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ON THE EIGENVALUES AND EIGENFUNCTIONS FOR A
FREE BOUNDARY PROBLEM FOR INCOMPRESSIBLE

VISCOUS MAGNETOHYDRODYNAMICS

Abstract. The motion of incompressible magnetohydrodynamics (mhd)
in a domain bounded by a free surface and coupled through it with an exter-
nal electromagnetic field is considered. Transmission conditions for electric
currents and magnetic fields are prescribed on the free surface. In this paper
we show the idea of the proof of local existence by the method of successive
approximations. For this we need linearized problems: the Stokes system for
the velocity and pressure and the linear transmission problem for the elec-
tromagnetic field. We do not prove the local existence of solutions to the
original problem but we show existence of a fundamental basis of functions
for the linearized problems. Once we have such a basis, the existence of solu-
tions to the linear problems can be shown by the Faedo–Galerkin method, as
in other papers of Kacprzyk. The existence of solutions of the linear systems
can also be shown by the method of regularizer.

1. Introduction. We consider a free boundary problem for magnetohy-

drodynamic motions in a domain
1
Ωt interacting through a free surface St

B

St

2

Ωt1

Ωt
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with an electromagnetic field located in
2
Ωt. In

1
Ωt the magnetohydrodynamic

motion is described by the system of equations

v,t + v · ∇v − divT(v, p)− µ1

1
H · ∇

1
H + 1

2µ1∇
1
H2 = f,

div v = 0,

µ1

1
H ,t = − rot

1
E,

rot
1
H = σ1(

1
E + µ1v ×

1
H),

div
1
H = 0,

(1.1)

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the

fluid, p = p(x, t) ∈ R is the pressure,
1
H(x, t) = (

1
H1(x, t),

1
H2(x, t),

1
H3(x, t))

∈ R3 is the magnetic field,
1
E =

1
E(x, t) = (

1
E1(x, t),

1
E2(x, t),

1
E3(x, t)) ∈ R3

is the electric field, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 is the
external force field per unit mass, and x = (x1, x2, x3) are the Cartesian
coordinates. Moreover, µ1 is the constant magnetic permeability and σ1 the
constant electric conductivity. We denote by T(v, p) the stress tensor of the
form

(1.2) T(v, p) = νD(v)− pI,

where ν is a positive viscosity coefficient, I is the unit matrix and D(v) is
the dilatation tensor of the form

(1.3) D(v) = {vi,xj + vj,xi}i,j=1,2,3.

For system (1.1) the following initial and boundary conditions are prescribed:

(1.4)

n̄ · T(v, p) + µ1n̄ · T(
1
H) = p0n̄ on St,

v|t=0 = v(0),
1
H|t=0 =

1
H(0),

1
Ωt|t=0 =

1
Ω0, St|t=0 = S0,

where n̄ is the unit vector outward to
1
Ωt and normal to St, and

(1.5) T(
1
H) =

{ 1
H i

1
Hj − 1

2

1
H2δij

}
i,j=1,2,3

.

Finally, (1.4)1 implies the compatibility conditions

n̄0 · D(v(0)) · τ̄α0 + µ1n̄0 ·
1
H(0)τ̄α0 ·

1
H(0) = 0,

n̄0 = n̄|t=0, τ̄α0 = τ̄α|t=0, α = 1, 2.
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In
2
Ωt we have a motionless dielectric gas under constant pressure p0.

Therefore, we only have an electromagnetic field described by the system

(1.6)

µ2

2
H ,t = − rot

2
E,

σ2

2
E = rot

2
H,

div
2
H = 0.

For system (1.6) the following initial and boundary conditions are prescribed:

(1.7)

2
H|t=0 =

2
H(0),

2
Ωt|t=0 =

2
Ω0,

2
H|B = 0.

The homogeneous boundary condition on B is assumed for simplicity only.
We can prescribe here either a magnetic field or an electric current.

Electromagnetic fields in
1
Ωt and

2
Ωt are coupled through St via the fol-

lowing transmission conditions:
1
E · τ̄α =

2
E · τ̄α|St ,

n̄× τ̄α ·
1
H = n̄× τ̄α ·

2
H|St , α = 1, 2,

µ1

1
H · n̄ = µ2

2
H · n̄,

(1.8)

where τ̄1, τ̄2, n̄ is an orthonormal system of vectors in a neighborhood of St
such that n̄|St is normal to St and τ̄1, τ̄2|St are tangent to St.

Now we explain the physical meaning of the transmission conditions (1.8).

The currents are defined by j1 = σ1(
1
E + v×

1
H), j2 = σ2

2
E. Therefore (1.8)1

means that the jumps of the tangent components of the currents are de-
scribed by

1

σ1
j1 · τ̄α − v ×

1
H · τ̄α =

1

σ1
j2 · τ̄α, α = 1, 2, on St,

for σ1 6= σ2. Conditions (1.8)2 mean that the tangent components of the
magnetic field are continuous through St. To describe (1.8)3 we recall the

magnetic induction
i
B = µi

i
H, i = 1, 2. Since div

i
B = 0 in

i
Ωt, we de-

rive (1.8)3. It means that the normal component of the magnetic induc-
tion is continuous on St. Hence there is no jump of the magnetic induction
flux.

To prove existence of solutions to problem (1.1)–(1.8) we transform it
into two problems: a problem for the fluid motion and a problem for the
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electromagnetic field. Therefore, for given
1
H we have the problem for (v, p):

(1.9)

vt + v · ∇v − divT(v, p) = f + µ1 divT(
1
H) in

1
Ωt,

div v = 0 in
1
Ωt,

n̄ · T(v, p) = p0n̄− µ1n̄ · T(
1
H) on St,

v|t=0 = v(0) in Ω0.

Next for given v, the electromagnetic field is determined by the problem

(1.10)

µ1

1
H ,t = − rot

1
E, rot

1
H = σ1(

1
E + µ1v ×

1
H) in

1
Ωt,

µ2

2
H ,t = − rot

2
E, σ2

2
E = rot

2
H in

2
Ωt,

1
H|t=0 =

1
H(0), div

1
H(0) = 0 in

1
Ω0,

2
H|t=0 =

2
H(0), div

2
H(0) = 0 in

2
Ω0,

2
H|B = 0,

1
E · τ̄α =

2
E · τ̄α, n̄× τ̄α ·

1
H = n̄× τ̄α ·

2
H, α = 1, 2,

µ1

1
H · n̄ = µ2

2
H · n̄ on St.

Since (1.9) and (1.10) are free boundary problems, the natural way to treat

them is to pass to Lagrangian coordinates (see [26]).
1
Ωt,

2
Ωt and St are

determined by the velocity v of the fluid. However, equations (1.10) are
not in the form appropriate for using Lagrangian coordinates. Moreover,

in
2
Ωt there is no motion, so there is no velocity guaranteeing existence of

Lagrangian coordinates.

Therefore, we construct an artificial velocity 2
v in

2
Ωt as a solution to

problem (3.2). Moreover, for the field equations (1.10)1,2,

(1.11) µi
i
Ht = − rot

i
E, i = 1, 2,

we add the term µi
i
v · ∇

i
H, i = 1, 2, to both sides of (1.11), so we have

(1.12) µi(
i
Ht +

i
v · ∇

i
H) = − rot

i
E + µi ·

i
v · ∇

i
H, i = 1, 2.

These equations can be rewritten in Lagrangian coordinates and the term on
the r.h.s. of (1.12) is of a lower order. Therefore the natural way to show exis-
tence of solutions to (1.9), (1.10) is the method of successive approximations
described in Section 3.
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In this paper we are not going to prove existence of solutions to problem
(1.9), (1.10) (the result is shown in [5, 20, 21]). Our aim is to justify the
energy method used in [5, 6] to prove existence of solutions to problem (1.9),
(1.10). The existence is proved by applying the Faedo–Galerkin method to
problems obtained by linearizing (1.9), (1.10) and formulated in fixed initial
domains. Problems (3.7) and (3.13) are exactly such problems. In Sections 4
and 5 the existence of fundamental bases necessary for applying the Faedo–
Galerkin method is shown.

Now we present our results on existence of eigenfuctions and eigenvalues
for problems (3.7) and (3.13). In the case of problem (3.7) we examine the
elliptic problem (see (5.7))

(1.13)

µi
i
ψ +

1

σi
rot2

i
ψ = λ

i
ψ +

i
f, in

i
Ω0, i = 1, 2,

1

σ1
rot

1
ψ · τ̄α =

1

σ2
rot

2
ψ · τ̄α + gα, α = 1, 2, on S0,

1
ψ · n̄× τ̄α =

2
ψ · n̄× τ̄α, α = 1, 2, on S0,

ν1

1
ψ · n̄ = ν2

2
ψ · n̄ on S0,

2
ψ|B = 0,

and for problem (3.13) we consider the elliptic problem

(1.14)
νϕ− divT(ϕ, q) = λϕ+ f in Ω0,

divϕ = g in Ω0,

n̄ · T(ϕ, q) = k on S0,

where λ are eigenvalues and ν, µ1, µ2 are positive numbers.

Theorem 1.1. There exist eigenfunctions and eigenvalues for problems
(1.13) and (1.14).

Proof. The existence of eigenfunctions and eigenvalues for problem (1.14)
is proved by Temam [25]. The results for problem (1.13) are proved in Sec-
tion 5.

Remark 1.2. In this paper we generalize the approach to problem (1.13)
presented in [10] because more advanced techniques are used. Thanks to this,
Lp-approach can be applied.

