When a constant subsequence implies ultimate periodicity

by

Piotr MISKA

Presented by Andrzej SCHINZEL

Summary. We show a curious property of sequences given by the recurrence $a_{0}=h_{1}(0)$, $a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$, where $f, h_{1}, h_{2} \in \mathbb{Z}[X]$. Namely, if the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant for some $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$, then either $\left(a_{2 n+1}\right)_{n \in \mathbb{N}}=(0)_{n \in \mathbb{N}}$ and $\left(a_{2 n}\right)_{n \in \mathbb{N}}$ is a geometric progression, or $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately periodic with period dividing 2 .

1. Introduction. It is obvious that any ultimately periodic sequence of integers is bounded. On the other hand, in general, boundedness of a sequence does not imply its ultimate periodicity. Of course, boundedness forces constancy for polynomial sequences or geometric progressions with ratio $\notin\{0,-1\}$ (for ratio 0 we can have an ultimately zero sequence with nonzero initial term, and for ratio -1 we can have a sequence with basic period 2).

In this paper we will focus on a special class of sequences, denoted by \mathcal{R} and defined as the set of all sequences $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)=\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfying a recurrence of the form

$$
\begin{equation*}
a_{0}=h_{1}(0), \quad a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, \quad n>0, \tag{1.1}
\end{equation*}
$$

where $f, h_{1}, h_{2} \in \mathbb{Z}[X]$ are given. Note that \mathcal{R} contains the following well known sequences:

- if $f=h_{2}=1, h_{1}=c \in \mathbb{Z}$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=(c(n+1))_{n \in \mathbb{N}}$ is an arithmetic progression;

[^0]- if $f=q \in \mathbb{Z}, h_{1}=c \in \mathbb{Z}, h_{2}=0$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(c q^{n}\right)_{n \in \mathbb{N}}$ is a geometric progression;
- if $f=1, h_{1}=c \in \mathbb{Z}, h_{2}=q \in \mathbb{Z}$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\sum_{j=0}^{n} c q^{j}\right)_{n \in \mathbb{N}}$ is the sequence of partial sums of a geometric progression;
- if $f=X, h_{1}=1, h_{2}=0$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=(n!)_{n \in \mathbb{N}}$ is the sequence of factorials;
- if $f=2 X+l, l \in\{0,1\}, h_{1}=1, h_{2}=0$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=((2 n+l)!!)_{n \in \mathbb{N}}$ is the sequence of double factorials;
- if $f=X, h_{1}=1, h_{2}=-1$, then $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(D_{n}\right)_{n \in \mathbb{N}}$ is the sequence of numbers of derangements in S_{n}, i.e. permutations of an n-element set without fixed points; its arithmetic properties were the subject of [2].

Arithmetic properties of sequences from the class \mathcal{R} were studied in [4]. In Section 5 there, we showed an upper bound $a_{n}=O\left(e^{C n \ln n}\right)$, where $C=\max \left\{\operatorname{deg} f, \operatorname{deg} h_{2}, 1\right\}$. On the other hand, taking $h_{1}=a(1-f), h_{2}=1$ we get a constant sequence \mathbf{a}, while the degree of f can be arbitrarily large.

The aim of this paper is to show that if the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant for some $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$, then $h_{1}=0$, or $h_{2} \in\{-1,0,1\}$, or $\max \left\{\operatorname{deg} f, \operatorname{deg} h_{1}, \operatorname{deg} h_{2}\right\} \leq 0$ with $h_{2}=-f$, and we will give the form of the corresponding sequence. In particular, such a sequence is ultimately constant, or ultimately periodic with period 2 , or contains a geometric progression as a subsequence.

