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Abstract. We give an account of the arguments that lead from the assumption of the existence
of exceptional characters to the asymptotics in related ranges for the counting function of twin
primes.

1. Introduction. The twin prime conjecture asserts that there are infinitely many
primes p such that p + 2 is also prime. More generally, given a positive even number h,
we expect the asymptotic formula

Sh(x) =
∑
n6x

Λ(n)Λ(n+ h) ∼ BC(h)x (1.1)

to hold as x→∞, where B is the absolute constant

B = 2
∏
p>2

(
1− 1

p− 1

)(
1− 1

p

)−1
(1.2)
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and C(h) depends mildly on h, namely

C(h) =
∏
p|h
p>2

(
1− 1

p− 1

)−1
. (1.3)

This is a conjecture of Hardy and Littlewood. Actually, it is easy to predict more general
formulas, such as (3.7) of [FI1] by exploiting the assumption of randomness of the Möbius
function in conjunction with sieve ideas.

In these notes we present elementary arguments of sieve type which yield the asymp-
totic formula (1.1) with an error term estimated by means of the series

L(1, χ) =
∞∑
n=1

χ(n)n−1 (1.4)

with a primitive, real character χ (modD).

Theorem 1.1. Let x > D336000. For any even positive number h we have

Sh(x) = BC(h)x+O
(
L(1, χ)x log x+ x/ log x

)
(1.5)

where the implied constant depends only on h.

The result is unconditional but is meaningful only if L(1, χ) is sufficiently small. We
put

η(D) = L(1, χ) logD. (1.6)

If η(D) is small we call the character χ exceptional. For such characters the error term
in (1.5), say xE(x), is also relatively small, namely

E(x)� η(D)A+ 1/ logD, if D336000 6 x 6 DA. (1.7)

Hence, we conclude the following result of Heath-Brown [H-B].

Corollary 1.2. If there are infinitely many exceptional characters then there are in-
finitely many twin prime numbers.
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2. A partition of Sh(x). First, for notational simplicity, we write

Sh(x) =
∑∑
m−n=h

Λ(m)Λ(n) +O
(
h(log x)2)

where here and in the following we understand, but do not display, the conditions
0 < m,n 6 x, (mn, h) = 1. Next, into Λ(m), Λ(n) we introduce upper-bound sieve
factors θ(m), θ(n) which are almost redundant. Specifically, let (ξq) be sieve weights of
level y and range P (z) which is the product of all primes p < z, p not dividing h. This
means we have real numbers ξq with ξ1 = 1, |ξq| 6 1, and ξq = 0 unless q |P (z), q < y,
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and such that for any positive integer m
θ(m) =

∑
q|m

ξq > 0. (2.1)

Note that θ(m) is bounded by the divisor function τ(m). We get

Sh(x) =
∑∑
m−n=h

θ(m)θ(n)Λ(m)Λ(n) +O
(
(h+ z)(log x)3). (2.2)

The level y and range z of the sieve are chosen as small powers of x, specifically
z700 = y = x1/120.

We assume that D4 6 z. All implied constants in Sections 2, 3, 4, 5 are absolute.
Now we are ready to decompose Λ in terms of the following Dirichlet convolutions:

λ = χ ∗ 1, λ′ = χ ∗ log = λ ∗ Λ, ν = µχ ∗ µ. (2.3)
Note that 0 6 Λ 6 λ′ 6 τ log and |ν| 6 λ 6 τ . By Möbius inversion

Λ = λ′ ∗ ν. (2.4)
Having in mind that ν can be lacunary, we split Λ = Λ∗ + Λ∗ with

Λ∗(n) =
∑
ab=n
b<y

λ′(a)ν(b), Λ∗(n) =
∑
ab=n
b>y

λ′(a)ν(b). (2.5)

Note that, for economy of notation, we have chosen the splitting parameter y to be the
same as that for the sieve level. The splitting parameter will be relatively small so the
variable b in Λ∗(n) is quite short and Λ∗(n) looks like the divisor-type function λ′ which
can be analyzed by various means (such as by Dirichlet’s switching-divisors technique,
the δ-method, the circle method, the spectral decomposition of Poincaré series). On the
other hand, the variable b in Λ∗(n) is sufficiently long that the lacunarity of the factor
ν(b) will kick in to yield crude but admissible estimates.

