
strategy. By (5.2), Bob’s moves are all legal.

Definition 5.7. Let A(B) denote Alice’s response on turn n according
to her winning strategy. Also, let A∗m(B) = {A ∈ A(πm(B)) : B ∩A 6= ∅}.

Fix ε > 0 small to be determined, independent of α, β, c, ρ, and let

(5.3) N = bεα−ηc.

For each j ≥ 0 let Dj ⊂ EjN be a maximal 3ρjN -separated set in the
sense that one cannot add another point in EjN and keep the separation
condition, and let Dj = {B(x, ρjN ) : x ∈ Dj} ⊂ EjN . Note that Dj is a
disjoint collection. For each B ∈ Dj let

φj(B) =
∑
n<jN

∑
A∈A∗n(B)

thic(A)

(cf. Notation 4.3). Fix γ > 0 small to be determined, independent of α, β, c, ρ,
and let

D′j = {B ∈ Dj : φj(B) ≤ (γρjN )c}.

For every ball B let

Dj+1(B) =
{
B′ ∈ Dj+1 : B′ ⊂ 1

2B
}
,

where λB denotes the ball resulting from multiplying the radius of B by λ
while leaving the center fixed.
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Claim 5.8. For all B ∈ D′j, we have

(5.4) #(Dj+1(B) ∩ D′j+1) & β−Nδ if αc ≤ 1

K2
(1− βη−c),

where K2 is a large constant.

Proof. Using a standard mass summing argument combined with the
Ahlfors regularity of J implies that the cardinality of Dj+1(B) is at least
1
K3
β−Nδ, where K3 is a large constant. Thus we just need to show that

(5.5) #(Dj+1(B) \ D′j+1) ≤
1

2K3
β−Nδ.

Now

#(Dj+1(B) \ D′j+1) ≤
∑

B′∈Dj+1(B)

min

(
1,

φj+1(B
′)

(γρ(j+1)N )c

)

≤
∑

B′∈Dj+1(B)

∑
n<(j+1)N

∑
A∈A∗n(B′)

min

(
1,

thic(A)

(γρ(j+1)N )c

)

≤
∑
n<jN

∑
A∈A∗n(B)

min

(
1,

thic(A)

(γρ(j+1)N )c

)
#{B′ ∈ Dj+1(B) : B′ ∩A 6= ∅}

+
∑

jN≤n<(j+1)N

∑
B′∈En
B′⊂B

∑
A∈A(B′)

min

(
1,

thic(A)

(γρ(j+1)N )c

)
×#{B′′ ∈ Dj+1(B

′) : B′′ ∩A 6= ∅}.

The idea is to bound the first term (representing “old” obstacles) using
the assumption that B ∈ D′j , which implies that φj(B) ≤ (γρjN )c, and to
bound the second term (representing “new” obstacles) using the fact that
Alice is playing legally, which implies (4.1). To do this, we observe that
for all B′ ∈

⋃
n En and A = N (L, thi(A)), since µ is Ahlfors δ-regular and

absolutely (η,H)-decaying, using a standard mass summing argument we
have

#{B′′ ∈ Dj+1(B
′) : B′′ ∩A 6= ∅} . 1

ρδ(j+1)N

µ
(
B′ ∩N (A, 2ρ(j+1)N )

)
.

1

ρδ(j+1)N

(
thi(N (A, 2ρ(j+1)N ))

rad(B′)

)η
radδ(B′)

=

(
rad(B′)

ρ(j+1)N

)δ(thi(A) + 2ρ(j+1)N

rad(B′)

)η
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and thus

#(Dj+1(B) \ D′j+1)

.

(
rad(B)

ρ(j+1)N

)δ ∑
n<jN

∑
A∈A∗n(B)

min

(
1,

thic(A)

(γρ(j+1)N )c

)(
thi(A) + 2ρ(j+1)N

rad(B)

)η

+
∑

jN≤n<(j+1)N

∑
B′∈En
B′⊂B

(
rad(B′)

ρ(j+1)N

)δ

×
∑

A∈A(B′)

min

(
1,

thic(A)

(γρ(j+1)N )c

)(
thi(A) + 2ρ(j+1)N

rad(B′)

)η
.

To bound this expression, we first prove the following.

Subclaim 5.9. We have

(5.6)
∑
n<jN

∑
A∈A∗n(B)

min

(
1,

thic(A)

(γρ(j+1)N )c

)(
thi(A) + 2ρ(j+1)N

rad(B)

)η
≤ 3ηγc max

(
γη−c,

1

γc

(
ρ(j+1)N

rad(B)

)η−c)
,

and for all B′ ∈
⋃
n En, we have

(5.7)
∑

A∈A(B′)

min

(
1,

thic(A)

(γρ(j+1)N )c

)(
thi(A) + 2ρ(j+1)N

rad(B′)

)η
≤ 3ηαc max

(
αη−c,

1

γc

(
ρ(j+1)N

rad(B′)

)η−c)
.