The motivation to consider the above property is its application in an elementary proof of infinitude of the set $\mathbb{P}_{\mathbf{a}}=\left\{p \in \mathbb{P}: \exists_{n \in \mathbb{N}} a_{n} \neq 0\right.$ and $\left.p \mid a_{n}\right\}$, where $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{N}}$ is a given sequence of integers (not necessarily in \mathcal{R}). If we assume that \mathbf{a} is unbounded with no constant subsequence of the form $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ for some $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$, and moreover the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ is periodic for each $d \in \mathbb{N}_{+}$, then the set $\mathbb{P}_{\mathbf{a}}$ is infinite. Indeed, suppose that $\mathbb{P}_{\mathbf{a}}=\left\{p_{1}, \ldots, p_{s}\right\}$ and take the smallest $l \in \mathbb{N}$ such that $a_{l} \neq 0$. Then $a_{l}=p_{1}^{\alpha_{1}} \cdots \cdot p_{s}^{\alpha_{s}}$ for some $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}$. We know that the sequence $\left(a_{n}\left(\bmod p_{1}^{\alpha_{1}+2} \cdots \cdots p_{s}^{\alpha_{s}+2}\right)\right)_{n \in \mathbb{N}}$ is periodic with some period k. Thus $a_{k n+l} \equiv a_{l}\left(\bmod p_{1}^{\alpha_{1}+2} \cdots \cdot p_{s}^{\alpha_{s}+2}\right)$ for each $n \in \mathbb{N}$, which together with the assumption $\mathbb{P}_{\mathbf{a}}=\left\{p_{1}, \ldots, p_{s}\right\}$ implies that $a_{k n+l}=a_{l}$, $n \in \mathbb{N}$-a contradiction. Notice that if $\mathbf{a}=(n)_{n \in \mathbb{N}}$, then the above reasoning is Euclid's proof of infinitude of \mathbb{P}. Knowing that for each sequence $\mathbf{a} \in \mathcal{R}$ and positive integer d the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ is ultimately periodic, we may try to prove infinitude of $\mathbb{P}_{\mathbf{a}}$ in a similar way (using some additional assumptions, if necessary).
2. Boundedness and periodicity of $\mathbf{a} \in \mathcal{R}$. First, we prove that if there is a constant subsequence of the form $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ for some $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ then $h_{1}=0$, or $h_{2} \in\{-1,0,1\}$, or f, h_{1}, h_{2} are constant and $h_{2}=-f$.

Then, assuming that $h_{1}=0$ or $h_{2} \in\{-1,0,1\}$, we will show that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant or ultimately periodic with period 2 . Next, assuming the boundedness of $\left(a_{n}\right)_{n \in \mathbb{N}}$, we will use the periodicity of $\left(a_{n}(\bmod p)\right)_{n \in \mathbb{N}}$ for a sufficiently large prime number p to deduce the ultimate periodicity of $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Theorem 1. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right), k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then one of the following conditions holds:

- $h_{1}=0$ (and then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is constantly 0$)$,
- $h_{2} \in\{-1,0,1\}$,
- $h_{1}=c \in \mathbb{Z}$ and $h_{2}=-f=b \in \mathbb{Z}$ (then $a_{2 n}=b^{2 n} c$ and $a_{2 n+1}=0$ for all $n \in \mathbb{N}$).

Proof. Assume that $h_{1} \neq 0$. If $f=0$ then $a_{n}=h_{1}(n) h_{2}(n)^{n}$ for all $n \in \mathbb{N}$ and thus the assumption can be satisfied only if $h_{2} \in\{-1,0,1\}$. Hence, we can assume that $f \neq 0$.

Assume that $\operatorname{deg} h_{2}>0$. Let a be the value attained by $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$. We choose a nonnegative integer n so large that $h_{2}(k n+l) \neq 0$. Then, applying the recurrence definition of \mathbf{a}, we obtain

$$
\begin{align*}
a= & a_{k(n+1)+l} \tag{2.1}\\
= & a_{k n+l} \prod_{i=1}^{k} f(k n+l+i) \\
& +\sum_{j=1}^{k} h_{1}(k n+l+j) h_{2}(k n+l+j)^{k n+l+j} \prod_{i=j+1}^{k} f(k n+l+i) \\
= & a \prod_{i=1}^{k} f(k n+l+i)+h_{2}(k n+l)^{k n+l} \sum_{j=1}^{k} h_{1}(k n+l+j) \\
& \times h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i) .
\end{align*}
$$

