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Abstract. Let (sn)n be Stern’s sequence, a, b, m > 0 integers. The natural density of indices n

such that (sn, sn+1) ≡ (a, b) mod m exists and is determined. The main tools in the proof are
the properties of the relevant automata.

1. Introduction. Stern [7] defined in 1858 the following sequence

s0 = 0, s1 = 1 and, for n ≥ 1: s2n = sn, s2n+1 = sn + sn+1. (1)

The paper [5] presents the main properties of this sequence.
Klavžar, Milutinović and Petr [4] defined similarly the sequence of Stern polynomials:

B0(x) = 0, B1(x) = 1,
and, for n ≥ 1: B2n(x) = xBn(x), B2n+1(x) = Bn(x) +Bn+1(x).

Ulas [8] conjectured that the only rational zeroes of Bn(x) are 0, −1, −1/2, −1/3. This
conjecture was proved by Gawron [3] who showed that the lower density of the sequences
of indices n such that Bn(−1/2) = 0 or such that Bn(−1/3) = 0 is 0, and conjectured that
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the density actually exists, and is equal to 0. This conjecture was proved by the second
named author [6] who showed that for ν ∈ {2, 3} there is an infinite sequence of primes p(ν)

n

such that the upper density of the sequence of indices n such that Bn(−1/ν) ≡ 0 mod p(ν)
n

exists and tends to 0 when the prime p(ν)
n tends to infinity. He also observed that for any

prime p the upper density of the sequence of indices n such that sn ≡ 0 mod p does not
exceed 2/p. This is improved in the following results.

Theorem 1.1. For any positive integer m and any pair (a, b) of rational integers, we
have

lim
x→∞

1
x

Card{n ≤ x : (sn, sn+1) ≡ (a, b) modm}

=
{

1
m2

∏
p |m

(
1− 1

p2

)−1 if gcd(a, b,m) = 1
0 otherwise,

(2)

where the product is taken over the prime factors p of m.

The first corollary of this result was proposed by the second named author during the
Number Theory Week held in Poznań in September 2017, and proved by him for p < 10.

Corollary 1.2. For any prime p and any residue r modulo p, the natural density of the
sequence of indices n such that

sn ≡ rsn+1 mod p (3)

exists and is equal to 1/(p+ 1).

Corollary 1.3. For any positive integer m and any rational integer a, the sequence of
indices n such that s(n) ≡ amodm has a natural density which is equal to

1
m

∏
p |m
p |a

(
1 + 1

p

)−1 ∏
p |m
p -a

(
1− 1

p2

)−1
. (4)

A 2-automatic structure associated to the sequence of the Stern polynomials has
been noticed by Gawron [3]. It turns out that the relevant automata have two specific
properties, which are easy to check and imply the existence and the value of the natural
density of the sequences they generate, a point which seems to have been overlooked in
the previous papers on the subject. We thus devote the next section to the study of such
automata. We shall give in the last section the proof of the results which we have just
stated.

2. The b-I-automata. We describe here the deterministic finite automata which are
of interest for this paper and give the properties we use; we shall call b-I-automata (or
simply I-automata) those automata. As much as we can, we refer to the Allouche–Shallit
monograph [1]. We first give their formal definition, which follows pp. 128–129 of [1], then
explain how they are used for generating sequences of integers, as in Chapter 5 of [1];
we then give the main property of sequences generated by I-automata and finally prove
them, using the consequence of the Perron–Frobenius theorem given in Chapter 8 of [1].
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The main result of this section thus combines well-known facts, but it seems convenient
to state it independently of the precise context in which we are using it.
Definition 2.1. A b-I-automaton is defined by a 5-tuple A = (Q,Σ, δ, q0, F ), where
• Q is a non-empty set (the set of the states),
• Σ = {0, 1, . . . , b− 1}, where b ≥ 2 (the alphabet),
• δ : Q× Σ→ Q (the transition function),
• q0 ∈ Q (the initial state),
• F ⊂ Q (the accepting states),

satisfying the following two properties
(i) δ(q0, 0) = q0,
(ii) for any e ∈ Σ, the map δ(·, e) from Q to Q is invertible.
Condition (ii) was not considered in [1]. M. Drmota and J. Morgenbesser [2] call in-

vertible an automaton satisfying Definition 2.1 with a stronger condition than (i), namely:
for any q in Q, one has δ(q, 0) = q.

As in [1], p. 129, we extend the application δ to an application, still denoted as δ,
from the set Σ∗ of the words over Σ to Q satisfying δ(q, ∅) = q for any q ∈ Q and
δ(q, xa) = δ(δ(q, x), a) for any q ∈ Q, x ∈ Σ∗ and a ∈ Σ.