The paper is organized as follows. In Section 2 we introduce notation and
some auxiliary results. In Section 3 the method of successive approximations
is formulated. In Sections 4 and 5 the existence of fundamental bases to
problems (3.13) and (3.7) respectively is proved.
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The existence of a fundamental basis for the Faedo–Galerkin method
for problem (3.13) is discussed in Definition 4.1 and for problem (5.7) in
Lemma 5.1. Having existence of weak solutions to the linearized problems
by the Faedo–Galerkin method, the existence of solutions to nonlinear prob-
lems (1.9), (1.10) is proved by the method of successive approximations de-
scribed in [10, Section 3]. Global existence is proved in [6] for sufficiently
small initial data. The existence of local solutions to (1.9), (1.10) is proved
in [5] by the energy method. To examine problem (1.10) it is necessary to
use the transmission conditions (1.8). In Lemma 2.4 the transmission con-
ditions (1.8) are generalized to the form (2.8) and then the fundamental
energy identity takes the form (2.9). The transmission conditions (2.8) im-
ply relations between the tangent components of the magnetic fields. To
show Lemma 5.1, we also need a transmission condition for the normal com-
ponent of the magnetic fields (see (5.7)5). To relax condition (5.7)5 we show
that equations (2.10), (2.11) are invariant with respect to the homothetic
transformation

(1.15)
i

H ′ = bi
i
H,

i

E′ = bi
i
E, i = 1, 2,

where bi, i = 1, 2, are constants.
Then the transmission condition (2.8) for the tangent components of the

magnetic fields and the homothetic transformation (1.15) imply that the
following transmission condition for the magnetic fields is admissible:

(1.16) α1

1
H = α2

2
H on St,

where α1, α2 are arbitrary constants.
The transmission condition (1.16) in the case α1 = α2 = 1 strongly

simplifies the proof of local and global estimates in [5, 6]. However, condition
(1.16) implies jumps of the tangent components of the electric field which
are described by (1.15)2 and (2.8)1. But (1.16) is important to derive in the
energy equality (2.16).

We have to emphasize that this paper plays a fundamental role in the
proof of local existence of solutions to problem (1.1)–(1.8) in [5]. The idea
of the proof in [5] is based on the following steps. First, by linearization
described in Section 3, the existence of weak solutions is proved by the
Faedo–Galerkin method, so the existence of a fundamental basis proved in
this paper is crucial. Next by the standard technique the regularity of weak
solutions is increased. Finally, the existence of local solutions by the method
of successive approximations is proved.

However, the Maxwell equations form a symmetric hyperbolic system
whose analytical treatment is difficult because the equations are expressed
in terms of rotation operators. Bykhovskĭı [1] derived many analytical re-
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sults for solutions to elliptic rot-div systems. Magnetohydrodynamics (mhd)
couples Navier–Stokes equations with the Maxwell equations, neglecting the
displacement currents and taking into account electrical conduction. The
mhd equations can be found in [2] and [16, Ch. 8].

The first result on solvability of a transmission problem for the mhd
system was proved by Ladyzhenskaya and Solonnikov [14]. In that paper
fixed domains were considered. The first results on existence of solutions to
problem (1.1)–(1.10) were shown by Kacprzyk [7–9]. Free boundary problems
for the mhd system were also considered by Padula–Solonnikov [18], Frolova–
Solonnikov [4] and Frolova [3].

In those papers the external magnetic field satisfies the elliptic system

(1.17) rot
2
H = 0, div

2
H = 0.

However, the transmission condition (1.4) in [3, 4] is different because it
contains the surface tension.

Hence on the one hand the problem considered in [3, 4, 18] is simpler
than problem (1.1)–(1.10), but on the other hand it is more complicated
because the surface tension is taken into account.

Moreover, in [3, 4, 18] the passage from a free boundary problem to a
problem with fixed boundary is made by using the Hanzawa transformation.
This is essential difference from [5–9], where Lagrangian coordinates were
used.

Finally, in [20, 21] problem (1.1)–(1.10) was considered by Shibata–
Zaja̧czkowski using the Lp-approach and Lagrangian coordinates.

We use elements of vector and tensor calculus taken from [12]. It is im-
portant to mention that the transmission conditions on St appeared already
in [14, 19]. The first result on the existence of solutions to a free boundary
problem for the compressible Navier–Stokes equations was proved in [26] by
the energy method. The ideas and techniques of this paper were used by
Kacprzyk in [5–9].

2. Notation and auxiliary results. We do not distinguish in notation
between norms of scalar and vector-valued functions. Let ω be a vector,
ω = (ω1, . . . , ωn). Then

|ω| =
( n∑
i=1

|ωi|2
)1/2

.

Let Lp(Ω) = {u :
	
Ω |u|

p dx <∞} for p ∈ [1,∞].
We denote by V 0

2 (ΩT ) the space of functions with the finite norm

‖u‖V 0
2 (ΩT ) = ‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)).

We shall use the notation H l(Ω) = {u :
∑
|α|≤l ‖Dα

xu‖L2(Ω) < ∞}, where
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Dα
x = ∂α1

x1 ∂
α2
x2 ∂

α3
x3 , |α| = α1 +α2 +α3, αi ∈ N0, i = 1, 2, 3, and N0 = N∪{0},

Ω ⊂ R3.
In Section 5 we also use the simplified notation

‖u‖Lp(Ω) = |u|p,Ω, ‖u‖Hs(Ω) = ‖u‖s,Ω.

We denote by c a generic constant which changes its value from formula to
formula. Similarly we denote by ϕ a generic function which is always positive
and increasing.

Next we introduce a partition of unity. We define two collections {ω(k)}

and {Ω(k)}, k ∈M∪N, of open sets such that ω̄(k) ⊂ Ω(k) ⊂ Ω0 =
1
Ω0∪

2
Ω0,⋃

k ω
(k) =

⋃
k Ω

(k) = Ω0, Ω̄(k)∩S0 = ∅ for k ∈M = M1∪M2, Ω̄(k)∩S0 6= ∅
for k ∈ N1 and Ω̄(k) ∩ B 6= ∅ for k ∈ N2, N = N1 ∪N2. Moreover, subdo-

mains with index k ∈ Mi are included in
i
Ω0, i = 1, 2. We assume that at

most N0 of the Ω(k) have nonempty intersection, and supk diamΩ(k) ≤ 2λ,
supk diamω(k) ≤ λ for some λ > 0. Let ζ(k)(x) be a smooth function such
that 0 ≤ ζ(k)(x) ≤ 1, ζ(k)(x) = 1 for x ∈ ω(k), ζ(k)(x) = 0 for x ∈ Ω0 \Ω(k)

and |Dν
xζ

(k)(x)| ≤ c/λ|ν|. Then 1 ≤
∑

k(ζ
(k)(x))2 ≤ N0. Introducing the

function

η(k)(x) =
ζ(k)(x)∑
l(ζ

(l)(x))2

we have η(k)(x)= 0 for x∈Ω0 \Ω(k),
∑

k η
(k)(x)ζ(k)(x) = 1 and |Dν

xη
(k)(x)| ≤

c/λ|ν|. We denote by ξ(k) the “center” of ω(k) and Ω(k) for k ∈ M and the
center of ω̄(k) ∩ S0 and Ω̄(k) ∩ S0 for k ∈ N1 and the center of ω̄(k) ∩B and

Ω̄(k) ∩ B for k ∈ N2. For k ∈ Mi, ξ(k) ∈
i
Ω0, i = 1, 2. Let x = (x1, x2, x3)

be the Cartesian system of coordinates with origin at the center of Ω. Then
by translations and rotations we introduce a local coordinate system y =
(y1, y2, y3) centered at ξ(k), k ∈ N1, such that the part S̃(k) = S0∩Ω̄(k) of the
boundary S0 is described by y3 = Fk(y1, y2). We denote the transformation
by y = Yk(x). Then we define new coordinates by

zi = yi, i = 1, 2, z3 = y3 − Fk(y1, y2).

We will denote this transformation by Ω̂(k) ⊃ ω̂(k) 3 z = Φk(y) where
y ∈ ω(k) ⊂ Ω(k). We assume that the sets ω̂(k), Ω̂(k) are described in local
coordinates near ξ(k) by the inequalities

|yi| < λ, i = 1, 2, 0 < y3 − F (y1, y2) < λ,

|yi| < 2λ, i = 1, 2, 0 < y3 − F (y1, y2) < 2λ,

respectively. Let Ψk = Φk ◦ Yk. Then z = Ψk(x) and

û(k)(z, t) = u(Ψ−1
k (z), t), ũ(k)(z, t) = û(k)(z, t)ζ̂(k)(z).



Incompressible viscous magnetohydrodynamics 107

For k ∈M we have

ũ(k)(x, t) = u(k)(x, t)ζ(k)(x).

To examine free boundary problems in hydrodynamics we use Lagrangian
coordinates which are the initial data to the Cauchy problem

(2.1)
dx

dt
= v(x, t), x|t=0 = ξ ∈

1
Ω0.

Therefore,

(2.2) x = xv(ξ, t) ≡ ξ +

t�

0

v̄(ξ, s) ds,

where v̄(ξ, t) = v(xv(ξ, t), t). To define Lagrangian coordinates in
2
Ωt we need

Lemma 2.1 (see [23]). Let X(
1
Ωt) be some Sobolev space. Let v ∈ X(

1
Ωt)

be divergence free. Then there exists an extension v′ of v on
1
Ωt ∪

2
Ωt such

that v′ is divergence free, v′| 1
Ωt

= v and there exists a constant c such that

(2.3) ‖v′‖
X(

1
Ωt∪

2
Ωt)
≤ c‖v‖

X(
1
Ωt)
.

Applying Lemma 2.3 below to problem (3.2) we will describe the exten-
sion more precisely. In view of the definition of Lagrangian coordinates we
have

1
Ωt = {x ∈ R3 : x = xv(ξ, t), ξ ∈

1
Ω0},

St = {x ∈ R3 : x = xv(ξ, t), ξ ∈ S0},
1
Ωt ∪

2
Ωt = {x ∈ R3 : x = xv′(ξ, t), ξ ∈

1
Ω0 ∪

2
Ω0}.

To formulate our problem in Lagrangian coordinates we need the notation

(2.4)
∇v̄ =

∂ξk
∂x

∂

∂ξk
, Dv̄ū = ∇v̄ū+ (∇v̄ū)T ,

Tv̄(ū, p̄) = Dv̄(ū)− p̄I, divv̄ v̄ = ∂xiξk∂ξk v̄i = ∇v̄ · v̄,
where summation over repeated indices is assumed, and ξ = ξ(x, t) is the
inverse transformation to x = xv̄(ξ, t). From [24], [26] we have

Lemma 2.2. Let Ω ⊂ R3 be a given bounded domain. Let v ∈ L2(Ω) be
such that

(2.5) EΩ(v) =
�

Ω

(vj,xi + vi,xj )
2 dx <∞.