Let $d=\operatorname{deg} h_{2}>0$ and write $h_{2}=\sum_{i=0}^{d} w_{i} X^{i}$. Then for each $j \in \mathbb{N}$,

$$
\begin{aligned}
h_{2}(k n & +l+j)-h_{2}(k n+l) \\
\quad= & \sum_{i=0}^{d} w_{i}(k n+l+j)^{i}-\sum_{i=0}^{d} w_{i}(k n+l)^{i} \\
= & w_{d}(k n+l)^{d}+d w_{d} j(k n+l)^{d-1}+w_{d-1}(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right) \\
& \quad-w_{d}(k n+l)^{d}-w_{d-1}(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right) \\
= & d w_{d} j(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right)
\end{aligned}
$$

as $n \rightarrow+\infty$. Since

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l+j)-h_{2}(k n+l)}{h_{2}(k n+l)}=0 \\
& \lim _{n \rightarrow+\infty} \frac{(k n+l)^{d}}{h_{2}(k n+l)}=\frac{1}{w_{d}} \\
& \lim _{n \rightarrow+\infty} \frac{O\left((k n+l)^{d-1}\right)}{h_{2}(k n+l)}=0
\end{aligned}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l}=e^{d j} \tag{2.2}
\end{equation*}
$$

Let us define

$$
F(x, k, j)=h_{2}(x)^{x} h_{1}(x+j) h_{2}(x+j)^{j}\left(\frac{h_{2}(x+j)}{h_{2}(x)}\right)^{x} \prod_{i=j+1}^{k} f(x+i)
$$

for $x \in \mathbb{N}, k \in \mathbb{N}_{+}$and $j \in\{1, \ldots, k\}$, where we assume that $0^{0}=1$ and $\prod_{i=k+1}^{k} f(x+i)=1$.

If $\operatorname{deg} f>\operatorname{deg} h_{2}$ and $j>1$, then we can easily compute the following limits:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=0 \\
& \lim _{n \rightarrow+\infty} \frac{F(k n+l, k, 1)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=1 \\
& \lim _{n \rightarrow+\infty} \frac{F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=0
\end{aligned}
$$

The first limit is 0 because the numerator grows polynomially while the denominator grows exponentially. Adding these limits yields

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}= \\
& \lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=1
\end{aligned}
$$

This is in contradiction with the fact that the left-hand limit is clearly zero.

Similarly, if $\operatorname{deg} f<\operatorname{deg} h_{2}$ and $1 \leq j<k$, then

$$
\begin{array}{r}
\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0, \\
\lim _{n \rightarrow+\infty} \frac{F(k n+l, k, k)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=1, \\
\lim _{n \rightarrow+\infty} \frac{F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0 .
\end{array}
$$

We add these limits to obtain

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} & \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}} \\
& =\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=1
\end{aligned}
$$

This again contradicts the fact that the left-hand limit is zero.
Consider finally the case when $\operatorname{deg} f=\operatorname{deg} h_{2}$. Let $f=\sum_{i=0}^{d} u_{i} X^{i}$. Then

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}=0 \\
& \lim _{n \rightarrow+\infty} \frac{F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}=\left(\frac{u_{d}}{w_{d}}\right)^{k-j} e^{d j},
\end{aligned}
$$

as $1 \leq j \leq k$. By adding these limits we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}} \\
& =\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} F(k n+l, k, j)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}=\sum_{j=1}^{k}\left(\frac{u_{d}}{w_{d}}\right)^{k-j} e^{d j} .
\end{aligned}
$$

However, the left-hand limit is zero, while $\sum_{j=1}^{k}\left(u_{d} / w_{d}\right)^{k-j} e^{d j} \neq 0$ because e is a transcendental number (see [1]). This is a contradiction again.

We have proved that if the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant and $h_{1} \neq 0$, then $h_{2} \in \mathbb{Z}$. When $h_{2}=b$ the equality (2.1) takes the form

$$
\begin{equation*}
a=a \prod_{i=1}^{k} f(k n+l+i)+b^{k n+l} \sum_{j=1}^{k} h_{1}(k n+l+j) b^{j} \prod_{i=j+1}^{k} f(k n+l+i) . \tag{2.3}
\end{equation*}
$$

Assume that $|b|>1$ and define the polynomial

$$
G=\sum_{j=1}^{k} h_{1}(k X+l+j) b^{j} \prod_{i=j+1}^{k} f(k X+l+i) \in \mathbb{Z}[X] .
$$

If $G \neq 0$, then by 2.3 we have

$$
\frac{a}{b^{k n+l} G(n)}=\frac{a \prod_{i=1}^{k} f(k n+l+i)}{b^{k n+l} G(n)}+1 .
$$