In our case, the set Σ can be understood as the digits used for representing an integer
in the base b: with a word x = ekek−1 · · · e0 ∈ Σ∗ we can associate the number n(w) =∑k
`=0 e`b

`. In the other way round, there are several ways to associate to a non-negative
integer n a word in Σ∗. However, one of the merits of condition (i) is that if x1 and x2
are two words associated to n, we have δ(q0, x1) = δ(q0, x2), since x1 and x2 may at
most differ by the number of 0’s on their left. Thus, the representation used for n is not
relevant; for convenience we shall choose [n] to represent the shortest representation of n
in base b.

Let A as above be an I-automaton. Following Chapter 5 of [1], we say that the set
T ⊂ N is generated by A if

n ∈ T ⇔ δ(q0, [n]) ∈ F. (5)
We say that a set T ⊂ N has an natural density or simply a density (in [1] the expression
frequency is used), if the limit

lim
N→∞

1
N

Card{n ≤ N : n ∈ T }

exists. When it does, this limit is called the natural density (or density) of T . Finally,
following [1], p. 129, we say that a state q ∈ Q is reachable if there exists an x ∈ Σ∗ such
that q = δ(q0, x), and unreachable otherwise. We are now in a position to state the main
result of this section.
Theorem 2.2. Let A = (Q,Σ, δ, q0, F ) be an I-automaton. The natural density of the
set of integers generated by A exists and is equal to the quotient of the number of the
reachable states in F by the number of the reachable states in Q.
Proof. If F is the disjoint union of F1 and F2, the sequence generated by (Q,Σ, δ, q0, F ) is
the disjoint union of the sequences generated by (Q,Σ, δ, q0, F1) and (Q,Σ, δ, q0, F2) and
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the number of reachable elements of F is the sum of the number of reachable elements of
F1 and F2; thus if the theorem is valid for F1 and F2, it is valid for F . It is thus enough
to prove it when F has only one element. Moreover, the result is trivially true when
F = {q}, where q is unreachable. It is thus enough to prove the theorem when F = {q},
where q is reachable. Moreover, without loss of generality, we may assume that all the
elements of Q are reachable. That is what we assume in the sequel.

We index the elements of Q (the indexation has no importance except that we keep the
notation q0 for the initial state) and write Q = {q0, q1, . . . , qK−1}, where K = Card(Q).
For each digit ` ∈ Σ, we define the matrix M` such that its entry at the intersection of
the i-th row and the j-th column is 1 if δ(qj , `) = qi and 0 otherwise. Condition (ii) is
equivalent to the fact that for each ` the matrix M` is a permutation matrix. The matrix
M =

∑b−1
`=0 M` is called the incidence matrix (cf. [1], p. 248).

An important property of the incidence matrices associated to I-automata is the
following lemma.
Lemma 2.3. The incidence matrix M of any I-automaton is primitive, which means that
there exists an integer k such that Mk has only positive entries.
Proof. We borrow the terminology primitive from [1] p. 250; notice that this definition
differs from that used in several standard books. The lemma is equivalent to saying that
there exists an integer k such that for any i and j in {0, 1, . . . ,K−1}, there exists a word
x ∈ Σ∗ of length k such that δ(qj , x) = qi. This is a simple consequence of the following
three points.
(A) For any i ∈ {0, 1, . . . ,K − 1}, there exists a word xi such that δ(q0, xi) = qi. This is

just a way of saying that qi is reachable, which we assumed.
(B) For any non-negative m, we have δ(q0, 0(m)) = q0, where 0(m) denotes the word

000 · · · 000 consisting of m consecutive zeroes. This is a trivial consequence of the
property (i) stating that δ(q0, 0) = q0.

(C) For any j ∈ {0, 1, . . . ,K−1}, there exists a word yj such that δ(qj , yj) = q0. By (A),
there exists a word xj = erer−1 · · · e2e1 such that qj = δ(q0, xj); we claim that the
word

zj = e
(K!−1)
1 e

(K!−1)
2 · · · e(K!−1)

r−1 e(K!−1)
r

is an admissible word for yj . Let us compute δ(qj , zj); we have
δ(qj , zj) = δ(δ(q0, xj), zj) = δ(q0, xjzj)

= δ
(
q0, (erer−1 · · · e2e1)

(
e

(K!−1)
1 e

(K!−1)
2 · · · e(K!−1)

r−1 e(K!−1)
r

))
= δ
(
q0, (erer−1 · · · e2)

(
e1e

(K!−1)
1

)(
e

(K!−1)
2 · · · e(K!−1)

r−1 e(K!−1)
r

))
= δ
(
δ
(
δ(q0, er · · · e2), e(K!)

1
)
, e

(K!−1)
2 · · · e(K!−1)

r

)
.