Writing ΛΛ = Λ∗Λ∗ + 1
2 (Λ + Λ∗)Λ∗ + 1

2Λ∗(Λ + Λ∗), we get
Sh(x) = S∗h(x) + 1

2Th(x) + 1
2T−h(x) +O

(
(h+ z)(log x)3), (2.6)

where
S∗h(x) =

∑∑
m−n=h

θ(m)θ(n)Λ∗(m)Λ∗(n), (2.7)

Th(x) =
∑∑
m−n=h

θ(m)θ(n)
(
Λ(m) + Λ∗(m)

)
Λ∗(n). (2.8)

3. Estimates for divisor-like functions. In Th(x) we estimate |Λ∗(m)| 6 b(m) log x
with

b(m) =
∑
ab=m
b<y

τ(a)τ(b).

Here we have (see Proposition 22.10 of [FI1]),

τ(a) 6
∑
c|a

c6a1/4

(
2τ(c)

)4
6 16

∑
c|a

c6a1/4

τ16(c),
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because
τr(pα)τ(pα)−4 =

(
α+r−1
r−1

)
(α+ 1)−4 >

(
r
r−1
)
2−4 = 1

if r = 16. Hence
b(m) 6 16

∑
d|m

d<m1/4y3/4

τ18(d).

For m 6 x and y 6 x1/9 we have divisors d < x1/3. Moreover, we have

τ18(d) 6 8τ19(d)ϕ(d)/d.

Finally, we estimate τ19(d)ϕ(d)/d by

γ(d) = ϕ(d)
d

∑
d1...dr=d

dε1
1 . . . dεr

r , (3.1)

where ε1, . . . , εr are distinct small positive numbers with r = 19. We obtain b(m) 6
27c(m) with

c(m) =
∑
d|m

d<x1/3

γ(d). (3.2)

The reason for making a slight deformation of the divisor function τ18(d) in the above
argument is so as to reach a simple generating Dirichlet series, specifically

D(s) =
∑
d

γ(d)
ϕ(d)d

−s = ζ(s+ 1− ε1) . . . ζ(s+ 1− εr). (3.3)

We take εi = i/ log z for 1 6 i 6 r = 19. We also introduce ε0 = 0.
Next we estimate Λ∗(n) as follows:

|Λ∗(n)| 6
∑

ab=n,b>y
λ′(a)|ν(b)| =

∑
abc=n,b>y

λ(a)Λ(c)|ν(b)|.

Note that ν(b) is multiplicative with ν(p) = −λ(p), ν(p2) = χ(p) and ν(pα) = 0 for α > 3.
Moreover, we have λ(pα) = 1 + χ(p) + . . .+ χ(p)α if α > 1, so it is easy to check that∑

ab=k
λ(a)|ν(b)| 6 4ω(k)λ(k),

where ω(k) denotes the number of distinct prime divisors of k. Hence, we obtain |Λ∗(n)| 6
a(n) with

a(n) =
∑

bc=n,b>y
4ω(b)λ(b)Λ(c). (3.4)

From the above estimates we conclude that

|Th(x)| 6 28Vh(x) log x, (3.5)

with
Vh(x) =

∑∑
m−n=h

θ(m)θ(n)c(m)a(n). (3.6)

Recall that we are assuming 1 6 m,n 6 x, (mn, h) = 1.
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4. Estimation of Vh(x). By (2.1), (3.3) and (3.4) we arrange Vh(x) into sums of con-
gruence sums

Vh(x) =
∑
q<y

(q,h)=1

ξq
∑

d<x1/3

(d,h)=1

γ(d)
∑

n≡−h(mod [d,q])
(n,h)=1

θ(n)a(n), (4.1)

where n runs over the segment max(0,−h) < n 6 min(x, x−h). We extend this segment
to 0 < n 6 x up to an error term of size O(|h|(log x)42 +

√
x). Note that the sequence

A = (θ(n)a(n)) with (n, h) = 1, 0 < n 6 x, admits a level of distribution x1/2−ε.
This can be achieved by the large sieve method. Therefore, our congruence sums are
equidistributed over reduced residue classes apart from an error term O(x1−δ) provided
that Dy2 6 x1/9. We have

Vh(x) = Mh(x) +O
(
|h|(log x)42 + x1−δ) (4.2)

with
Mh(x) =

∑
q<y

(q,h)=1

ξq
∑

d<x1/3

(d,h)=1

γ(d)
ϕ([d, q])

∑
0<n6x

(n,hdq)=1

θ(n)a(n), (4.3)

where δ > 0 and the implied constants are absolute.
We are going to execute the summation over d first, which for given n and q, is equal to