Since

$$
\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{b^{k n+l}}=0
$$

we deduce that

$$
\lim _{n \rightarrow+\infty} \frac{a}{b^{k n+l} G(n)}=1
$$

We get a contradiction because this limit is 0 .
If $G=0$, then $h_{1}=0$ or $f \in \mathbb{Z}$. Indeed, if $h_{1} \neq 0$ and $\operatorname{deg} f>0$, then

$$
\operatorname{deg}\left[h_{1}(k X+l+j) b^{j} \prod_{i=j+1}^{k} f(k X+l+i)\right]=(k-j) \operatorname{deg} f+\operatorname{deg} h_{1}
$$

for $j \in\{1, \ldots, k\}$ and as a result $\operatorname{deg} G=k \operatorname{deg} f+\operatorname{deg} h_{1}>0$. Assume that $f=c \in \mathbb{Z}$. Then

$$
\begin{aligned}
0 & =\lim _{n \rightarrow+\infty} \frac{G(n)}{b h_{1}(k n+l)}=\lim _{n \rightarrow+\infty} \frac{\sum_{j=1}^{k} h_{1}(k n+l+j) b^{j-1} c^{k-j}}{h_{1}(k n+l)} \\
& =\sum_{j=1}^{k} b^{j-1} c^{k-j}= \begin{cases}\frac{b^{k}-c^{k}}{b-c} & \text { if } b \neq c, \\
k b^{k-1} & \text { if } b=c,\end{cases}
\end{aligned}
$$

which means that either $b=c=0$, or $c=-b$ and $2 \mid k$. The case $b=c=0$ contradicts the assumption that $|b|>1$. If $c=-b$, then by induction we obtain
$a_{l+n}=(-b)^{n} a_{l}+\sum_{j=1}^{n}(-1)^{n-j} b^{n} h_{1}(l+j)=(-b)^{n} a_{l}+(-b)^{n} \sum_{j=1}^{n}(-1)^{j} h_{1}(l+j)$ for $n \in \mathbb{N}$.

Define

$$
\begin{aligned}
H(n) & =\sum_{j=1}^{2 n}(-1)^{j} h_{1}(l+j)=\sum_{j=1}^{n}\left(h_{1}(l+2 j)-h_{1}(l+2 j-1)\right) \\
& =\sum_{j=1}^{n} \Delta h_{1}(l+2 j-1), \quad n \in \mathbb{N},
\end{aligned}
$$

where $\Delta h_{1}=h_{1}(X+1)-h_{1}(X)$. The function H can be seen as a polynomial in n and its degree is equal to

$$
\operatorname{deg} H(X)=1+\operatorname{deg} \Delta h_{1}(l+2 X-1)=1+\operatorname{deg} \Delta h_{1}(X)=\operatorname{deg} h_{1}(X)
$$

Since

$$
a=a_{l}=a_{l+k n}=(-b)^{k n} a+(-b)^{k n} H\left(\frac{k}{2} n\right)=(-b)^{k n}\left(a+H\left(\frac{k}{2} n\right)\right)
$$

for all $n \in \mathbb{N}$ and $|b|>1$, we deduce that the polynomial H must be constant. This implies that h_{1} is constant.

Summing up: we have shown that either $h_{1}=0$, or $h_{2} \in\{-1,0,1\}$, or f, h_{1}, h_{2} are constant and $f=-h_{2}$.

ThEOREM 2. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, 1\right), k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant, then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is either ultimately constant or of the form $(c, 0, c, 0, c, 0, \ldots)$ for some integer c.

Proof. For $k=1$ the statement is obvious. Hence, assume that $k \geq 2$. Let a be the value attained by $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$. Then

$$
\begin{align*}
& a_{k(n+1)+l} \tag{2.4}\\
& \quad=a_{k n+l} \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} h_{1}(k n+l+j) \prod_{i=j+1}^{k} f(k n+l+i) \\
& \quad=a \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} h_{1}(k n+l+j) \prod_{i=j+1}^{k} f(k n+l+i) .
\end{align*}
$$

Let
$G(X)=a \prod_{i=1}^{k} f(k X+l+i)+\sum_{j=1}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \in \mathbb{Z}[X]$.
From (2.4) we know that $G=a$. If $h_{1}=0$, then $a_{n}=0$ for all $n \in \mathbb{N}$, so we can assume that $h_{1} \neq 0$.