Then there exists a constant c such that

‖v‖2H1(Ω) ≤ c(EΩ(v) + ‖v‖2L2(Ω)).
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Let us consider the Stokes problem in a bounded domain Ω ⊂ R3 with
boundary S:

(2.6)

ω,t − divT(ω, q) = f in ΩT = Ω × (0, T ),

divω = 0 in ΩT ,

ω = b on ST = S × (0, T ),

ω|t=0 = ω0 in Ω.

Lemma 2.3 (see [23]). Assume that f ∈ Lp(ΩT ), b ∈W 2−1/p,1−1/2p
p (ST ),

ω0 ∈W 2−2/p
p (Ω), p ∈ (1,∞), S ∈ C2. Then there exists a solution to problem

(2.6) such that ω ∈W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ), and we have the estimate

(2.7) ‖ω‖
W 2,1
p (ΩT )

+ ‖∇q‖Lp(ΩT )

≤ c(‖f‖Lp(ΩT ) + ‖b‖
W

2−1/p,1−1/2p
p (ST )

+ ‖ω0‖W 2−2/p
p (Ω)

).

Now we justify the transmission condition from (1.10).
To obtain the energy type estimates for solutions to problem (1.10) we

need

Lemma 2.4. Assume the following transmission conditions on St:

(2.8) aν11

1
E · τ̄α = aν12

2
E · τ̄α, aν21 n̄× τ̄α ·

1
H = aν22 n̄× τ̄α ·

2
H,

where α = 1, 2, ν1 + ν2 = 1, 0 ≤ νi ≤ 1, i = 1, 2 and a1, a2 are positive
constants. Then

(2.9)
2∑
i=1

[
aiµi

�

i
Ωt

i
H ,t ·

i
H dx+ ai

�

i
Ωt

i
E · rot

i
H dx

]
= 0.

Proof. We write equations (1.10)1,2 in the form

µ1

1
H ,t = − rot

1
E,

1
E =

1

σ1
rot

1
H − µ1v ×

1
H, div

1
H = 0 in

1
Ωt,(2.10)

µ2

2
H ,t = − rot

2
E,

2
E =

1

σ2
rot

2
H, div

2
H = 0 in

2
Ωt.(2.11)

Hence

(2.12)
2∑
i=1

�

i
Ωt

aiµi
i
H ,t ·

i
H dx+

2∑
i=1

�

i
Ωt

ai rot
i
E ·

i
H dx = 0.

To obtain an energy type estimate we have to integrate by parts in the second
term. Moreover, no boundary term on St can appear. For this we shall need
the transmission condition (2.8).
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Let us recall the identity

(2.13)
�

Ωt

rotH · ψ dx =
�

Ωt

H · rotψ dx−
�

St

n̄×H · ψ dSt,

where n̄ is the unit outward vector to Ωt, normal to St. From (2.13) we have
�

1
Ωt

rot
1
E ·

1
H dx =

�

1
Ωt

1
E · rot

1
H dx−

�

St

1
n̄×

1
E ·

1
H dSt,(2.14)

�

2
Ωt

rot
2
E ·

2
H dx =

�

2
Ωt

2
E · rot

2
H dx−

�

St

2
n̄×

2
E ·

2
H dSt,(2.15)

where
i
n̄ is outward to

i
Ωt and

1
n̄ = −

2
n̄. Inserting (2.13) and (2.14) in (2.12)

we derive

(2.16)
2∑
i=1

�

i
Ωt

aiµi
i
H ,t ·

i
H dx+

2∑
i=1

�

i
Ωt

ai
i
E · rot

i
H dx

−
�

St

(a1

1
n̄×

1
E ·

1
H − a2

1
n̄×

2
E ·

2
H) dSt = 0.

The boundary term must vanish because otherwise (2.16) does not imply
any estimate. The boundary term contains only the tangent components of
i
E and

i
H, i = 1, 2. Let τ̄1, τ̄2, n̄ be an orthonormal system of vectors. Then

we have the expansion

(2.17)
i
E =

2∑
α=1

i
E · τ̄ατ̄α +

i
E · n̄n̄, i = 1, 2,

where n̄ =
1
n̄. Then the boundary term in (2.16) equals

I = −
2∑

α=1

�

St

[a1

1
E · τ̄αn̄× τ̄α ·

1

H̄ − a2

2
E · τ̄αn̄× τ̄α ·

2
H] dSt.

Hence, the transmission conditions (2.8) imply that I vanishes.
In the case a1 = a2 = 1, the transmission conditions (2.8) assume the

form (1.10)6. This concludes the proof.

Let us consider the problem

(2.18)

vt − divT(v, q) = f in ΩT ,

div v = 0 in ΩT ,

n̄ · T(v, q) = g on ST ,
v|t=0 = v0 in Ω.



110 P. Kacprzyk and W. M. Zajączkowski

Lemma 2.5 (see [22]). Assume that f ∈Lp(ΩT ), g∈W 1−1/p,1/2−1/2p
p (ST ),

v0 ∈ W 2−2/p
p (Ω), p ∈ (1,∞), S ∈ C2. Then there exists a solution to prob-

lem (2.18) such that v ∈W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ), and

(2.19) ‖v‖
W 2,1
p (ΩT )

+ ‖∇q‖Lp(ΩT )

≤ c(‖f‖Lp(ΩT ) + ‖g‖
W

1−1/p,1/2−1/2p
p (ST )

+ ‖v0‖W 2−2/p
p (Ω)

).

3. Method of successive approximations. Let vn = vn(x, t) be

given, and x ∈
1
Ωt.

Definition 3.1. Recall that the Lagrangian coordinates in
1
Ω0 are initial

data to the Cauchy problem

(3.1)
dx

dt
= vn(x, t), x|t=0 = ξ ∈

1
Ω0.

Hence
1
Ωnt =

{
x ∈ R3 : x = x(n)(ξ, t) = ξ +

t�

0

v̄n(ξ, t′) dt′, ξ ∈
1
Ω0

}
,

where v̄n(ξ, t) = vn(x(n)(ξ, t), t).

In free boundary problems in hydrodynamics the free boundary is built
up from the same fluid particles because vn|Snt is tangent to Snt and

Snt = {x ∈ R3 : x = x(n)(ξ, t), ξ ∈ S0}.
To formulate problem (1.10) in Lagrangian coordinates we have to introduce

them in
2
Ω0. Since there is no velocity in

2
Ωt, we have to introduce it artificially

(see Lemma 2.1).

Definition 3.2. Let us denote 1
vn = vn in

1
Ωt and define 2

vn in
2
Ωt as a

solution to the nonstationary Stokes system

(3.2)

2
vn,t − divT(

2
vn, qn) = 0 in

2
Ωt,

div
2
vn = 0 in

2
Ωt,

2
vn|St =

1
vn|St ,

2
vn|B = 0,

2
vn|t=0 =

2
v(0) in

2
Ω0,

where qn plays the role of pressure but it is not important for any estimate
for 2

vn. The initial data 2
v(0) is an extension of 1

v(0) through the given fixed
boundary S0, because

2
v(0)|S0 =

1
v(0)|S0 . The extension can be made by ap-

plying Lemma 2.1. The existence of solutions to (3.2) follows from Lemma 2.3.



Incompressible viscous magnetohydrodynamics 111

Now, we introduce the Lagrangian coordinates
1
ξ,

2
ξ as the initial data to

the problems

(3.3)
d
i
x

dt
=

i
vn(x, t), xi|t=0 =

i
ξ ∈

i
Ω0, i = 1, 2.

Then

(3.4)
i
Ωnt =

{
i
x ∈ R3 :

i
x =

i
x(n)(

i
ξ, t) =

i
ξ +

t�

0

i
vn(

i
x, t′) dt′

=
i
ξ +

t�

0

i
v̄n(ξ, t′) dt′,

i
ξ ∈

i
Ω0

}
,

where
i
v̄n(

i
ξ, t) =

i
vn(

i
x(n)(

i
ξ, t), t),

i
ξ ∈

i
Ω0, i = 1, 2.

Formulation of the method of successive approximations. Let v in prob-
lem (1.10) be given. We set v = vn. To emphasize that vn describes the

motion in
1
Ωt we write vn =

1
vn. Then by Definition 3.2 we have 2

vn in
2
Ωt.

Passing to the Lagrangian coordinates expressed by (3.3), (3.4) we can write

problem (1.10) as a problem for
i

H̄n, i = 1, 2, in the form

(3.5)

µ1

1

H̄nt + rot1
v̄n

[
1

σ1
(rot1

v̄n

1

H̄n − µ1

1
v̄n ×

1

H̄n)

]
= µ1

1
v̄n · ∇1

v̄n

1

H̄n, div1
v̄n

1

H̄n = 0 in
1
Ω0 × (0, t),

µ2

2

H̄nt + rot2
v̄n

[
1

σ2
rot2

v̄n

2

H̄

]
= µ2

2
v̄n · ∇2

v̄n

2

H̄n, div2
v̄n

2

H̄n = 0 in
2
Ω0 × (0, t),

1

σ1
(rot1

v̄n

1

H̄n − µ1

1
v̄n ×

1

H̄n) · τ̄v̄nα

=
1

σ2
rot2

v̄n

2

H̄n · τ̄v̄nα, α = 1, 2, on S0 × (0, t),

n̄v̄n × τ̄v̄nα · (
1

H̄ −
2

H̄) = 0, α = 1, 2, on S0 × (0, t),

µ1n̄v̄n ·
1

H̄n = µ2n̄v̄n ·
2

H̄n on S0 × (0, t),

2

H̄n|B = 0 on B × (0, t),

i

H̄|t=0 =
i
H(0), in

i
Ω0, i = 1, 2,
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where ∇v̄n = ∂ξ
∂x(n)

∣∣
x(n)=x(n)(ξ,t)

· ∇ξ and any operator with index v̄n means

that it contains the transformed gradient ∇v̄n . Moreover,
1
v̄n =

2
v̄n = v̄n

on S0.

