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BALL CONVERGENCE FOR A TWO-STEP

FOURTH ORDER DERIVATIVE-FREE METHOD FOR

NONLINEAR EQUATIONS

Abstract. We present a local convergence analysis of a two-step fourth
order derivative-free method in order to approximate a locally unique solution
of a nonlinear equation in a real or complex space setting. In an earlier study
of Peng et al. (2011), the order of convergence of the method was shown using
Taylor series expansions and hypotheses on up to the fourth order derivative
or even higher of the function involved. However, no derivative appears in
the proposed scheme. That restricts the applicability of the scheme. We
expand the applicability of the scheme using only hypotheses on the first
order derivative of the function involved. We also give computable radii
of convergence, error bounds based on Lipschitz constants, and the range
of initial guesses that guarantees convergence of the methods. Numerical
examples where earlier studies do not apply but our results do are also given.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation of the form

(1.1) F (x) = 0,

where F is a twice Fréchet differentiable function defined on a subset D of S
(S = R or S = C) with values in S.

Lack or intractability of analytic solutions often forces researchers to
resort to iterative methods. While using these methods, researchers face the
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problems of slow convergence, non-convergence, divergence, inefficiency or
failure (for details see Traub [14] and Petkovic et al. [12]). The convergence
analysis of iterative methods is usually divided into two categories: semi-
local and local convergence analysis. The semi-local analysis is, relying on
information around an initial point, to give criteria ensuring the convergence
of iteration procedures. An important problem in the study of iterative
procedures is the convergence domain. Therefore, it is crucial to estimate
the radius of convergence of the method applied.

We conduct the local convergence analysis of the two-step fourth order
method defined for n = 0, 1, 2, . . . by

(1.2)

yn = xn −
F (xn)

G(xn)
,

xn+1 = xn −
F (xn)

G(xn)

[
1 +

F (yn)

F (xn)
+

(
1 +

1

1− αnG(xn)

)(
F (yn)

F (xn)

)2]
,

where x0 is a initial point, αn ∈ S and

G(xn) =
F (xn)− F (xn − αnF (xn))

αnF (xn)
,

=

	1
0 F
′(xn − αnF (xn) + θαnF (xn)

)
αnF (xn) dθ

αnF (xn)

=

1�

0

F ′
(
xn − αnF (xn) + θαnF (xn)

)
dθ := An.

The sequence {xn} is adaptively determined. The local convergence of method
(1.2) was studied in [11] using hypotheses reaching up to the fourth derivative
of F when S = R. Such hypotheses limit the applicability of the method. As a
motivational example, for S = R define a function F on D = [−1/π, 2/π] by

F (x) =

{
x3 log(π2x2) + x5 sin

(
1
x

)
, x 6= 0,

0, x = 0.

Then

F ′(x) = 2x2 − x3 cos

(
1

x

)
+ 3x2 log(π2x2) + 5x4 sin

(
1

x

)
,

F ′′(x) = −8x2 cos

(
1

x

)
+ 2x(5 + 3 log(π2x2)) + x(20x2 − 1) sin

(
1

x

)
,

F ′′′(x) =
1

x

[
(1−36x2) cos

(
1

x

)
+ x

(
22 + 6 log(π2x2) + (60x2 − 9) sin

(
1

x

))]
.

One can easily find that F ′′′(x) is unbounded onD at the point x = 0. Hence,
the results in [11] cannot apply to show the convergence of method (1.2) or
its special cases requiring hypotheses on the fourth derivative of F or higher.
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Notice that there are a plethora of iterative methods for approximating
solutions of nonlinear equations [1–10, 12–14]. These results show that the
initial guess should be close to the required root for the convergence of the
corresponding method. But how close? The local results give no information
on the radius of the convergence ball for the corresponding method.

Peng et al. [11] provided several reasons why the investigation of method
(1.2) is worthwhile. We repeat some of them here and refer the reader to
[11] for the rest. For example, method (1.2) is derivative-free and of high
convergence order, in contrast to other methods in the literature of the
same order but using derivatives which may be expensive or impossible to
compute or do not exist. The study of local convergence based on Lipschitz
constants is important because it shows the degree of difficulty in choosing
initial guesses. In studies using Taylor expansions such as [11] the choice of
the initial guess x0 is a “shot in the dark”. Clearly, our technique can be
applied to other iterative methods with similar advantages.