If $\operatorname{deg} f>0$, then $\operatorname{deg} \prod_{i=1}^{k} f(k X+l+i)=k \operatorname{deg} f$ and

$$
\operatorname{deg} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i)=(k-j) \operatorname{deg} f+\operatorname{deg} h_{1}
$$

for $j \in\{1, \ldots, k\}$. Since $\operatorname{deg} G \leq 0$ we get

$$
\operatorname{deg} \prod_{i=1}^{k} f(k X+l+i)=\operatorname{deg} h_{1}(k X+l+1) \prod_{i=2}^{k} f(k X+l+i)
$$

which implies that $\operatorname{deg} f=\operatorname{deg} h_{1}$. Moreover, we have the following chain of equivalences:

$$
\begin{gathered}
\operatorname{deg}\left(a \prod_{i=1}^{k} f(k X+l+i)+h_{1}(k X+l+1) \prod_{i=2}^{k} f(k X+l+i)\right) \\
=\operatorname{deg} h_{1}(k X+l+2) \prod_{i=3}^{k} f(k X+l+i) \\
\Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right) \prod_{i=2}^{k} f(k X+l+i) \\
\quad=\operatorname{deg} h_{1}(k X+l+2) \prod_{i=3}^{k} f(k X+l+i) \\
\Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right)+(k-1) \operatorname{deg} f \\
\quad=\operatorname{deg} h_{1}+(k-2) \operatorname{deg} f \\
\Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right)=0
\end{gathered}
$$

Hence, $a f+h_{1}=b$ for some integer b. Therefore,

$$
\begin{aligned}
G= & \left(a f(k X+l+1)+h_{1}(k X+l+1)\right) \prod_{i=2}^{k} f(k X+l+i) \\
& +\sum_{j=2}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \\
= & b \prod_{i=2}^{k} f(k X+l+i)+\sum_{j=2}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \\
= & \left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \prod_{i=3}^{k} f(k X+l+i) \\
& +\sum_{j=3}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) .
\end{aligned}
$$

Similarly, from $\operatorname{deg} G \leq 0$ we get the equivalences

$$
\begin{gathered}
\operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \prod_{i=3}^{k} f(k X+l+i) \\
=\operatorname{deg} h_{1}(k X+l+3) \prod_{i=4}^{k} f(k X+l+i) \\
\Longleftrightarrow \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)+(k-2) \operatorname{deg} f \\
\quad=\operatorname{deg} h_{1}+(k-3) \operatorname{deg} f \\
\Longleftrightarrow \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)=0
\end{gathered}
$$

provided that $k \geq 3$. If $k=2$, then $\operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2) \leq 0\right.$. Since
$\operatorname{deg}\left(a f(k X+l+2)+h_{1}(k X+l+2)\right), \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \leq 0$,
we also have

$$
\begin{aligned}
\operatorname{deg}(a-b) f(k X+l+2)= & \operatorname{deg}\left[\left(a f(k X+l+2)+h_{1}(k X+l+2)\right)\right. \\
& \left.-\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)\right] \leq 0
\end{aligned}
$$

From the assumption $\operatorname{deg} f>0$ we get $a=b$. From this we obtain the equality $a f+h_{1}=a$, which by a simple induction yields $a_{n}=a$ for all $n \geq l$.

Assume now that $f=b$ for some integer b. Then

$$
\begin{equation*}
G=a=a b^{k}+\sum_{j=1}^{k} b^{k-j} h_{1}(k X+l+j) \in \mathbb{Z}[X] . \tag{2.5}
\end{equation*}
$$

If $\operatorname{deg} h_{1}=d>0$ and $h_{1}=\sum_{i=0}^{d} w_{i} X^{i}$, then the coefficient of X^{d} in G is 0 (since $\operatorname{deg} G \leq 0$). On the other hand, this coefficient is equal to

$$
k^{d} w_{d} \sum_{j=1}^{k} b^{k-j}= \begin{cases}k^{d} w_{d} \frac{b^{k}-1}{b-1} & \text { if } b \neq 1 \\ k^{d+1} w_{d} & \text { if } b=1\end{cases}
$$

which means that $2 \mid k$ and $b=-1$. Write $k^{\prime}=k / 2$ and $\Delta h_{1}=h_{1}(X+1)-$ $h_{1}(X)$. It is clear that $\operatorname{deg} \Delta h_{1}=\operatorname{deg} h_{1}-1$. Now (2.5) takes the form

$$
0=\sum_{j=1}^{k^{\prime}} h_{1}(k n+l+2 j)-h_{1}(k n+l+2 j-1)=\sum_{j=1}^{k^{\prime}} \Delta h_{1}(k n+l+2 j-1)
$$