For v̄n given we have
i
v̄n, i = 1, 2, and also the domains

i
Ωnt, i = 1, 2,

defined by (3.4). Hence, in Lagrangian coordinates, problem (3.5) for the

quantities
i

H̄n, i = 1, 2, is formulated in the fixed (independent of time)

domains
i
Ω0, i = 1, 2.

We have to emphasize that the terms on the r.h.s. of (3.5)1,2 follow from
expressing problem (1.10) in Lagrangian coordinates. This means that the
Lagrangian coordinates for problem (1.10) are introduced artificially. But
this is done because formulation of a free boundary problem for the fluid
mechanics equations in these coordinates is very natural and simple. The
main point is that the problem derived is formulated in a fixed initial domain.

For given
i
v̄n, i = 1, 2, problem (3.5) for variable H̄ i

n, i = 1, 2, is lin-
ear. However, to prove existence of solutions we have to use the method of
successive approximations. For this purpose we write problem (3.5) in the
form

(3.6)

µ1

1

H̄nt +
1

σ1
rot2

ξ

1

H̄n =
1

σ1
(rot2

ξ

1

H̄n − rot2
1
v̄n

1

H̄n)

+ µ1 rot1
v̄n

(
1
v̄n ×

1

H̄n) + µ1

1
v̄n · ∇1

v̄n

1

H̄n ≡
1
f,

divξ
1

H̄n = divξ
1

H̄n − div1
v̄n

1

H̄n ≡
1
g in

1
Ω0 × (0, t),

µ2

2

H̄nt +
1

σ2
rot2

ξ

2

H̄n =
1

σ2
(rot2

ξ

2

H̄n − rot2
2
v̄n

2

H̄n)

+ µ2

2
v̄n · ∇2

v̄n

2

H̄n ≡
2
f,

divξ
2

H̄n = divξ
2

H̄n − div2
v̄n

2

H̄n ≡
2
g in

2
Ω0 × (0, t),(

1

σ1
rotξ

1

H̄n −
1

σ2
rotξ

2

H̄n

)
· τ̄α

=
1

σ1
(rotξ

1

H̄n · τ̄α − rot1
v̄n

1

H̄n · τ̄v̄nα)

− 1

σ2
(rotξ

2

H̄n · τ̄α − rot2
v̄n

2

H̄n · τ̄v̄nα)

+
µ1

σ1

1
v̄n ×

1

H̄n · τ̄v̄nα ≡ gα, α = 1, 2, on S0 × (0, t),
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(3.6)
[cont.]

n̄× τ̄α · (
1

H̄n −
2

H̄n)

= (n̄× τ̄α − n̄v̄n × τ̄v̄nα) · (
1

H̄n −
2

H̄n) ≡ kα, α = 1, 2, on S0 × (0, t),

µ1n̄ ·
1

H̄n − µ2n̄ ·
2

H̄n

= µ1(n̄− n̄v̄n) ·
1

H̄n − µ2(n̄− n̄v̄n) ·
2

H̄ ≡ l on S0 × (0, t),
2

H̄n|B = 0 on B × (0, t),
i

H̄n|t=0 =
i
H(0) in

i
Ω0, i = 1, 2.

For given
1
v̄n,

2
v̄n we prove existence of solutions to problem (3.6) in two steps.

First we consider the problem with constant coefficients

(3.7)

µi
i

H̄nt +
1

σi
rot2

ξ

i

H̄n =
i
f, divξ

i

H̄n =
i
g in

i
Ω0 × (0, t), i = 1, 2,(

1

σ1
rotξ

1

H̄n −
1

σ2
rotξ

2

H̄n

)
· τ̄α = gα, α = 1, 2, on S0 × (0, t),

(n̄× τ̄α) · (
1

H̄n −
2

H̄n) = kα, α = 1, 2, on S0 × (0, t),

µ1n̄ ·
1

H̄n = µ2n̄ ·
2

H̄n on S0 × (0, t),
2

H̄n = 0 on B × (0, t),
i

H̄n|t=0 =
i
H(0) in

i
Ω0, i = 1, 2.

Existence of solutions to (3.7) can be shown either by applying the Faedo–
Galerkin method (see [5]) or by the technique of regularizer (see [20, 21]).
To use the Faedo–Galerkin method we need a fundamental basis for prob-
lem (3.7). Existence of such a basis will be shown in Section 5.

Having existence of solutions to problem (3.7) with appropriately regular
r.h.s. functions we can show existence of solutions to problem (3.6) by the
method of successive approximations for sufficiently small time. For this we

replace in the r.h.s. functions of (3.6)
i

H̄n by
i

H̄
(m)
n , m ∈ N, and in the l.h.s.

functions by
i

H̄
(m+1)
n . Then problem (3.6) leads to a mapping

(3.8) (
1

H̄(m+1)
n ,

2

H̄(m+1)
n ) = Φ(

1

H̄(m)
n ,

2

H̄(m)
n ),

which for sufficiently small time and regular
1
v̄n,

2
v̄n has a fixed point given by
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the method of successive approximations. In this way existence of solutions
to problem (3.6) is proved and the following functional dependence holds:

(3.9) (
1

H̄n,
2

H̄n) = F (v̄n),

where we have used the facts that
1
v̄n = v̄n and

2
v̄n is described by prob-

lem (3.2).
The functional dependence (3.9) is expressed by the estimate

(3.10)
2∑
i=1

‖
i

H̄n‖
1,
i
Ωt0

≤ ϕ(‖v̄n‖
2,

1
Ωt0

),

where the norms ‖ ‖
1,
i
Ωt0

, ‖ ‖
2,

1
Ωt0

,
i
Ωt

0 =
i
Ω0 × (0, t), i = 1, 2, are found in

[5, 20, 21] and ϕ is some increasing positive function.
To calculate the next approximation vn+1 in the method of successive

approximations applied to problem (1.1)–(1.8), we use problem (1.9). Ex-
pressing (1.9) in Lagrangian coordinates we have

(3.11)

v̄n+1,t − divv̄n Tv̄n(v̄n+1, p̄n+1) = f̄ + µ1 divv̄n T(
1

H̄n) in
1
Ωt

0,

divv̄n v̄n+1 = 0 in
1
Ωt

0,

n̄v̄n · Tv̄n(v̄n+1, p̄n+1) = p0n̄v̄n − µ1n̄v̄nT(
1

H̄n) on St0,

v̄n+1|t=0 = v(0) in
1
Ω0,

where we have used the simplified notation v̄n =
1
v̄n, v̄n+1 =

1
v̄n+1. Moreover,

v̄n and
1

H̄n are given, where v̄n denotes the nth successive approximation

and
1

H̄n depends on v̄n by formula (3.9).
To prove existence of solutions to problem (3.11) we write it in the form

(3.12)
v̄n+1,t − divξ Tξ(v̄n+1, p̄n+1) = −(divξ Tξ(v̄n+1, p̄n+1)

− divv̄n Tv̄n(v̄n+1, p̄n+1)) + µ1 divv̄n T(
1

H̄n) + f̄ ≡ f0 in
1
Ωt

0,

divξ v̄n+1 = divξ v̄n+1 − divv̄n v̄n+1 ≡ g0 in
1
Ωt

0,

n̄ξTξ(v̄n+1, p̄n+1) = n̄ξTξ(v̄n+1, p̄n+1)− n̄v̄nTv̄n(v̄n+1, p̄n+1)

+ p0n̄v̄n − µ1n̄v̄n · T(
1

H̄n) ≡ k0 on St0,

v̄n+1|t=0 = v(0) in
1
Ω0.
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To prove existence of solutions to problem (3.12) we repeat the approach
applied to problem (3.6). Thus, we first consider the problem

(3.13)

v̄n+1,t − divξ Tξ(v̄n+1, p̄n+1) = f0,

divξ v̄n+1 = g0,

n̄ξ · Tξ(v̄n+1, p̄n+1) = k0,

v̄n+1|t=0 = v(0).

Existence of solutions to problem (3.13) can be proved either by the Faedo–
Galerkin method (see Section 4) or by the technique of regularizer (see
Lemma 2.5). Having existence of solutions to problem (3.13) we can prove
existence of solutions to (3.12) by the method of successive approximations
such that the r.h.s. functions depend on v̄(m)

n+1, p̄
(m)
n+1 and the l.h.s. on v̄(m+1)

n+1 ,
p̄

(m+1)
n+1 . Hence (3.12) leads to a mapping

(3.14) (v̄
(m+1)
n+1 , p̄

(m+1)
n+1 ) = Φ(v̄

(m)
n+1, p̄

(m)
n+1),

where m ∈ N. Hence for sufficiently small time and given v̄n the map-
ping (3.14) has a fixed point which is a solution to problem (3.12) for given v̄n.
Then we get the functional dependence
(3.15) v̄n+1 = F (v̄n).

Hence, again, by the method of successive approximations and the assump-
tion that v̄0 is some extension of the initial data we show for sufficiently
small time the existence of a fixed point of the mapping (3.15). In this way
we show existence of solutions to problem (1.1)–(1.8).

4. Existence of solutions to problem (3.13). For simplicity we write
problem (3.13) in the form

(4.1)

vt − divξ Tξ(v, p) = f0,

divξ v = g0,

n̄ξ · Tξ(v, p) = k0,

v|t=0 = v(0).

We construct a function G satisfying the problem

(4.2)
divξ G = g0,

G|S0 = 0.

By applying the Bogovskĭı operator B (see also [11]), solutions to (4.2) can
be written in the form
(4.3) G = B ∗ g0.

Introducing the new function
(4.4) u = v −G



116 P. Kacprzyk and W. M. Zajączkowski

we see that (u, p) is a solution to the problem

(4.5)

u,t − divξ Tξ(u, p) = −G,t + divξ D(G) + f0 ≡ F,
div u = 0,

n̄ξ · Tξ(u, p) = −n̄ξDξ(G) + k0 ≡ H,
u|t=0 = v(0)−G|t=0 ≡ u(0).

Simplifying (4.5) yields

(4.6)

u,t − divξ Tξ(u, p) = F in
1
ΩT

0 ,

div u = 0 in
1
ΩT

0 ,

n̄ξ · Tξ(u, p) = H on ST0 ,

u|t=0 = u(0) in
1
Ω0.