In the present study we expand the applicability of method (1.2) using
only hypotheses on up to the first order derivative of F . We also give com-
putable radii of convergence and error bounds based on Lipschitz constants.
We further present the range of initial guesses x0 that tells us how close the
initial guess should be for method (1.2) to converge. This problem was not
addressed in [11]. The advantages of our approach are similar to the ones
already mentioned for method (1.2).

2. Local convergence. In this section, we shall define some scalar func-
tions and parameters in order to analyze the local convergence of method
(1.2).

Let L0, L > 0, M ≥ 1, M0 > 0 and α > 0 be given parameters. Let us
define functions p, g1 and h1 on [0, 1/L0) by

p(t) = L0

(
1 +

1

2
αM

)
t,

g1(t) =
L

2(1− L0t)

(
1 +

αM0M

1− p(t)

)
t,

h1(t) = g1(t)− 1,

and a parameter rp by

rp =
1(

1 + 1
2αM

)
L0
.

We have h1(0) = −1, and h1(t), hp(t)→∞ as t→ r−p . By the intermediate
value theorem, h1 has zeros in (0, rp). Let r1 be the smallest such zero.
Suppose that

(2.1) αM0 < 1.
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Moreover, define functions g2 and h2 on [0, r1) by

g2(t) =

(
1 +

M

1− p(t)
+

M3

1− p(t)

(
1 +

1

1− αM0

)
g1(t)

)
g1(t),

h2(t) = g2(t)− 1.

Then h2(0) = −1 < 0 and

h2(r1) =
M

1− p(r1)
+

M3

1− p(r1)

(
1 +

1

1− αM0

)
> 0,

since g1(r1) = 1, 1− |α|M > 0, r1 < rp and 1− p(r1) > 0. Denote by r the
smallest zero of h2 in [0, r1). Then for each t ∈ [0, r),

0 ≤ p(t) < 1,(2.2)

0 ≤ g1(t) < 1,(2.3)

0 ≤ g2(t) < 1,(2.4)

Let U(γ, ρ) and Ū(γ, ρ) be respectively the open and closed balls in S with
center γ ∈ S and radius ρ > 0. Next, we present the local convergence
analysis of method (1.2) using the above notations.

Theorem 2.1. Let F : S ⊃ D → S be a differentiable function. Suppose
that there exist x∗ ∈ D and L0 > 0 such that

(2.5) F (x∗) = 0, F ′(x∗) 6= 0,

and for each x ∈ D,

(2.6) |F (x∗)−1(F ′(x)− F ′(x∗))| ≤ L0|x− x∗|.
Moreover, suppose that there exist L > 0, M ≥ 1, M0 ∈ [1, 1/α), α > 0 and
a sequence {αn} ⊂ S such that for each x, y ∈ D ∩ U(x∗, 1/L0),

|αn| ≤ α,(2.7)

|F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|,(2.8)

|F ′(x∗)−1F ′(x)| ≤M, |F ′(x)| ≤M0,(2.9)

Ū(x∗, (1 + αM0)r) ⊆ D,(2.10)

where r has been defined previously. Then the sequence {xn} generated for
x0 ∈ U(x∗, r) − {x∗} by method (1.2) is well defined, remains in U(x∗, r)
for each n = 0, 1, 2, . . . and converges to x∗. Moreover,

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r,(2.11)

|xn+1 − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|,(2.12)

where the “g” functions have been defined previously. Furthermore, for T ∈
[r, 2/L0), the limit point x∗ is the only solution of the equation F (x) = 0 in
D0 := Ū(x∗, T ) ∩D.
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Proof. We shall show (2.11) and (2.12) by induction. By the hypothesis
x0 ∈ U(x∗, r)− {x∗}, the definition of r and (2.6), we have

(2.13) |F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L|x0 − x∗| < L0r < 1.