Remark 5.10. The proof of this subclaim will show that the left-hand
sides of the maxima correspond to the contributions from “big” obstacles
while the right-hand sides of the maxima correspond to contributions from
“small” obstacles.

Proof. Let us prove (5.7) first. Since Alice is playing legally, we have

(5.8)
∑

A∈A(B′)

(
thi(A)

rad(B′)

)c
≤ αc

so the trick is relating the left-hand side of (5.7) to the left-hand side of (5.8).
Now, it can be verified that the inequality

(5.9) min

(
1,

xc

(γy)c

)
(x+ 2y)η ≤ 3ηxc max

(
xη−c,

yη−c

γc

)
holds for all x, y > 0, e.g. by splitting into the cases x ≥ y (use the left
option of both “min” and “max”) and x ≤ y (use the right option of both
“min” and “max”). Letting x = thi(A)/rad(B′) and y = ρ(j+1)N/rad(B′)
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and summing over all A ∈ A(B′) shows that∑
A∈A(B′)

min

(
1,

thic(A)

(γρ(j+1)N )c

)(
thi(A) + 2ρ(j+1)N

rad(B′)

)η

≤
∑

A∈A(B′)

3η
(

thi(A)

rad(B′)

)c
max

((
thi(A)

rad(B′)

)η−c
,

1

γc

(
ρ(j+1)N

rad(B′)

)η−c)

≤ 3η
( ∑
A∈A(B′)

(
thi(A)

rad(B′)

)c)
max

((
max

A∈A(B′)

thi(A)

rad(B′)

)η−c
,

1

γc

(
ρ(j+1)N

rad(B′)

)η−c)
.

Applying (5.8) twice yields (5.7).
The proof of (5.6) is similar, except that instead of summing over

A ∈ A(B′), we sum over A ∈
⋃
n<jN A∗n(B), and instead of (5.8), we use

the fact that the assumption B ∈ D′j implies that∑
n<jN

∑
A∈A∗n(B)

(
thi(A)

rad(B)

)c
≤ γc.

This completes the proof of Subclaim 5.9.

Combining Subclaim 5.9 with the inequality preceding it yields

#(Dj+1(B) \ D′j+1) .

(
rad(B)

ρ(j+1)N

)δ
γc max

(
γη−c,

1

γc

(
ρ(j+1)N

rad(B)

)η−c)
+

∑
jN≤n<(j+1)N

∑
B′∈En
B′⊂B

(
rad(B′)

ρ(j+1)N

)δ
αc max

(
αη−c,

1

γc

(
ρ(j+1)N

rad(B′)

)η−c)
.

Now by definition we have rad(B) = βjNρ, ρ(j+1)N = β(j+1)Nρ, and rad(B′)
= βnρ for all B′ ∈ En. Thus after applying the change of variables n =
(j + 1)N − k, we get

rad(B)

ρ(j+1)N
= β−N ,

rad(B′)

ρ(j+1)N
= β−k.

On the other hand, the Ahlfors regularity of J implies that

#{B′ ∈ En : B′ ⊂ B} �
(

rad(B)

βnρ

)δ
= β−(N−k)δ,

so we have

#(Dj+1(B) \ D′j+1) . β−Nδγc max

(
γη−c,

1

γc
βN(η−c)

)
(5.10)

+ β−Nδαc
N∑
k=1

max

(
αη−c,

1

γc
βk(η−c)

)
.
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Denote the implied constant of this inequality by K4, and let

ε =
1

6K3K4
·

Then to deduce (5.5) from (5.10), it suffices to show that all four contribu-
tions to the right-hand side of (5.10) are less than β−Nδε, i.e.

γη ≤ ε (old big obstacles),(5.11)

βN(η−c) ≤ ε (old small obstacles),(5.12)

Nαη ≤ ε (new big obstacles),(5.13)
αc

γc

∞∑
k=0

βk(η−c) ≤ ε (new small obstacles).(5.14)

Now (5.11) can be achieved by choosing γ = ε1/η, while (5.13) is true by
the definition of N (see (5.3)). This leaves (5.12) and (5.14), which can be
rearranged as

N(η − c)|log(β)| ≥ |log(ε)|,

αc
1

1− βη−c
≤ εγc = ε1+c/η.