For the sake of [5] we solve the problem using the Faedo–Galerkin method.
The Faedo–Galerkin method implies existence of solutions to problem (4.6)
via the L2-approach.

Definition 4.1. By a weak solution to problem (4.6) we mean any so-
lution to the integral identity

(4.7)
�

1
ΩT0

u,t · η dx dt+
�

1
ΩT0

D(u) ·D(η) dx dt =
�

ST0

H · ηdS0 dt+
�

1
ΩT0

F · η dx dt,

where BT = B × [0, T ], which holds for any η ∈ L2(0, T ;H1(
1
Ω0) ∩ V (

1
Ω0)),

where the time derivative is understood in the weak sense and the following
spaces are introduced:

ϑ = {u ∈ C∞(
1
Ω0) : div u = 0}, V = closure of ϑ in W 1

2 (
1
Ω0).

Since V is separable, there exists a sequence of linearly independent elements
ϕ1, . . . , ϕm, . . . , which is a basis in V . The existence of a fundamental basis
for the Stokes system (4.6) is proved in [25].

Therefore, we are looking for approximate solutions to (4.7) in the form

um =

m∑
i=1

cim(t)ϕi(x),

m∑
i=1

ċim
�

1
Ω0

ϕi · ϕl dx+
m∑
i=1

cim
�

1
Ω0

D(ϕi) · D(ϕl) dx

=
�

S0

H · ϕl dS0 +
�

1
Ω0

F · ϕl dx, l = 1, . . . ,m, um|t=0 = um(0)

(4.8)

and ċim = cim,t.
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Since ϕ1, . . . , ϕm are linearly independent, we have det
	
1
Ω
ϕi · ϕj dx 6= 0.

Therefore, (4.8) yields the following linear system with constant coefficients
and time dependent r.h.s.:

(4.9)
ċim +

m∑
j=1

αijcjm =
m∑
j=1

βijKj , i = 1, . . . ,m,

cim|t=0 = cim(0),

where
Kj =

�

S0

H · ϕj dS +
�

1
Ω0

F · ϕj dx, um(0) =
m∑
i=1

cim(0)ϕi.

Lemma 4.2. Assume that H ∈ L2(0, T ;L2(S0)), F ∈ L2(0, T ;L2(
1
Ω0)),

u(0) ∈ L2(
1
Ω0). Then there exists a weak solution to problem (4.6) such that

u ∈ V 0
2 (

1
ΩT

0 ), and we have the estimate

(4.10) ‖u‖
V 0
2 (

1
ΩT0 )
≤ c(‖F‖

L2(
1
ΩT0 )

+ ‖H‖L2(ST0 ) + ‖u(0)‖
L2(

1
Ω0)

).

Proof. Since (4.9) is a system of linear ordinary differential equations,
the existence of solutions is well known. To prove existence of weak solutions

in V 0
2 (

1
ΩT

0 ) we multiply (4.8) by clm and sum over l from 1 to m. Integrating
the result with respect to time we get

(4.11) ‖um‖
V 0
2 (

1
ΩT0 )
≤ c(‖F‖

L2(
1
ΩT0 )

+ ‖H‖L2(ST0 ) + ‖u(0)‖
L2(

1
Ω0)

),

where we have used
‖um(0)‖

L2(
1
Ω0)
≤ ‖u(0)‖

L2(
1
Ω0)

.

Using the weak convergence in L2(0, T ;H1(
1
Ω0)) and weak star convergence

in L∞(0, T ;L2(
1
Ω0)) we show that the limit function belongs to V 0

2 (
1
ΩT

0 ) and
estimate (4.10) holds. This concludes the proof.

5. Existence of solutions to problem (3.7). Dropping the index n
in (3.7) we write it in the simple form

(5.1)

µi
i
Ht +

1

σi
rot2

ξ

i
H =

i
f, divξ

i
H =

i
g in

i
Ωt

0, i = 1, 2,(
1

σ1
rotξ

1
H − 1

σ2
rotξ

2
H

)
· τ̄α = gα, α = 1, 2, on St0,

n̄× τ̄α · (
1
H −

2
H) = kα, α = 1, 2, on St0,
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(5.1)
[cont.]

µ1n̄ ·
1
H − µ2n̄ ·

1
H = l on St0,

2
H|B = 0 on Bt,

i
H|t=0 =

i
H(0) in

i
Ω0, i = 1, 2,

where
i

H̄ was replaced by
i
H, i = 1, 2.

To prove existence of solutions to problem (5.1) by the Faedo–Galerkin
method we need a weak formulation of problem (5.1). For this purpose we

multiply (5.1) by
i
ψ, a sufficiently regular function, and integrate over

i
Ω0,

i = 1, 2. Then

(5.2)
2∑
i=1

�

i
Ω0

(
µi

i
Ht +

1

σi
rot2

ξ

i
H

)
·
i
ψ dξ =

2∑
i=1

�

i
Ω0

i
f ·

i
ψ dξ.

Integration by parts yields

(5.3)
2∑
i=1

�

i
Ω0

(
µi

i
Ht ·

i
ψ +

1

σi
rotξ

i
H · rot

i
ψ

)
dξ

−
2∑
i=1

�

S0

1

σi

i
n̄× rot

i
H ·

i
ψ dS0 =

2∑
i=1

�

i
Ω0

i
f ·

i
ψ dξ,

where
i
n̄ is the unit vector normal to S0 outward to

i
Ω0. Therefore choosing

n̄ =
1
n̄ we get

2
n̄ = −n̄. Then the boundary term in (5.3) takes the form

I = −
�

S0

1

σ1
n̄× rot

1
H ·

1
ψ dξ +

�

S0

1

σ2
n̄× rot

2
H ·

2
ψ dξ.

In the two integrals in I the tangent coordinates of
1
ψ and

2
ψ appear only.

Therefore, if we use the decomposition

i
ψ =

2∑
α=1

i
ψ · τ̄ατ̄α + ψ · n̄n̄,

the expression I takes the form

I =
2∑

α=1

[
−

�

S0

1

σ1
n̄× rot

1
H · τ̄α

1
ψ · τ̄α dS0 +

�

S0

1

σ2
n̄× rot

2
H · τ̄α

2
ψ · τ̄α dS0

]
.

In view of the transmission conditions (1.8) we have

(5.4)
1
Eτα =

2
Eτα ,

1
Hτα =

2
Hτα , α = 1, 2, on S0.
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Recalling that
1
Eτα =

(
1

σ1
rot

1
H − µ1v ×

1
H

)
· τ̄α,

2
Eτα =

1

σ2
rot

2
H · τ̄α

we obtain

(5.5) I = −
2∑

α=1

�

S0

µ1τ̄α × n̄ · v ×
1
Hψ · τ̄α dS0

where we have used

ψ · τ̄α =
1
ψ · τ̄α =

2
ψ · τ̄α, α = 1, 2, on S0.

Replacing the boundary term in (5.3) by (5.5) we derive the integral identity

(5.6)
2∑
i=1

�

i
Ω0

(
µi

i
Ht ·

i
ψ +

1

σi
rotξ

i
H · rotξ

i
ψ

)
dξ

=
2∑
i=1

�

i
Ω0

i
f ·

i
ψ dξ +

2∑
α=1

�

S0

µ1τ̄α × n̄ · v ×
1
Hψ · τ̄α dS0.

To show existence of weak solutions to problem (5.1) satisfying the integral
identity (5.6) we need the existence of a fundamental basis.

For this purpose we consider the elliptic problem

(5.7)

µ1

1
ψ + rot

(
1

σ1
rot

1
ψ

)
=

1
f, div

1
ψ =

1
h in

1
Ω0,

µ2

2
ψ + rot

(
1

σ2
rot

2
ψ

)
=

2
f, div

2
ψ =

2
h in

2
Ω0,(

1

σ1
rot

1
ψ

)
· τ̄α =

1

σ2
rot

2
ψ · τ̄α + gα ≡ g · τ̄α, α = 1, 2, on S0,

1
ψ · n̄× τ̄α =

2
ψ · n̄× τ̄α, α = 1, 2, on S0,

ν1

1
ψ · n̄ = ν2

2
ψ · n̄ on S0,

2
ψ|B = 0.

From (5.7)1,2 we have µi div
i
ψ = div

i
f , i = 1, 2. Hence for

i
f divergence free

we see that
i
ψ is also divergence free.

Moreover, we have the compatibility conditions
i
h = 1

µi
div

i
f , i = 1, 2.

To prove existence of solutions to problem (5.7) we use the partition of
unity introduced in Section 2. In view of the Fredholm theorem we only need
to derive an a priori estimate. Therefore, we need
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Lemma 5.1. Consider problem (5.7). Assume that
i
f ∈ L2(

i
Ω),

i
h ∈

H1(
i
Ω), i = 1, 2. Assume that the transmission and boundary conditions

are satisfied: (5.7)3,4,5,6. Then there exists a solution (
1
ψ,

2
ψ) to problem (5.7)

such that
i
ψ ∈ H2(

i
Ω), i = 1, 2, and we have the estimate

(5.8)
2∑
i=1

‖
i
ψ‖

2,
i
Ω
≤ c

2∑
i=1

(|
i
f |

2,
i
Ω

+ ‖
i
h‖

1,
i
Ω

).

Proof. We use the partition of unity introduced in Section 2. Let ζ(k) be
a cut-off function from the partition of unity. Set u(k) = uζ(k).

Take k ∈M1. Localization of (5.7) to supp ζ(k) implies that the problem
can be treated as a problem in the whole R3 for functions with compact
supports and then we apply the formula

(5.9) rot2 = −∆ +∇ div .

In view of (5.9) problem (5.7) localized to supp ζ(k), k ∈M1, takes the form

(5.10) µ1

1
ψ(k) − 1

σ1
(∆

1
ψ(k) −∇ div

1
ψ(k))

=
1

σ1
[−∆

1
ψ(k) +∇ div

1
ψ(k) − (−∆

1
ψ +∇ div

1
ψ)ζ(k)] +

1
f (k)

=
1

σ1
[−2∇

1
ψ∇ζ(k) −

1
ψ∆ζ(k) + div

1
ψ∇ζ(k) +∇

1
ψ · ∇ζ(k) +

1
ψ · ∇∇ζ(k)]

+
1
f (k) ≡

1
f

(k)
1 .