It follows from (2.13) and the Banach Lemma on invertible functions [4,13]
that F ′(x0) 6= 0 and

(2.14) |F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤
1

1− L0|x0 − x∗|
<

1

1− L0r
.

By (2.5) we can write

(2.15) F (x0) = F (x0)− F (x∗) =

1�

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗) dθ.

Notice that |x∗ + θ(x0 − x∗) − x∗| = θ|x0 − x∗| < r. Hence, by (2.9) and
(2.15),

(2.16) |F ′(x∗)−1F (x0)| ≤M |x0 − x∗|.
We must show that A0 6= 0. Notice that

(2.17) |x0 − α0F (x0)− x∗| ≤ |x0 − x∗|+ |α|M |x0 − x∗| < (1 + |α|M)r

and

|x0 + α0F (x0)(θ − 1)− x∗| ≤ |x0 − x∗|+ (1− θ)M0α|x0 − x∗|(2.18)

< (1 + αM0)r,

so x0−α0F (x0), x0+α0F (x0)(θ−1) ∈ U(x∗, (1+αM0)r). Then, using (2.2),
the definition of r and (2.6), we get in turn

|F ′(x∗)−1(A0 − F ′(x∗))| ≤
1�

0

|x0 − x∗ + (θ − 1)α0F (x0)| dθ(2.19)

≤ L0

(
1 + α

1�

0

(θ − 1) dθM0|x0 − x∗|
)

≤ L0(1 +M0α/2)|x0 − x∗|
= p(|x0 − x∗|) < p(rp) = 1.

Then, by (2.19), we have A0 6= 0 and

(2.20) |A−10 F ′(x∗)| ≤ 1

1− p(|x0 − x∗|)
<

1

1− p(r)
and y0 is well defined by the first substep of method (1.2) for n = 0. By
(2.8), (2.9) and (2.16), we also get

(2.21) |F ′(x∗)−1(A0 − F ′(x0))| ≤ L
1�

0

(1− θ) dθM0|xn − x∗|.
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Then, using the first substep of method (1.2) for n = 0, (2.3), (2.8), (2.9),
(2.14), (2.16), (2.20) and (2.21) we get in turn

(2.22) |y0 − x∗|

≤ |F ′(x0)−1F ′(x∗)|
∣∣∣1�
0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗) dθ
∣∣∣

+ |F ′(x0)−1F ′(x∗)| |F ′(x∗)−1(A0 − F ′(x0))| |A−10 F ′(x∗)| |F ′(x∗)−1F (x0)|

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
+

LM0Mα|x0 − x∗|2

2(1− L0|x0 − x∗|)(1− p(|x0 − x∗|))
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.11) for n = 0 and y0 ∈ U(x∗, r). We also see that (2.16)
holds for y0 = x0, since y0 ∈ U(x∗, r). We must show that F (x0) 6= 0 and
1− α0A0 6= 0. From (2.5), (2.6) and x0 6= x∗ we get

(2.23) |(F ′(x∗)(x0 − x∗))−1[F (x0)− F (x∗)− F ′(x∗)(x0 − x∗)]|

≤ |x0 − x∗|−1
L0

2
|x0 − x∗|2 =

L0

2
|x0 − x∗| <

L0

2
r < 1.

By (2.23), we have F (x0) 6= 0 and

(2.24) |F (x0)
−1F ′(x∗)| ≤ 1

|x0 − x∗|
(
1− L0

2 |x0 − x∗|
) .

By (2.7) and (2.9) with x0 − α0F (x0) + θα0F (x0) replacing x we also get

(2.25) |α0A0| ≤ |α0| |A0| ≤ αM0 < 1.

That is A0 6= 0, x1 is well defined by the second substep of method (1.2) for
n = 0 and

(2.26) |(I − α0A0)
−1| ≤ 1

1− αM0
.

By the last substep of method (1.2) for n = 0 we can write

(2.27) x1 = y0 −
F (y0)

A0
− F (x0)

A0

(
1 +

1

1− α0A0

)(
F (y0)

F (x0)

)2

.