The key point to notice here is that condition (ii) which says that for any e in Σ, the map
δ(·, e) is invertible, implies that its order is a divisor of that of the permutation group
SK and thus δ(q, e(K!)) is equal to q for any state q and any digit e. We thus have by
induction

δ(qj , zj) = δ
(
δ(q0, er · · · e2), e(K!−1)

2 · · · e(K!−1)
r

)
= . . . = δ(q0, ∅) = q0.
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Equipped with (A), (B) and (C), let us finish the proof of Lemma 2.3. By Property (A),
we can go from q0 to any qi in a finite number of steps (i.e. using words of finite lengths);
this finite set of finite numbers is bounded, say by K1 (it is indeed easy to see that K
is a suitable bound, but we do not need this precision); the same applies to the number
of steps to go from any qi to q0, which is bounded by some K2 (again, K is admissible).
Now, we see that we can always go from any qj to any qi in exactly K1 + K2 steps by
going from qj to q0, stepping on q0 a suitable number of times, and going from q0 to qi.
Thus K1 + K2 (which can be taken to be equal to 2K) is a suitable value for the k
announced in the statement of Lemma 2.3.

We come back to the proof of Theorem 2.2. Once we know that the incidence matrix
M is primitive, Theorem 8.4.7 of [1] tells us that the natural density of the sequence
generated by our I-automaton (Q,Σ, δ, q0, {q}) exists. Moreover, the vector of densities
of the sequences generated by the automaton (Q,Σ, δ, q0, {qi}) is proportional to the
Perron–Frobenius vector of the incidence matrix. Because of (ii), the sum of all the
entries of any row from M are equal to b. This implies that the vector t(1, 1, . . . , 1, 1)
is a Perron–Frobenius vector of M , and thus, the natural densities of all the sequences
generated by the automaton (Q,Σ, δ, q0, {qi}) are equal. This implies that their common
natural density is 1/Card(Q), which proves Theorem 2.2.

3. Proof of the main results. In this section, we consider a positive integer m and
for a rational integer x, we shall denote by x the class of x modulo m. For proving
Theorem 1.1, we shall describe a 2-I-automaton which generates the sequence (sn, sn+1)n
and study the set of its reachable states.

We introduce two maps U0 and U1 from (Z/mZ)2 to (Z/mZ)2 defined by
U0(x, y) = (x, x+ y), U1(x, y) = (x+ y, y). (6)

Relation (1), read modulo m, leads to
s0 = 0, s1 = 1 and, for n ≥ 1 : s2n = sn, s2n+1 = sn + sn+1.

and a short computation leads to
(s2n, s2n+1) = (sn, sn + sn+1) = U0(sn, sn+1) (7)

and
(s2n+1, s2n+2) = (sn + sn+1, sn+1) = U1(sn, sn+1). (8)

Proposition 3.1. Let a and b be two rational integers. The sequence of the integers n
such that (sn, sn+1) = (a, b) is generated by the 2-I-automaton

Am =
(
(Z/mZ)2, {0, 1}, δm, (0, 1), {(a, b)}

)
,

where
∀q ∈ (Z/mZ)2 : δm(q, 0) = U0(q) and δm(q, 1) = U1(q).

Proof. All the pairs ξn = (sn, sn+1) belong to (Z/mZ)2, which we take as the set of
states. Relations (7) and (8) tell us that ξ2n and ξ2n+1 depend on ξn, regardless of n,
which justifies that we have a 2-automaton (i.e. Σ = {0, 1}) and the same relations tell us
how they depend on ξn, which justifies the definition of δ. We further have ξ0 = (s0, s1) =
(0, 1), whence the choice of q0. Finally, the choice of F to be {(a, b)} corresponds to the
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fact that we wish to detect those integers n for which (sn, sn+1) = (a, b). It remains to
show that the automaton we have introduced is a 2-I-automaton.

Condition (i) from Definition 2.1 comes simply from the fact that U0(0, 1) = (0, 1) and
condition (ii) from the fact that U0 and U1 are invertible linear operators on (Z/mZ)2

(with respective inverses U−1
0 and U−1

1 defined by U−1
0 (x, y) = (x,−x+ y), U−1

1 (x, y) =
(x− y, y)).

We now determine the set Rm of reachable states of the automaton Am.

Proposition 3.2. The reachable states of the automaton Am introduced in Proposi-
tion 3.1 is the set

Rm = {(a, b) : gcd(a, b,m) = 1}. (9)

Proof. The fact that all reachable states (sn, sn+1) are in Rm is a direct consequence
of the fact that for any integer n ≥ 0, the consecutive Stern numbers sn and sn+1 are
coprime ([7], p. 199).

The proof of the reverse assertion (Lemma 3.4 below) will use the following result.