Moreover,

(5.11) div
1
ψ(k) =

1
ψ · ∇ζ(k) +

1
h(k).

Employing (5.11) in (5.10) yields

(5.12) µ1

1
ψ(k) − 1

σ1
∆

1
ψ(k) = − 1

σ1
∇(

1
ψ · ∇ζ(k) +

1
h(k)) +

1
f

(k)
1 ≡

1
f

(k)
2 .

Multiplying (5.12) by
1
ψ(k) and integrating over R3 gives

(5.13) µ1|
1
ψ(k)|22,R3 +

1

σ1
|∇

1
ψ(k)|22,R3 ≤ c|

1
f

(k)
2 |2,R3 |

1
ψ(k)|2,R3 .

By the Young inequality we get

(5.14) ‖
1
ψ(k)‖1,R3 ≤ c|

1
f

(k)
2 |2,R3 .

Multiplying (5.12) by ∆
1
ψ(k) and integrating over R3 implies the estimate

(5.15) |∇
1
ψ(k)|22,R3 + |∆

1
ψ(k)|22,R3 ≤ c|

1
f

(k)
2 |

2
2,R3 .
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Hence, (5.14) and (5.15) imply

(5.16) ‖
1
ψ(k)‖2,R3 ≤ c|

1
f

(k)
2 |2,R3 .

Similarly, for k ∈M2 we obtain

(5.17) ‖
2
ψ(k)‖2,R3 ≤ c|

2
f

(k)
2 |2,R3 ,

where

2
f

(k)
2 = − 1

σ2
∇(

2
ψ · ∇ζ(k) +

2
h(k)) +

2
f

(k)
1 ,

2
f

(k)
1 =

1

σ2

[
−2∇

2
ψ∇ζ(k) −

2
ψ∆ζ(k) + div

2
ψ∇ζ(k)

+∇
2
ψ · ∇ζ(k) +

2
ψ · ∇∇ζ(k)

]
+

2
f (k).

Let now k ∈ N1. Then the localized problem (5.7) takes the form

(5.18)

µi
i
ψ(k) +

1

σi
rot2

i
ψ(k) =

1

σi
(rot2

i
ψ(k) − rot2

i
ψζ(k)) +

i
f (k) ≡

i
f

(k)
1 , i = 1, 2,

div
i
ψ(k) =

i
ψ · ∇ζ(k) +

i
h(k) ≡

i
h

(k)
1 , i = 1, 2,

1

σ1
rot

1
ψ(k) · τ̄α −

1

σ2
rot

2
ψ(k) · τ̄α =

1

σ1
(rot

1
ψ(k) − rot

1
ψζ(k)) · τ̄α

− 1

σ2
(rot

2
ψ(k) − rot

2
ψ · ζ(k)) · τ̄α + g(k)

α ≡ g(k)
α1 , α = 1, 2,

1
ψ(k) · n̄× τ̄α =

2
ψ(k) · n̄× τ̄α, α = 1, 2,

ν1

1
ψ(k) · n̄ = ν2

2
ψ(k)n̄.

To examine problem (5.18) we pass to local coordinates which make the
part of the boundary S0 ∩ supp ζ(k) ≡ S(k)

0 flat. Let ξ(k) be the middle point
of S(k)

0 . We introduce new local coordinates y = (y1, y2, y3) with origin at ξ(k)

and such that S(k)
0 is described by the equation

y3 = Fk(y1, y2),

where the point (y1, y2, y3), with y3 > Fk(y1, y2) belongs to
1
Ω0 and (y1, y2, y3)

with y3 < Fk(y1, y2) belongs to
2
Ω0.

The coordinates y = (y1, y2, y3) are obtained from the global coordinates
x = (x1, x2, x3) by a translation and a rotation. We denote this transforma-
tion by y = Yk(x). Next, we introduce new coordinates z = (z1, z2, z3) by
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the relations
zα = yα, α = 1, 2,

z3 = y3 − Fk(y1, y2).
(5.19)

We describe (5.19) by z = Φk(y) = Φk(Yk(x)) ≡ Ψk(x). Hence, S(k)
0 in

coordinates (5.19) is described by
z3 = 0.

Let χ = χ(x) be any function. Set χ̂(k)(z) = χ(Ψ−1
k (z)) and χ̃(k)(z) =

χ̂(k)(z)ζ̂(k)(z). Moreover, we define transformed operators by

∇̂z =
∂z

∂x

∣∣
x=Ψ−1

k (z)
∇z.

Applying this transformation to problem (5.18) yields

(5.20)

µi

i

ψ̃(k) +
1

σi
ˆrot

2
z

i

ψ̃(k) =
i

f̃
(k)
1 , i = 1, 2,

d̂ivz

i

ψ̃(k) =
i

h̃
(k)
1 , i = 1, 2,

1

σ1

ˆrotz

1

ψ̃(k) · ˆ̄τα −
1

σ2

ˆrotz

2

ψ̃(k) · ˆ̄τα = g̃
(k)
α1 , α = 1, 2,

1

ψ̃(k) · ˆ̄n× ˆ̄τα =
2

ψ̃(k) · ˆ̄n× ˆ̄τα, α = 1, 2,

ν1

1

ψ̃(k) · ˆ̄n = ν2

2

ψ̃(k) · ˆ̄n,
where

ˆ̄n =

−Fk,y1−Fk,y2
1

 1√
1 + F 2

k,y′

,

ˆ̄τ1 =

 1

0

Fk,y1

 1√
1 + F 2

k,y1

, ˆ̄τ2 =

 0

1

Fk,y2

 1√
1 + Fk,y2

.

In view of the transformation (5.19) and the fact that S(k)
0 ⊂ {z3 = 0} we

introduce the following tangent and normal vectors to the plane z3 = 0: n̄z =
(0, 0, 1), τ̄z1 = (1, 0, 0), τ̄z2 = (0, 1, 0). Then problem (5.20) is transformed
to

(5.21)

µ1

1

ψ̃(k) +
1

σ1
rot2

z

1

ψ̃(k) =
1

σ1
(rot2

z − ˆrot
2
z)

1

ψ̃(k) +
1

f̃
(k)
1 ≡

1

f̃
(k)
2 , z3 > 0,

divz

1

ψ̃(k) = (divz −d̂ivz)
1

ψ̃(k) +
1

h̃
(k)
1 ≡

1

h̃
(k)
2 , z3 > 0,

µ2

2

ψ̃(k) +
1

σ2
rot2

z

2

ψ̃(k) =
1

σ2
(rot2

z − ˆrot
2
z)

2

ψ̃(k) +
2

f̃
(k)
1 ≡

2

f̃
(k)
2 , z3 < 0,
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(5.21)
[cont.]

divz

2

ψ̃(k) = (divz −d̂ivz)
2

ψ̃(k) +
2

h̃
(k)
1 ≡

2

h̃
(k)
2 , z3 < 0,

1

σ1
rotz

1

ψ̃(k) · τ̄2α −
1

σ2
rotz

2

ψ̃(k) · τ̄2α

=
1

σ1
(rotz

1

ψ̃(k) · τ̄zα − ˆrotz

1

ψ̃(k) · ˆ̄τα)

− 1

σ2
(rotz

2

ψ̃(k) · τ̄zα − ˆrotz

2

ψ̃(k) · ˆ̄τα) + g̃
(k)
α1 ≡ g̃

(k)
α2 , α = 1, 2, z3 = 0,

1

ψ̃(k) · n̄z × τ̄zα −
2

ψ̃(k) · n̄z × τ̄zα =
1

ψ̃(k) · (n̄z × τ̄zα − ˆ̄n× ˆ̄τα)

−
2

ψ̃(k) · (n̄z × τ̄zα − ˆ̄n× ˆ̄τzα) ≡ b̃(k)
α , α = 1, 2, z3 = 0,

ν1

1

ψ̃(k) · n̄z − ν2

2

ψ̃(k) · n̄z

= ν1

1

ψ̃(k) · (n̄z − ˆ̄n)− ν2

2

ψ̃(k) · (n̄z − ˆ̄n) ≡ ã(k), z3 = 0.

Since k is fixed, we simplify problem (5.21) by writing it in the form

(5.22)

µ1

1
ψ +

1

σ1
rot2

1
ψ =

1
f2, z3 > 0,

div
1
ψ =

1
h2, z3 > 0,

µ2

2
ψ +

1

σ2
rot2

2
ψ =

2
f2, z3 < 0,

div
2
ψ =

2
h2, z3 < 0,

1

σ1
rot

1
ψ · τ̄zα −

1

σ2
rot

2
ψ · τ̄zα = gα2, α = 1, 2, z3 = 0,

1
ψ · n̄z × τ̄zα −

2
ψ · n̄z × τ̄zα = bα, α = 1, 2, z3 = 0,

ν1

1
ψ · n̄z − ν2

2
ψ · n̄z = a, z3 = 0,

where all operators are with respect to the coordinates z = (z1, z2, z3), so
the subscript z is dropped for simplicity.

By employing formula (5.9) and the form of the tangent and normal
vectors:

n̄z = (0, 0, 1), τ̄z1 = (1, 0, 0), τ̄z2 = (0, 1, 0),

n̄z × τ̄z1 = −τ̄z2, n̄z × τ̄z2 = −τ̄z1,
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problem (5.22) takes the form

(5.23)

µ1

1
ψ +

1

σ1
(−∆

1
ψ +∇ div

1
ψ) =

1
f2, z3 > 0,

div
1
ψ =

1
h2, z3 > 0,

µ2

2
ψ +

1

σ2
(−∆

2
ψ +∇ div

2
ψ) =

2
f2, z3 < 0,

div
2
ψ =

2
h2, z3 < 0,

1

σ1
(

1
ψ2,z3 −

1
ψ3,z2)− 1

σ2
(

2
ψ2,z3 −

2
ψ3,z2) = −g12, z3 = 0,

1

σ1
(

1
ψ1,z3 −

1
ψ3,z1)− 1

σ2
(

2
ψ1,z3 −

2
ψ3,z1) = g22, z3 = 0,

1
ψ2 −

2
ψ2 = −b1, z3 = 0,

1
ψ1 −

2
ψ1 = −b2, z3 = 0,

ν1

1
ψ3 − ν2

2
ψ3 = a, z3 = 0.