Then, in view of (2.4), the definition of r, (2.14), (2.16), (2.20), (2.24), (2.26)
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and (2.27), we obtain

(2.28) |x1 − x∗|
≤ |y0 − x∗|+ |A−10 F ′(x∗)| |F ′(x∗)−1F (y0)|

+ |A−10 F ′(x∗)| |F ′(x∗)−1F (x0)|[1 + |(1− α0A0)
−1|]

× |F (x0)
−1F ′(x∗)|2| |F ′(x∗)−1F (y0)|2

≤ |y0 − x∗|+
M(|y0 − x∗|+ |x0 − x∗|)

1− p(|x0 − x∗|)

(
1 +

1

1− αM

)
× M2|y0 − x∗|2

|x0 − x∗|2
(
1− L0

2 |x0 − x∗|
)2

≤
[
1 +

M

1− p(|x0 − x∗|)
+

M3

1− p(|x0 − x∗|)

(
1 +

1

1− αM

)
g1(|x0 − x∗|)

]
× g1(|x0 − x∗|)|x0 − x∗| = g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.12) for n = 0 and x1 ∈ U(x∗, r). By simply replacing
x0, y0, x1 by xk, yk, xk+1 in the preceding estimates we arrive at (2.11) and
(2.12). Then notice that |xk+1 − x∗| ≤ c|xk − x∗| < r, c = g2(r) ∈ [0, 1).
Hence, limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r). Finally, to show uniqueness,

let y∗ ∈ Ū(x∗, T ) be such that F (y∗) = 0. Set Q =
	1
0 F
′(x∗+ θ(y∗−x∗)) dθ.

Then, using (2.12), we get

(2.29) |F ′(x∗)−1(Q− F ′(x∗))| ≤ L0

1�

0

θ|x∗ − y∗| dθ =
L0

2
T < 1.

Hence, Q−1 ∈ L(Y,X). Then, in view of the identity F (y∗) − F (x∗) =
Q(y∗ − x∗), we conclude that x∗ = y∗.

Remark 2.2. (a) In view of (2.6) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x)− F ′(x∗)) + I|
≤ 1 + |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ 1 + L0|x0 − x∗|

the first condition in (2.9) can be dropped and M can be replaced by

M = M(t) = 1 + L0t

or M = 2, since t ∈ [0, 1/L0).

(b) The results obtained here can be used for operators F satisfying the
autonomous differential equation [4, 5] of the form

(2.30) F ′(x) = P (F (x)),

where P : S → S is a known continuous operator. Since F ′(x∗) = P (F (x∗))
= P (0), we can apply the results without actually knowing the solution x∗.
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As an example let F (x) = ex + 1. Then we can choose P (x) = x− 1. Notice
that for these choices of F and P equation (2.30) is satisfied. Then, for
example (2.8) can be written as∣∣P (0)−1

(
P (F (x)− P (F (y)))

)∣∣ ≤ L|x− y|,
which is independent of x∗ (see also Example 3.1 for the value of L).

(c) The radius rA = 2
L0+L

was shown by us in [4,5] to be the convergence
radius for Newton’s method under conditions (2.5), (2.6) and (2.8). The
radius rA is at least as large as the convergence ball given by Rheinboldt [13]
and Traub [14],

rR =
2

3L
.

Notice that for L0 < L,

rR < rA.

Moreover,
rR
rA
→ 1

3
as

L0

L
→ 0.

Hence, rA is at most three times larger than rR. In the numerical examples
we compare r to rA and rR.

3. Numerical example and applications. In order to demonstrate
the convergence behavior of the scheme proposed in [11] and to check the
validity and effectiveness of the theoretical results which we have proposed
in Section 2, we choose a variety of nonlinear equations, including our mo-
tivational example.

In Tables 1–3, we display the test functions considered with the corre-
sponding initial approximations, radius of convergence and minimum num-
ber of iterations (n) to get the desired accuracy. The initial approximation
x0 is selected within the convergence domain. All the values of parameters
have been calculated up to more than 100 significant digits, but in the tables
only five significant digits are displayed.