L(x) =
∑

d<x1/3

(d,hn)=1

γ(d)
ϕ
(
[d, q]

) = 1
ϕ(q)

∑
c|q∞

γ(c) (c, q)
c

∑
d<x1/3/c
(d,hnq)=1

γ(d)
ϕ(d) . (4.4)

Note that the divisors c of q∞ with c > x1/9 contribute a negligible amount. For smaller c
we evaluate the sum over d by contour integration of the series

Dv(s) =
∑

(d,v)=1

γ(d)
ϕ(d) d

−s = Pv(s)D(s),

where D(s) = D1(s) is given by the product of zeta-functions (3.3) and Pv(s) removes
the local factors of D(s) at primes p|v;

Pv(s) =
∏
p|v

(
1− pε1−s−1) . . . (1− pεr−s−1). (4.5)

Hence Dv(s)/s has simple poles at s = ε0 = 0 and at s = ε1, . . . , εr with residue

Rv(i) = R(i)Pv(εi)

where R(i) is the residue of D(s)/s at s = εi, that is

R(i) = κ(i)
r∏
j=0
j 6=i

ζ(1 + εi − εj)

with κ(0) = 1 and κ(i) = 1/εi if 1 6 i 6 r. Note that

R(i) � (log z)r. (4.6)
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By complex integration, the inner sum over (d, hnq) = 1 in (4.4) is equal to
r∑
i=0

R(i)Phnq(εi)
(
x1/3/c

)εi (4.7)

up to a small, negligible error term. Next we compute the resulting multiplicative func-
tions (the sieve density)

gε(q) = Pq(ε)
ϕ(q)

∑
c|q∞

γ(c)(c, q)c−ε−1 (4.8)

for every ε = εi, 0 6 i 6 r. At primes we have

gε(p) = Pp(ε)
p− 1

(
1 + p

∞∑
α=1

γ(pα)p−α(ε+1)
)

= 1− p− 2
p− 1Pp(ε).

Note that 0 < Pp(ε) 6 1, so 0 < gε(p) < 1 if p 6= 2, which is the case since p|q, (q, h) = 1,
h even. More precisely, we have

Pp(ε) = 1−
r∑
j=1

pεj−ε−1 +O
(
p−2),

so

gε(p) = p−1 +
r∑
j=1

pεj−ε−1 +O
(
p−2), (4.9)

for every ε = εi, 0 6 i 6 r. Since the εi = i/ log z are small we have essentially a sieve
problem of dimension r + 1.

By the above computations, we get

L(x) =
r∑
i=0

R(i)Phn(εi)gεi
(q)xεi/3,

up to a small, negligible error term. Hence, (4.3) becomes

Mh(x) =
r∑
i=0

R(i)Ph(εi)xεi/3
∑
n6x

(n,h)=1

θ(n)a(n)Pn(εi)Ghn(εi) (4.10)

where
Gv(ε) =

∑
q<y

(q,v)=1

ξqgε(q) (4.11)

up to a small, negligible error term. By sieve methods,

Gv(ε) �
∏
p<z
p-v

(
1− gε(p)

)
�
∏
p<z
p-v

(
1− p−1)(1− pε1−ε−1) . . . (1− pεr−ε−1),

provided z4r 6 y. Actually, this condition is not necessary if we claimed only the upper
bound for Gv(ε). For s = 1 +O(1/ log z) we have∏

p<z

(
1− p−s

)
� (log z)−1.
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Put ψ(v) = v/ϕ(v). Thus
Gv(ε) � ψ(v)Pv(ε)−1(log z)−1. (4.12)

Inserting this into (4.10) we obtain an upper bound for Mh(x), specifically
Mh(x)� ψ(h)A(x)(log z)−1. (4.13)

where
A(x) =

∑
n6x

ψ(n)θ(n)a(n). (4.14)

Recall that θ(n) is given by (2.1), a(n) is given by (3.4) and (n, h) = 1.
First we examine the sieve factor θ = 1 ∗ ξ. We need a crude but very transparent

bound for θ(n). Note that θ(n) = θ
(
(n, P (z))

)
because the sieve weights ξq are supported

on divisors of P (z). Assume (ξq) is the combinatorial upper-bound sieve with truncation
parameters yr = (y/p1 . . . pr)1/β , see (6.54) of [FI1], where β > 2 will be chosen later.
Assume zβ+1 6 y. Then, for m|P (z),m 6= 1, we have

θ(m) 6
∑
r odd

( ∑
ap1...pr=m

zr6pr<...<p1<z
p|a⇒pr<p<z

1
)

where
zr = z((β−1)/(β+1))r/2

,

see (6.41) and (6.64) of [FI1]. Let s = ω(m) > 1 be the number of prime factors of m.
Then, we can choose r prime factors pr < . . . < p1 in

(
s
r

)
ways, 1 6 r 6 s. We have

zs 6 zr and

2
∑

16r6s
r odd

(
s

r

)
= 2s = τ(m).