Multiplying (5.23)1 by ν1

1
ψ, (5.23)3 by ν2

2
ψ, integrating over R3

+ and R3
−,

respectively, and summing yields

(5.24) ν1µ1|
1
ψ|22,R3

+
+ ν2µ2|

2
ψ|22,R3

−
+
ν1

σ1

�

R3
+

(−∆
1
ψ +∇ div

1
ψ) ·

1
ψ dz

+
ν2

σ2

�

R3
−

(−∆
2
ψ +∇ div

2
ψ) ·

2
ψ dz = ν1

�

R3
+

1
f2 ·

1
ψ dz + ν2

�

R3
−

2
f2 ·

2
ψ dz.

Integrating by parts the sum of the last two terms on the l.h.s. of (5.24)
yields

(5.25)
ν1

σ1

�

R3
+

[−div(∇
1
ψ ·

1
ψ) + div(div

1
ψ

1
ψ)] dz +

ν1

σ1

�

R3
+

(|∇
1
ψ|2 − |div

1
ψ|2) dz

+
ν2

σ2

�

R3
−

[−div(∇
2
ψ ·

2
ψ) + div(div

2
ψ

2
ψ)] dz +

ν2

σ2

�

R3
−

(|∇
2
ψ|2 − |div

2
ψ|2) dz

=
ν1

σ1
(|∇

1
ψ|22,R3

+
− |div

1
ψ|22,R3

+
) +

ν1

σ2
(|∇

2
ψ|22,R3

−
− |div

2
ψ|22,R3

−
)

−
�

R2

(
ν1

σ1

1
ψ,z3 ·

1
ψ − ν1

σ1
div

1
ψ

1
ψ3 −

ν1

σ2

2
ψ,z3 ·

2
ψ +

ν2

σ2
div

2
ψ

2
ψ3

)
dz′,
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where dz′ = dz1dz2. Expressing the boundary term in (5.25) more explicitly,
we have
I =

−
�

R2

[
ν1

σ1
(

1
ψ1,z3

1
ψ1+

1
ψ2,z3

1
ψ2+

1
ψ3,z3

1
ψ3)− ν2

σ2
(

2
ψ1,z3

2
ψ1+

2
ψ2,z3

2
ψ2+

2
ψ3,z3

2
ψ3)

]
dz′

+
�

R2

[
ν1

σ1
(

1
ψ1,z1 +

1
ψ2,z2 +

1
ψ3,z3)

1
ψ3 −

ν2

σ2
(

2
ψ1,z1 +

2
ψ2,z2 +

2
ψ3,z3)

2
ψ3

]
dz′.

Simplifying yields

I = −
�

R2

[
ν1

σ1
(

1
ψ1,z3

1
ψ1 +

1
ψ2,z3

1
ψ2)− ν2

σ2
(

2
ψ1,z3

2
ψ1 +

2
ψ2,z3

2
ψ2)

]
dz′

+
�

R2

[
ν1

σ1
(

1
ψ1,z1 +

1
ψ2,z2)

1
ψ3 −

ν2

σ2
(

2
ψ1,z1 +

2
ψ2,z2)

2
ψ3

]
dz′.

If

(5.26)
ν1

σ1

1
ψ3 =

ν2

σ2

2
ψ3 + a,

the second term in I equals

�

R2

[
(

1
ψ1,z1 +

1
ψ2,z2)

(
ν2

σ2

2
ψ3 + a

)
− (

2
ψ1,z1 +

2
ψ2,z2)

ν2

σ2

2
ψ3

]
dz′

=
�

R2

(
1
ψ1,z1 +

1
ψ2,z2)a dz′.

If we assume the conditions

(5.27)

ν1

σ1

1
ψ1,z3 =

ν2

σ2

2
ψ1,z3 +

ν1

σ1

1
ψ3,z1 −

ν2

σ2

2
ψ3,z1 + g22 = a,z1 + g22,

ν1

σ1

1
ψ2,z3 =

ν2

σ2

2
ψ2,z3 +

ν1

σ1

1
ψ3,z2 −

ν2

σ2

2
ψ3,z2 + g12 = a,z2 + g12,

the first term in I takes the form

−
�

R2

[(
ν2

σ2

2
ψ1,z3 + a,z1 + g22

)
1
ψ1 +

(
ν2

σ2

2
ψ2,z3 + a,z2 + g12

)
1
ψ2

− ν2

σ2

2
ψ1,z3

2
ψ1 −

ν2

σ2

2
ψ2,z3

2
ψ2

]
dz′

= −
�

R2

[(a,z1 + g22)
1
ψ1 + (a,z2 + g12)

1
ψ2] dz′.
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Applying the above considerations in (5.24) and restoring the index k gives

(5.28) |
1
ψ(k)|22,R3

+
+ |

2
ψ(k)|22,R3

−
+ ‖

1
ψ(k)‖21,R3

+
+ ‖

2
ψ(k)‖21,R3

−

≤ c(|div
1
ψ(k)|22,R3

+
+ |div

2
ψ(k)|22,R3

−
) +

∣∣∣ �
R2

(
1
ψ

(k)
1,z1

+
2
ψ

(k)
2,z2

)a dz′
∣∣∣

+ c
∣∣∣ �
R2

[(a(k)
,z1 + g

(k)
22 )

1
ψ

(k)
1 + (a(k)

,z2 + g
(k)
12 )

1
ψ

(k)
2 ] dz′

∣∣∣
+ c
∣∣∣ �

R3
+

1
f

(k)
2

1
ψ(k) dz

∣∣∣+ c
∣∣∣ �

R3
−

2
f

(k)
2

2
ψ(k) dz

∣∣∣.
Next,

|div
i
ψ(k)|

2,
i
R
≤ c|

i
ψ|

2,
i
R∩supp ζ̂(k)

+ cλ‖
i
ψ‖

1,
i
R

+ c|
i
h(k)|

2,
i
R
,

where i = 1, 2,
1
R = R3

+,
2
R = R3

−. Moreover,∣∣∣∣∑
α

�

R2

g
(k)
α2

1
ψ(k)
α dz

∣∣∣∣ ≤ c 2∑
α=1

|g(k)
α2 |2,R2 |

1
ψ(k)
α |2,R2

≤ c
2∑

α=1

[|
1
ψ|2,R2∩supp ζ(k) + |

2
ψ|2,R2∩supp ζ(k) + λ(|∇

1
ψ(k)|2,R2 + |∇

2
ψ(k)|2,R2)

+ |g(k)
α |2,R2 ]|

1
ψ(k)
α |2,R2 .

Differentiate (5.23)1 and (5.23)3 with respect to τ , multiply by ν1

1
ψ,τ and

ν2

2
ψ,τ , respectively, and add the second normal derivatives to get

(5.29)
2∑
i=1

‖
i
ψ(k)‖

2,
i
R

≤ c
2∑
i=1

(‖
i
ψ‖

1,
i
R∩supp ζ(k)

+ λ‖
i
ψ(k)‖

2,
i
R

+ |
i
f (k)|

2,
i
R

+ ‖
i
h(k)‖

1,
i
R

).

Finally, we consider the case k ∈ N2. Repeating the argument in the case
k ∈ N1 we obtain

(5.30) ‖
2
ψ(k)‖

2,
2
R
≤ c(‖

2
ψ‖

1,
2
R∩supp ζ(k)

+ λ‖
2
ψ(k)‖2,R2 + |

2
f (k)|

2,
2
R

+ ‖
2
h(k)‖

1,
2
R

).

Employing inequalities (5.16), (5.17), (5.29), (5.30) and summing over all
neighborhoods of the partition of unity we derive

(5.31)
2∑
i=1

‖
i
ψ‖

2,
i
Ω
≤ c

2∑
i=1

(‖
i
ψ‖

1,
i
Ω

+ |
i
f |

2,
i
Ω

+ ‖
i
h‖

1,
i
Ω

).
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Hence, by interpolation we get

(5.32)
2∑
i=1

‖
i
ψ‖

2,
i
Ω
≤ c

2∑
i=1

(|
i
ψ|

2,
i
Ω

+ |
i
f |

2,
i
Ω

+ ‖
i
h‖

1,
i
Ω

).

Multiply (5.7)1,2 by
1
ψ,

2
ψ, respectively, integrate over

i
Ω, i = 1, 2, respectively

and exploit the boundary and transmission conditions to get

(5.33)
2∑
i=1

|
i
ψ|

2,
i
Ω
≤ c

2∑
i=1

|
i
f |

2,
i
Ω
.

Inequalities (5.32) and (5.33) imply

(5.34)
2∑
i=1

‖
i
ψ‖

2,
i
Ω
≤ c

2∑
i=1

(|
i
f |

2,
i
Ω

+ ‖
i
h‖

1,
i
Ω

).

This implies (5.8).
To conclude the proof we need existence of solutions to problem (5.7)

(see [15, Ch. 4, Sect. 7]). For this purpose we have to examine the localized
versions of problem (5.7) to the neighborhoods supp ζ(k), k ∈ M1 ∪M2 ∪
N1 ∪N2. Therefore, we have problem (5.10) for k ∈M1, a problem similar
to (5.10) for k ∈ M2, problem (5.22) for k ∈ N1 and finally the localized
problem for k ∈ N2. Assume that h denotes all r.h.s. functions of these
problems. Since all the localized linear problems are solvable, there exists an
operator R, called a regularizer, such that

Rh =
∑
k

2∑
i=1

η(k)
i
ψ(k),

where k ∈M1 ∪M2 ∪N1 ∪N2.
Let A be the operator of problem (5.5). The calculations imply existence

of operators T and W such that
ARh = h+ Th and RAψ = ψ +Wψ,

where ψ = (
1
ψ,

2
ψ). For sufficiently small λ and large (µ1, µ2) we have

‖T‖, ‖W‖ < 1. This implies existence of solutions to problem (5.7) and
ends the proof.