Now fix K2 large to be determined, and suppose that αc ≤ 1
K2

(1 − βη−c).
Since 1 + c/η < 2, if K2 ≥ ε−2 then (5.14) holds. Moreover, since αc ≤ ε2

≤ εc/η, we have εα−η ≥ 1 and thus

N = bεα−ηc ≥ 1
2εα

−η.

On the other hand, we have

αη ≤ αc ≤ 1

K2

∣∣log βη−c
∣∣

and thus if K2 ≥ 2ε−1 log(ε−1), then

1
2εα

−η(η − c)|log(β)| ≥ |log(ε)|,
demonstrating (5.12). So we let

K2 = max
(
ε−2, 2ε−1 log(ε−1)

)
.

This completes the proof of Claim 5.8.

Let K3 be as in the proof of the claim, so that

(5.15) #(Dj+1(B) ∩ D′j+1) ≥M :=

⌈
1

2K3
β−Nδ

⌉
for all B′ ∈ D′j .

Let B0 be the ball given in the statement of the theorem, and assume that
B0 ∈ D0. (It is always possible to select E0 and D0 such that this is the
case.) Since φ0(B0) = 0 < (γρ)c, we have B0 ∈ D′0.
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We can now construct a Cantor set F as follows: let B0 = {B0} ⊂ D′0,
and whenever we are given a collection Bj ⊂ D′j , construct a new collection
Bj+1 by replacing each element B ∈ Bj by M elementsof Dj+1(B) ∩ D′j+1.
Such elements exist by (5.15). Finally, let

F =
∞⋂
j=0

⋃
B∈Bj

B.

Then standard arguments (see e.g. [1, Corollary 1]) show that F is Ahlfors
regular of dimension

log(M)

|log(βN )|
≥

log( 1
2K3

β−Nδ)

|log(βN )|
= δ − log(2K3)

|log(βN )|
= δ − log(2K3)

N |log(β)|

≥ δ − 2ε−1 log(2K3)
αη

|log(β)|
·

So to demonstrate the first half of (5.1), we just need to show that F ⊂
S ∩ J ∩B0. It is clear that F ⊂ J ∩B0, so we show that F ⊂ S. Indeed, fix
x ∈ F . For each j ∈ N, let BjN be the unique element of Bj containing x.
At this point, we introduce the requirement that for each j, the map πjN
must satisfy

πjN (B′) = B whenever EjN+1 3 B′ ⊂ B ∈ Dj .

Due to the disjointness of the collection Dj , it is possible to choose a map
πjN satisfying this requirement. Since β ≤ 1/4, if B ∈ Dj and B′ ∈ EjN+1

satisfy B′ ∩ 1
2B 6= ∅, then B′ ⊂ B. It follows that

πjN (B′) = B whenever En 3 B′ ⊂ 1
2B, B ∈ Dj , n > jN.

By the definition of Bj+1 we have B(j+1)N ⊂ 1
2BjN and so πjN (B(j+1)N )

= BjN . Thus the partial sequence (Bn)n∈jNN can be uniquely extended to
a full sequence (Bn)n∈N by requiring that Bn = πn(Bn+1) for all n.

Now interpret the sequence (Bn)n∈N as a sequence of moves for Bob
in the potential game, and suppose Alice responds by playing her winning
strategy. Then the outcome of the game is x, so either x ∈ S or Alice wins
by default. Suppose that Alice wins by default. Then there is an x ∈ A
which is an element of A(Bm) for some m. It follows that A ∈ A∗m(Bn) for
all n > m (recall Definition 5.7). Thus

φj(BjN ) ≥ thic(A)

for all j such that jN > m. On the other hand, since BjN ∈ D′j we have
φj(BjN ) ≤ (γρjN )c, and thus thi(A) ≤ γρjN for all j such that jN > m.
Letting j → ∞ we get thi(A) = 0, a contradiction. Thus x ∈ S, and hence
F ⊂ S. This demonstrates the first half of (5.1).
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For the second half of (5.1), we observe that if αc ≤ 1
K2

(1− βη−c), then

αη

|log(β)|
≤ αc

|log(β)|
≤ 1

K2
· |log(βη−c)|
|log(β)|

=
η − c
K2

≤ η

K2
,

so requiring K2 > ηK1/δ completes the proof.

6. Applications of the potential game. We now use the potential
game, and in particular Theorem 5.5, to prove Theorems 2.1 and 2.4. Note
that Theorem 2.5 follows immediately from combining Theorem 5.5 with
Lemmas 3.10 and 3.11 (cf. Remark 4.2 and Example 5.2).