Let $H=\sum_{j=1}^{k^{\prime}} \Delta h_{1}(k X+l+2 j-1) \in \mathbb{Z}[X]$. Then $H=0$. However, the coefficient of X^{d-1} in H is equal to k^{\prime} times the leading coefficient of Δh_{1}, which is clearly a contradiction.

We are left with the case $h_{1}=c \in \mathbb{Z} \backslash\{0\}$. By 2.5, we have

$$
0=a\left(b^{k}-1\right)+c \sum_{j=1}^{k} b^{k-j}= \begin{cases}a\left(b^{k}-1\right)+c \frac{b^{k}-1}{b-1} & \text { if } b \neq 1 \\ k c & \text { if } b=1\end{cases}
$$

Since $c \neq 0$, we have $b \neq 1$ and $\left(a+\frac{c}{b-1}\right)\left(b^{k}-1\right)=0$. Thus, $b=-1$ and $\left(a_{n}\right)_{n \in \mathbb{N}}=(c, 0, c, 0, c, 0, \ldots)$, or $c=a(1-b)$ which implies that $b a+c=a$ and $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant.

Example 1. Consider the sequence $\mathbf{a}(X-3,28-7 X, 1)$. Then $a_{1}=-35$, $a_{2}=49$ and $a_{n}=7$ for $n \geq 3$. This means that a sequence a satisfying the assumptions of Theorem 2 can be ultimately constant, but not constant.

Corollary 1. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1},-1\right)$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant, then there is an integer c such that either $a_{n}=(-1)^{n} c$ for almost all $n \in \mathbb{N}$, or $a_{2 n}=c, a_{2 n+1}=0$ for all $n \in \mathbb{N}$.

Proof. Consider the sequence $\left(\widetilde{a}_{n}\right)_{n \in \mathbb{N}}=\mathbf{a}\left(-f, h_{1}, 1\right)$. Since $\widetilde{a}_{n}=(-1)^{n} a_{n}$ for $n \in \mathbb{N}$, the sequence $\left(\widetilde{a}_{2 k n+l}\right)_{n \in \mathbb{N}}$ is constant, and by Theorem 2 there is an integer c such that either $\widetilde{a}_{n}=c$ for almost all $n \in \mathbb{N}$, or $\widetilde{a}_{2 n}=c$, $\widetilde{a}_{2 n+1}=0$ for all $n \in \mathbb{N}$.

Proposition 1. Consider a sequence $\mathbf{a}\left(f, h_{1}, 0\right)$. Let $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then one of the following conditions holds:

- $a_{n}=0$ for almost all $n \in \mathbb{N}$,
- $a_{n}=h_{1}(0)$ for all $n \in \mathbb{N}$,
- $a_{n}=(-1)^{n} h_{1}(0)$ for all $n \in \mathbb{N}$.

Proof. If $a_{n_{0}}=0$ for some $n_{0} \in \mathbb{N}$ then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant and equal to 0 , so we may assume that $a_{n} \neq 0$ for any $n \in \mathbb{N}$. Write $a=a_{k n+l}$, $n \in \mathbb{N}$. Then

$$
a=a_{k(n+1)+l}=a_{k n+l} \prod_{i=1}^{k} f(k n+l+i)=a \prod_{i=1}^{k} f(k n+l+i),
$$

and since $a \neq 0$, we get $\prod_{i=1}^{k} f(k n+l+i)=1$ for all $n \in \mathbb{N}$. Hence, $|f(n)|=1$ for all but finitely many $n \in \mathbb{N}$, which implies that $f=1$ or $f=-1$.

Theorem 3. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence given by the relation $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$. Then one of the following conditions is true:

- $h_{1}=0$ (and then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is constantly 0),
- $h_{2} \in\{-1,0,1\}$.