In order to verify the theoretical order of convergence, we use the follow-
ing formulas to calculate the computational order of convergence (COC) [7]

(3.1) ρ =
ln |xn+2−x∗|
|xn+1−x∗|

ln |xn+1−x∗|
|xn−x∗|

for n = 0, 1, . . .

or the approximate computational order of convergence (ACOC) [7]

(3.2) ρ∗ =
ln |xn+2−xn+1|
|xn+1−xn|

ln |xn+1−xn|
|xn−xn−1|

for n = 1, 2, . . . .
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Finding the order of convergence in this way, we can avoid the error bounds
involving estimates of higher than first order Fréchet derivatives. All the
numerical experiments have been done in Mathematica (Version 9) with
multiple precision arithmetic, which minimize round-off errors. We use ε =
10−100 as a tolerance error. The following stopping criteria are used for
computer programs: (i) |xn+1 − xn| < ε and (ii) |f(xn+1)| < ε.

Example 3.1. Let S = R and D = Ū(0, 1). Define F on D by

(3.3) F (x) = ex − 1.

Then

F ′(x) = ex.

Notice that x∗ = 0, L0 = e−1, L = 1.789572397 and M = M0 = 2. We give
different radii of convergence, COC ρ and n in Table 1.

Table 1. Computable radii of convergence

α rp rA rR r1 r2 r x0 n ρ
1
3

0.43648 0.57015 0.37253 0.20546 0.051503 0.051503 0.05 5 4.0000
1
4

0.46558 0.57015 0.37523 0.22873 0.064057 0.064057 0.06 5 4.0000
1
5

0.48498 0.57015 0.37528 0.24597 0.072475 0.072475 0.07 5 4.0000

Example 3.2. Let S = R and D = Ū(0, 1). Define F on D by

(3.4) F (x) = sinx.

Then

F ′(x) = cosx.

Notice that x∗ = 0 and L0 = L = M = M0 = 1. We give different radii of
convergence, COC ρ and n in Table 2.

Table 2. Computable radii of convergence

α rp rA rR r1 r2 r x0 n ρ

1
2

0.80000 1.0000 0.066667 0.47340 0.24305 0.24305 0.23 4 5.0000

1
3

0.85714 1.0000 0.66667 0.51987 0.27579 0.27579 0.26 4 5.0000

1
4

0.88889 1.0000 0.66667 0.54774 0.29419 0.29419 0.28 4 5.0000

Example 3.3. Returning to the motivational example of the introduc-
tion, we have L = L0 = 2

2π+1(80 + 16π + (11 + 12 log 2)π2), M = 2,
M0 = 8.5145 and our required zero is x∗ = 1/π. We list different radii
of convergence, COC ρ and n in Table 3.
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Table 3. Computable radii of convergence

α rp rA rR r1 r2 r x0 n ρ

1
9

0.010212 0.011347 0.0075648 0.0037799 0.00050153 0.00050153 0.318 4 4.0000

1
10

0.011347 0.011347 0.075648 0.0039249 0.00075431 0.00075431 0.319 4 4.0000

Remark 3.4. It is worth noticing that the radius ρ is smaller than the
radii of Newton’s method. This observation is expected, since method (1.2)
is of order four, whereas Newton’s method is only of order two. In general,
as the convergence order increases, the radius of convergence decreases. This
is true for all the preceding numerical examples.

4. Conclusions. Numerous iterative methods are available in the liter-
ature where researchers state that the initial approximation should be close
to the required root to guarantee convergence of the proposed schemes.
But most of the time they do not specify how clos that should be. In this
study, we give a computable radius of convergence and error bound which
we can calculate by using Lipschitz conditions. Further, we also reduce the
hypotheses from fourth order derivative of the function involved to only
the first order derivative. It is worth noticing that method (1.2) does not
change if we use the conditions of Theorem 2.1 instead of the stronger con-
ditions proposed by Peng et al. [11]. Moreover, to obtain the error bounds
in practice and order of convergence, we can use the computational order of
convergence. In this way, we can avoid the bounds involving estimates higher
than the first Fréchet derivative. Thus, our study expands the applicability
of the proposed methods. We have also given the idea of how to calculate
the computable radius of convergence and the error bounds of the scheme.
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