6.1. Proof of Theorem 2.4. In this section we fix a norm on Rd and
treat Rd as a metric space with respect to that norm, also letting BAd(ε)
be defined in terms of this norm; it does not matter which norm it is.

Lemma 6.1. Let H be the collection of hyperplanes in Rd. Then for all
ε > 0 and (d!Vd)

1/dε < β < 1, the set BAd(ε) is (α, β, c, ρ,H)-potential
winning, where

(α, β, c, ρ,H) =

(
εβ−1

(d!Vd)−1/d − εβ−1
, β, 0, β(d!Vd)

−1/d − ε,H
)
.

Here Vd denotes the volume of the d-dimensional unit ball (with respect to
the chosen norm).

When d = 1, these numbers are only slightly worse than the ones ap-
pearing in Lemma 3.11.

Proof of Lemma 6.1. As in the proof of Lemma 3.11, we let

∆ε(p/q) = B(p/q, εq−(d+1)/d)

so that

BA1(ε) = R \
⋃

p/q∈Qd

∆ε(p/q).

We will use the simplex lemma in the following form:

Lemma 6.2 (Simplex Lemma, [12, Lemma 4]). Fix Q > 1 and s > 0
such that

(6.1) Vds
d =

1

d!Qd+1
·

Fix x ∈ Rd. Then the set

(6.2) {p/q ∈ Qd ∩B(x, s) : q < Q}

is contained in an affine hyperplane.
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We now describe Alice’s strategy in the potential game. Suppose that
Bob has just made the move Bm = B(xm, ρm), and let Q = Qm > 1 and
s = sm > 0 be chosen so as to satisfy (6.1) as well as the equation

s = ρm + εβ−1Q−(d+1)/d.

Note that solving for ρm in terms of Q gives

(6.3) ρm =

(
1

d
√
d!Vd

− εβ−1
)
Q−(d+1)/d.

Then Alice deletes the αρm-neighborhood of the affine hyperplane contain-
ing the set (6.2).

To show that this strategy is winning (it is clearly legal), let x denote
the outcome of the game and suppose that x /∈ BAd(ε), so that x ∈ ∆ε(p/q)
for some p/q ∈ Qd. We will show that x ∈ A ∈ Am for some m ≥ 0. Indeed,
let m be the first integer such that q < Qm. If m > 0, then

β ≤ ρm
ρm−1

=

(
Qm
Qm−1

)−(d+1)/d

and thus

q ≥ Qm−1 ≥ βd/(d+1)Qm

while if m = 0, then

1 ≤ ρ0
ρ

=
Q
−(d+1)/d
0

β

and thus

q ≥ 1 ≥ βd/(d+1)Qm.

Either way we have q ≥ βd/(d+1)Qm, so

(6.4) rad(∆ε(p/q)) = εq−(d+1)/d ≤ εβ−1Q−(d+1)/d
m .

Thus since x ∈ B(xm, ρm) ∩∆ε(p/q), we have

|p/q − xm| ≤ ρm + εβ−1Q−(d+1)/d
m = s,

i.e. p/q ∈ B(xm, s). Thus p/q is a member of the set (6.2) and thus of the
hyperplane that Alice deleted the αρm-neighborhood of on turn m. So to
complete the proof it suffices to show that

εq−(d+1)/d ≤ αρm,
which follows from (6.3), (6.4), and the definition of α.

Corollary 6.3. Let J ⊂ Rd be the topological support of an Ahlfors
δ-regular and absolutely η-decaying measure. Then for all ε > 0, we have

(6.5) dimH(BAd(ε) ∩ J) ≥ δ −Kεη

where K is a constant depending on J .
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Proof. Let β = 1/4 and c = η/2. Combining Lemma 6.1 with Proposi-
tion 4.5 shows that BAd(ε) is (α, β, c, ρ,H)-potential winning, where ρ is a
constant, α � ε, and H is the collection of hyperplanes in Rd. If ε is suf-
ficiently small, then αc ≤ 1

K2
(1 − βη−c) and thus Theorem 5.5 shows that

(6.5) holds.

Theorem 2.4 is a special case of this corollary (cf. Example 5.3).

6.2. Proof of Theorem 2.1. In this section we let P denote the set of
points in X = R.

Lemma 6.4. For all 0 < β ≤ 1/4, there exists δ = δ(β) such that for all

α, c, ρ, ε > 0 and S ⊂ R such that S̃ = S ∪ (−∞, a) ∪ (a+ 2ρ+ ε,∞) ⊂ R
is an (α, β, c, ρ,P)-potential winning set with c ≤ 1 − 1/log(α−1), the set
S contains an arithmetic progression of length δα−1/log(α−1). In fact, for
every sufficiently small t > 0, S contains uncountably many arithmetic pro-
gressions of length δα−1/log(α−1) and common gap size t.