Lemma 3.3. Let (a, b) be rational integers such that gcd(a, b,m) = 1. There exists a pos-
itive integer k such that gcd(a− kb,m) = 1.

Proof. We let k to be the greatest factor of m which is coprime to a. Let p be a prime
factor of m.

If p divides a, by assumption p does not divide b and by definition p does not divide k
so that p does not divide a− kb, and thus does not divide gcd(a− kb,m).

If p does not divide a, by definition p divides k, thus p does not divide a − kb, and
thus does not divide gcd(a− kb,m).

Proposition 3.2 will follow from the next lemma.

Lemma 3.4. For any pair (a, b) of rational integers such that gcd(a, b,m) = 1, the pair
(a, b) is reachable.

Proof. For any integer k ≥ 0 we have Uk1 (0, 1) = (k, 1) and Uk0 (1, 1) = (1, k + 1), which
gives us a first set of reachable elements.

Let x be an integer coprime to m; we can find a positive integer ` such that `x ≡
−1 modm. If we apply ` times U0 to (x, 1), we obtain (x, `x + 1) = (x, 0) which is thus
reachable.

Let x be an integer coprime to m; then for any y ∈ Z/mZ, (x, y) is reachable: indeed,
since (x, 0) is reachable, for any h, the element Uh0 (x, 0) = (x, hx) is reachable, and since
x is invertible in Z/mZ, the family hx covers Z/mZ.

Let finally a and b be two rational integers such that gcd(a, b,m) = 1. By Lemma 3.3,
there exists a positive integer k such that a− kb is coprime to m; we apply the previous
claim with x = a−kb and y = b: the state (a−kb, b) is reachable, and so is Uk1 (a−kb, b),
which is equal to (a, b).

This ends the proof of Lemma 3.4, as well as that of Proposition 3.2.

We now compute the cardinality of the set Rm of reachable states of the automa-
ton Am.
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Proposition 3.5. The number of reachable states of the automaton Am introduced in
Proposition 3.1 is

Card(Rm) = m2
∏
p |m

(
1− 1

p2

)
. (10)

Proof. We use the characterization of the reachable states given by Proposition 3.2. We
have

Card(Rm) =
∑

0≤a<m
0≤b<m

gcd(a,b,m)=1

1 =
∑
d |m

∑
0≤a<m

gcd(a,m)=d

∑
0≤b<m

gcd(b,d)=1

1

= m
∑
d |m

ϕ

(
m

d

)
ϕ(d)
d

= mψ(m),

where ψ(m) is the Dirichlet convolution of two multiplicative functions. Thus ψ(m) is
a multiplicative function and it is sufficient to evaluate it on prime powers.

We have

ψ(p) = (p− 1) · 1 + 1 ·
(

1− 1
p

)
= p− 1

p
= p

(
1− 1

p2

)
and, for k ≥ 2,

ψ(pk) = (pk−1 − pk−2 + · · ·+ p− 1)(1− 1/p) + (pk − pk−1) = pk(1− 1/p2).

The multiplicative function ψ(m) coincide on all prime powers with the multiplicative
function m

∏
p |m(1 − 1/p2). Those two functions are thus equal and we have proved

(10).

Proof of Theorem 1.1. Theorem 1.1 is a straightforward application of Theorem 2.2 which
explains how to compute the density of a sequence generated by a b-I-automaton in
terms of the reachable states, Proposition 3.1, which states that the sequences under
consideration in Theorem 1.1 are generated by a 2-I-automaton, Proposition 3.2, which
describes the reachable states and Proposition 3.5, which counts those reachable states.

Proof of Corollary 1.2. In the case when m = p is a prime number, all the states are
reachable, except (0, 0), which leads to a density of 1/(p2−1) for each reachable pair. Thus,
for any r, the number of reachable pairs (a, b) such that a = rb is p− 1 and the density
of the sequence of indices n such that sn ≡ rsn+1 mod p is (p− 1)/(p2− 1) = 1/(p+ 1).

Proof of Corollary 1.3. We can either deduce Corollary 1.3 from our general result,
or notice that the sequence of the integers n such that s(n) ≡ amodm is a union of
sequences, the natural densities of which exist and are given by Theorem 1.1. In either
case, the result easily follows from the following lemma.

Lemma 3.6. For any rational integer a, we have

Card{b ∈ [0,m− 1] : gcd(a, b,m) = 1} = m
∏
p |m
p |a

(
1− 1

p

)
. (11)
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Proof. We have
Card{b ∈ [0,m− 1] : gcd(a, b,m) = 1} =

∑
0≤b<m

gcd(b,gcd(a,m))=1

1

= m

gcd(a,m) ϕ(gcd(a,m)) = m
ϕ(gcd(a,m))
gcd(a,m))

= m
∏
p |a
p |m

(
1− 1

p

)
.
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