Consider the problem

(5.35)

∆
i
ϕ =

i
h in

i
Ω0, i = 1, 2,

1
ϕ =

2
ϕ, µ1n̄ · ∇

1
ϕ = µ2n̄ · ∇

2
ϕ on S0,

n̄ · ∇ 2
ϕ|B = 0,�

i
Ω0

i
ϕdx = 0, i = 1, 2.
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Lemma 5.2. Assume that
i
h ∈

i
Ωt, i = 1, 2. Then there exists a solution

to problem (5.35) such that
i
ϕ ∈ H2(

i
Ωt), i = 1, 2, and we have the estimate

(5.36)
2∑
i=1

‖ iϕ‖
H2(

i
Ω0)
≤ c

2∑
i=1

‖
i
h‖

L2(
i
Ω0)

.

Proof. To show existence of weak solutions to problem (5.35) we find an
energy estimate and apply the Fredholm theorem. Therefore, we multiply
(5.35)1 by i

ϕ and integrate over
i
Ωt. After summation we get

2∑
i=1

�

i
Ω0

µi∆
i
ϕ
i
ϕdx =

2∑
i=1

�

i
Ω0

µi
i
h
i
ϕdx.

Integration by parts yields

(5.37)
2∑
i=1

�

i
Ω0

µi|∇
i
ϕ|2 dx+

�

S0

(µ1n̄ · ∇
1
ϕ

1
ϕ− µ2n̄ · ∇

2
ϕ

2
ϕ) dS0

= −
2∑
i=1

�

i
Ω0

µi
i
h
i
ϕdx.

In view of (5.35)2 the boundary term in (5.37) vanishes. Then (5.35)4 and
the Poincaré inequality give

(5.38)
2∑
i=1

‖ iϕ‖
H1(

i
Ω0)
≤ c

2∑
i=1

‖
i
h‖

L2(
i
Ω0)

.

Now the Fredholm theorem gives existence of weak solutions to problem

(5.35) under the assumption that
i
h ∈ L2(

i
Ωt), i = 1, 2.

Applying the technique of regularizer we improve regularity of the weak
solutions and prove estimate (5.36). This concludes the proof.

Setting

(5.39) i
v =

i
ψ −∇ i

ϕ, i = 1, 2,

we see that 1
v, 2
v are solutions to the problem

(5.40)

µi
i
v + rot

(
1

σi
rot

i
v

)
=

i
f − µi∇

i
ϕ, in

i
Ω0, i = 1, 2,

div
i
v = 0,

1

σ1
rot

1
v · τ̄α =

1

σ2
rot

2
v · τ̄α + gα, α = 1, 2, on S0,

1
v · n̄× τ̄α =

2
v · n̄× τ̄α, α = 1, 2, on S0,
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(5.40)
[cont.]

ν1 ·
1
v · n̄ = ν2

2
v · n̄ on S0,

2
v|B = 0.

Definition 5.3. Introduce a set of smooth divergence free functions

Sk(Ω0) = Hk(
1
Ω0)×Hk(

2
Ω0) satisfying the transmission conditions (5.40)2,3,4

and the boundary condition (5.40)5. Then problem (5.40) implies existence
of an operator

A : S2(Ω0)→ S0(Ω0).

In view of Lemma 5.1 the inverse operator

A−1 : S0(Ω0)→ S2(Ω0) ⊂ S0(Ω0)

exists. Hence A−1 is a compact operator

A−1 : S0(Ω0)→ S0(Ω0).

Moreover, the operator A is symmetric, because

(Aψ,ϕ) =
2∑
i=1

[
µi(

i
ψ,

i
ϕ) +

1

σi
(rot

i
ψ, rot

i
ϕ)

]
= (ψ,Aϕ).

From the von Neumann theorem (see [17, Ch. 4, Sect. 3]) we know that
A−1 is also a symmetric operator. Since A−1 is compact and symmetric, the
Fredholm theorem (see [13, Ch. 1]) yields

Theorem 5.4. The operator A−1 has a countable set of eigenvalues. To
each eigenvalue λ corresponds at least one nontrivial solution to the equation

(5.41) λψ = A−1ψ.

The eigenfunctions to problem (5.41) form a dense set of functions in
S0(Ω0). The functions can be chosen as basic functions for the Faedo–
Galerkin method.

Acknowledgements. The research leading to these results has received
funding from the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme FP7/2007–2013/ under REA grant
agreement No. 319012 and from the Funds for International Co-operation
under Polish Ministry of Science and Higher Education grant agreement
No. 2853/7.PR/2013/2.

References

[1] E. B. Bykhovskĭı, Solvability of the mixed problem for the Maxwell equations in the
case of ideal conductive boundary, Vestnik Leningrad Univ. Ser. Mat. Mekh. As-
tronom. 13 (1957), no. 13, 50–66 (in Russian).

[2] G. H. A. Cole, Fluid Dynamics, Methuen, London & Colchester, 1962.



130 P. Kacprzyk and W. M. Zajączkowski

[3] E. Frolova, Free boundary problem of magnetohydrodynamics, Zap. Nauchn. Sem.
POMI 425 (2014), 149–178 (in Russian).

[4] E. Frolova and V. A. Solonnikov, Solvability of a free boundary problem of magne-
tohydrodynamics in an infinite time interval, Zap. Nauchn. Sem. POMI 410 (2013),
131–167 (in Russian).

[5] P. Kacprzyk, Local free boundary problem for incompressible magnetohydrodynamics,
Dissertationes Math. 509 (2015), 52 pp.

[6] P. Kacprzyk, Global free boundary problem for incompressible magnetohydrodynamics,
Dissertationes Math. 510 (2015), 44 pp.

[7] P. Kacprzyk, Local existence of solutions of the free boundary problem for the equations
of a magnetohydrodynamic incompressible fluid, Appl. Math. (Warsaw) 30 (2003),
461–488.

[8] P. Kacprzyk, Almost global solutions of the free boundary problem for the equations
of a magnetohydrodynamic incompressible fluid, Appl. Math. (Warsaw) 31 (2004),
69–77.

[9] P. Kacprzyk, Free boundary problem for the equations of magnetohydrodynamic in-
compressible viscous fluid, Appl. Math. (Warsaw) 34 (2007), 75–95.

[10] P. Kacprzyk and W. M. Zajączkowski, On the Faedo–Galerkin method for a free
boundary problem for incompressible viscous magnetohydrodynamics, Topol. Methods
Nonlinear Anal. 52 (2018), 69–98.

[11] L. Kapitanskii and K. Pileckas, On some problems of vector analysis, Zap. Nauchn.
Sem. LOMI 138 (1984), 65–85 (in Russian).

[12] N. E. Kochin, Vector Calculus and Introduction to Tensor Calculus, Izdat. Akad.
Nauk SSSR, Moscow, 1951 (in Russian).

[13] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka,
Moscow, 1973 (in Russian).

[14] O. A. Ladyzhenskaya and V. A. Solonnikov, Solvability of some nonstationary prob-
lems of magnetohydrodynamics for viscous incompressible fluids, Trudy Mat. Inst.
Steklova 59 (1960), 115–173 (in Russian).

[15] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and Quasilinear
Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian).

[16] L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous
Media, 2nd ed., Landau and Lifshitz Course of Theoretical Physics, Vol. 8.

[17] K. Maurin,Methods of Hilbert Spaces, Państwowe Wydawnictwo Naukowe, Warszawa,
1959 (in Polish).

[18] M. Padula and V. A. Solonnikov, On the free boundary problem of mhd, Zap. Nauchn.
Sem. POMI 385 (2010), 135–186 (in Russian).

[19] M. Sakhaev and V. A. Solonnikov, On some stationary problems of magnetohydro-
dynamics in general domains, Zap. Nauchn. Sem. POMI 397 (2011), 126–149 (in
Russian).

[20] Y. Shibata and W. M. Zajączkowski, On local motion for a free boundary problem for
incompressible viscous magnetohydrodynamics in the Lp-approach. Part 1, submitted
to Dissertationes Math.

[21] Y. Shibata and W. M. Zajączkowski, On local motion for a free boundary problem for
incompressible viscous magnetohydrodynamics in the Lp-approach. Part 2, submitted
to Dissertationes Math.

[22] V. A. Solonnikov, Estimates of solutions of an initial-boundary value problem for the
linear non-stationary Navier–Stokes system, Zap. Nauchn. Sem. LOMI 59 (1976),
178–254 (in Russian).

http://dx.doi.org/10.4064/dm509-0-1
http://dx.doi.org/10.4064/dm510-0-1
http://dx.doi.org/10.4064/am30-4-8
http://dx.doi.org/10.4064/am31-1-6
http://dx.doi.org/10.4064/am34-1-7
http://dx.doi.org/10.12775/TMNA.2018.011


Incompressible viscous magnetohydrodynamics 131

[23] V. A. Solonnikov, Estimates of solutions to nonstationary linearized Navier–Stokes
system, Trudy Mat. Inst. Steklova 70 (1964), 213–317 (in Russian).

[24] V. A. Solonnikov, On an unsteady motion of an isolated volume of a viscous incom-
pressible fluid, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 1065–1087 (in Russian).

[25] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Amer. Math.
Soc., 2001.

[26] W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous
fluid bounded by a free surface, Dissertationes Math. 324 (1993), 101 pp.

Piotr Kacprzyk
Institute of Mathematics and Cryptology
Cybernetics Faculty
Military University of Technology
S. Kaliskiego 2
00-908 Warszawa, Poland
ORCID: 0000-0003-1504-5394
E-mail: pk_wat@wp.pl

Wojciech M. Zajączkowski
Institute of Mathematics

Polish Academy of Sciences
Śniadeckich 8

00-656 Warszawa, Poland
ORCID: 0000-0003-1229-2162

E-mail: wz@impan.pl




	1 Introduction
	2 Notation and auxiliary results
	3 Method of successive approximations
	4 Existence of solutions to problem (3.13)
	5 Existence of solutions to problem (3.7)
	References