Moreover,

- if $h_{2}=1$, then there is an integer c such that either $a_{n}=c$ for almost all $n \in \mathbb{N}$ or $a_{2 n}=c, a_{2 n+1}=0$ for all $n \in \mathbb{N}$,
- if $h_{2}=-1$, then there is an integer c such that either $a_{n}=(-1)^{n} c$ for almost all $n \in \mathbb{N}$, or $a_{2 n}=c, a_{2 n+1}=0$ for all $n \in \mathbb{N}$,
- if $h_{2}=0$, then either $a_{n}=0$ for almost all $n \in \mathbb{N}$, or $a_{n}=h_{1}(0)$ for all $n \in \mathbb{N}$, or $a_{n}=(-1)^{n} h_{1}(0)$ for all $n \in \mathbb{N}$.
Proof. By Theorems 1 and 2, Corollary 1 and Proposition 1, it suffices to show that there are $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ such that the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant.

Let p be a prime number greater than $\max _{n \in \mathbb{N}} a_{n}-\min _{n \in \mathbb{N}} a_{n}$. Then the sequence of remainders $\left(a_{n}(\bmod p)\right)_{n \in \mathbb{N}}$ is periodic (see [3, Section 4.1]). Moreover, the values of this sequence and $\min _{n \in \mathbb{N}} a_{n}$ uniquely determine the
values of $\left(a_{n}\right)_{n \in \mathbb{N}}$. Indeed, if $a_{n_{1}} \equiv a_{n_{2}}(\bmod p)$ then $a_{n_{1}}-\min _{n \in \mathbb{N}} a_{n} \equiv$ $a_{n_{2}}-\min _{n \in \mathbb{N}} a_{n}(\bmod p)$ and since $a_{n_{1}}-\min _{n \in \mathbb{N}} a_{n}, a_{n_{2}}-\min _{n \in \mathbb{N}} a_{n}<p$, we have $a_{n_{1}}=a_{n_{2}}$. Therefore $\left(a_{n}\right)_{n \in \mathbb{N}}$ is periodic. This implies the existence of $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ such that the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant.
3. Concluding remarks. An analysis of the proofs shows that in fact the statements of our results are true if we assume there exists an increasing sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ such that ${\lim \inf _{m \rightarrow+\infty}\left(n_{m+1}-n_{m}\right)<+\infty \text { (equivalently, }}$, there exists a positive integer k such that $n_{m+1}-n_{m}=k$ for infinitely many $m \in \mathbb{N}$) and the sequence $\left(a_{n_{m}}\right)_{m \in \mathbb{N}}$ is constant. Moreover, the statement of Proposition 1 is also true without the assumption $\lim \inf _{m \rightarrow+\infty}\left(n_{m+1}-n_{m}\right)$ $<+\infty$.

On the other hand, we do not know if the statements of Theorems 1 and 2 remain true if the sequence $\left(a_{n_{m}}\right)_{m \in \mathbb{N}}$ is constant and the increasing sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ is arbitrary.

Question 1. Is there an unbounded sequence $\mathbf{a} \in \mathcal{R}$ such that the sequence $\left(a_{n_{m}}\right)_{m \in \mathbb{N}}$ is constant for some increasing sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ and moreover $\left(a_{2 n+1}\right)_{n \in \mathbb{N}} \neq(0)_{n \in \mathbb{N}}$ or $\left(a_{2 n}\right)_{n \in \mathbb{N}}$ is not a geometric progression?

We expect that the answer to the above question is negative.
Acknowledgements. I would like to thank the anonymous referee for careful reading and editorial remarks improving the readability of the paper.

References

[1] Ch. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. Paris 77 (1873), 18-24, 74-79, 226-233, 285-293.
[2] P. Miska, Arithmetic properties of the sequence of derangements, J. Number Theory 163 (2016), 114-145.
[3] P. Miska, Arithmetic properties of the sequence of derangements and its generalizations, arXiv:1508.01987 (2015).
[4] P. Miska, On a generalization of the recurrence defining numbers of derangements, Colloq. Math., to appear.

Piotr Miska
Institute of Mathematics
Faculty of Mathematics and Computer Science
Jagiellonian University in Kraków
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: piotrmiska91@gmail.com

[^0]: 2010 Mathematics Subject Classification: 11B50, 11B83.
 Key words and phrases: derangement, periodicity, recurrence.
 Received 22 November 2018; revised 3 April 2019.
 Published online 6 May 2019.