Proof. By Proposition 4.5, we may without loss of generality assume
that c = 1 − 1/log(α−1). Fix k ∈ N to be determined, and fix 0 < t ≤ ε/k.
By Propositions 4.4 and 4.6, the set

S′ =

k−1⋂
i=0

(S̃ − it)

is (k1/cα, β, c, ρ,P)-potential winning. Thus by Theorem 5.5 with X = J
= R, if

(6.6) kαc ≤ 1

K2
(1− β1−c)

then dimA(S′∩ [a, a+2ρ]) > 0. In particular, in this case S′∩ [a, a+2ρ] 6= ∅,
and if x ∈ S′ ∩ [a, a+ 2ρ] 6= ∅ then the arithmetic progression {x, x+ t, . . . ,
x+ (k − 1)t} is contained in S.

Now let k be the largest integer such that (6.6) is satisfied. To complete
the proof, we need to show that k � α−1/log(α−1) as long as α is sufficiently
small. Indeed, since β is fixed and c = 1− 1/log(α−1), we have

1− β1−c = 1− β1/log(α−1) � 1/log(α−1), αc = eα � α,
and thus

k =

⌊
1

K2
· 1− β1−c

αc

⌋
� 1− β1−c

αc
� 1/log(α−1)

α
=

α−1

log(α−1)

as long as the right-hand side is large enough to guarantee that k ≥ 1.

Combining with Lemmas 3.10 and 3.12 (cf. Remark 4.2) immediately
yields the lower bounds of (2.3) and (2.4), respectively. So in the remainder
of the proof we will demonstrate the upper bounds.
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Let S be an arithmetic progression in Mε of length k ≥ 2, and let I be
the smallest interval appearing in the construction of Mε such that S ⊂ I.
Let J be the middle ε gap of I. The minimality of I implies that S contains
points both to the left and to the right of J , so the common gap size t of S
is at least |J | = ε|I|. On the other hand, we have (k − 1)t = diam(S) ≤ |I|,
so k − 1 ≤ |I|/|J | = 1/ε. This demonstrates the upper bound of (2.3).

The proof for Fn is similar but more technical. In what follows we use
the standard notation

(6.7) [a0; a1, a2, . . .] := a0 +
1

a1 +
1

a2 +
.. .

Let S be an arithmetic progression in Fn of length k ≥ 2, and let ω =
ω1 · · ·ωr be the longest word in the alphabet {1, . . . , n} such that the con-
tinued fraction expansions of all elements of S begin with ω. (Note that ω
may be the empty word.) Then the set A of numbers i = 1, . . . , n such that
some element of S has a continued fraction expansion of the form [0;ω, i, . . .]
has at least two elements. Here [0;ω, i, . . .] is short for [0;ω1, . . . , ωr, i, . . .].
Let i and j be the smallest and second-smallest elements of A, respectively,
and consider first the case where j = i+1. As before, write t for the common
gap size of S, so that (k − 1)t = diam(S). Then

t ≥ |[0;ω, j, n+ 1]− [0;ω, i, 1]| while (k − 1)t ≤ |[0;ω, i]− [0;ω, n+ 1]|,
so

k − 1 ≤ |[0;ω, i]− [0;ω, n+ 1]|
|[0;ω, j, n+ 1]− [0;ω, i, 1]|

� |[0; i]− [0;n+ 1]|
|[0; j, n+ 1]− [0; i, 1]|

(bounded distortion property (8))

≤ 1/i

|[0; j, n+ 1]− [0; j]|

� 1/i

(1/j2)|[0;n+ 1]− 0|
(bounded distortion property again)

=
j2

i
(n+ 1) . n2 (since j = i+ 1).

If j > i + 1, then the bound |[0; j, n + 1] − [0; i, 1]| ≥ 1
i+1 −

1
j can be used

(8) The bounded distortion property for the Gauss iterated function system
(uk(x) := 1

k+x
)k∈N can be proven by applying [14, Lemma 2.2(a)]. It states that if

uω(x) = uω1 ◦ · · · ◦ uωr (x), or equivalently uω([0;x]) = [0;ω, x], then

|uω(y)− uω(x)| � max
[0,1]
|u′ω| · |y − x| for all x, y ∈ [0, 1].
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instead, yielding the better bound

k − 1 .
1
i

1
i+1 −

1
j

≤
1
i
1

(i+1)(i+2)

=
(i+ 1)(i+ 2)

i
� i ≤ n.

This demonstrates the upper bound of (2.4), completing the proof.
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