Hence 2θ(m) 6 τ(m) if m has all its prime factors in the segment zs 6 p < z and
θ(m) = 0 otherwise.

Now we are ready to estimate the sum (4.14). Our goal is
A(x)� L(1, χ)x log x. (4.15)

Applying (3.4) for a(n) and the combinatorial estimation for θ(m) described above, we
estimate as follows:

A(x) 6
∑

bc6x, b>y
(bc,h)=1

4ω(b)λ(b)Λ(c)ψ(bc)θ(bc)

6
∑

b′c′bc6x, b′b>y
p|bc⇒p|P (z)
p|b′c′⇒p>z

4ω(b′b)λ(b′b)Λ(c′c)ψ(b′bc′c)θ(bc)

6
∑

b′bc6x, b′b>y
p|b⇒zr+16p<z
p|b′⇒p>z

22ω(b′)+3rλ(b′b)Λ(c)ψ(b′bc)

where r = ω(b) is the number of prime factors of b.



102 J. B. FRIEDLANDER AND H. IWANIEC

Let d be the product of the first (that is smallest) s = [r/2] distinct prime factors
of b so that d is squarefree and d 6

√
b. Note that 2s 6 r 6 2s + 1 and zr+1 > z2s+2.

Moreover, we have ω(b′)� 1 and ψ(b′bc)� ψ(b). Hence, we obtain

A(x)�
∑

dbc6x, b>
√
y

p|d⇒z2s+26p<z

26sλ(dc)Λ(c)ψ(b)

� x
∑

d6x/
√
y

p|d⇒z2s+26p<z

τ(d)6d−1
∑

√
y6b6x

λ(db)ψ(b)b−1.

The sum over b is � τ(d)L(1, χ) log x using elementary arguments, so

A(x)� L(1, χ)x(log x)V

where
V =

∑
p|d⇒z2s+26p<z

τ(d)7d−1.

Recall that s = ω(d) is the number of prime factors of d and that d runs over squarefree
integers. This inequality will imply the bound (4.15) if we show that V is absolutely
bounded. To see this we proceed as in (6.64)–(6.70) of [FI1], obtaining

V 6 1 +
∑
s>1

1
s!

( ∑
z2s+26p<z

128
p

)s
6
∑
s>1

1
s!
(
128s log β+1

β−1 +O(1)
)s

6
∑
s>1

(
128e log β+1

β−1 +O(s−1)
)s � 1,

(4.16)

provided that 128e log β+1
β−1 < 1, which does indeed hold for β = 696.

Inserting (4.15) into (4.13) we get

Mh(x)� ψ(h)L(1, χ)x.

Inserting this in turn into (4.2) and then into (3.5), we conclude by (2.6) the following
nice approximation of Sh(x) by S∗h(x).

Proposition 4.1. Let z700 = y = x1/120 and D4 6 z. Let Sh(x) and S∗h(x) be given by
(1.1) and (2.7) respectively. We have

Sh(x) = S∗h(x) + xEh(x) (4.17)

with the error term satisfying

Eh(x)� ψ(h)L(1, χ) log x+ (log x)−2 (4.18)

for every even h, 0 < h 6 H = x(log x)−48, where the implied constant is absolute.

5. Variation of Sh(x) in the shift. Opening the sieve functions θ(m), θ(n) in (2.7)
and inserting (2.5) for Λ∗(m), Λ∗(n) we get

S∗h(x) =
∑∑
q1,q2<y

ξq1ξq2

∑∑
b1,b2<y

ν(b1)ν(b2)Ah
(
x; q1, b1, q2, b2

)
,
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with
Ah(x; q1, b1, q2, b2) =

∑∑∑∑
a1b1−a2b2=h

m=a1b1≡0(mod q1)
n=a2b2≡0(mod q2)

λ′(a1)λ′(a2). (5.1)

Recall that m, n run over 0 < m,n 6 x with (mn, h) = 1. Note that the last condition
implies automatically that (q1q2b1b2, h) = 1. Now we need an asymptotic formula for
the “congruence sums” (5.1) which holds uniformly for 0 < h 6 H and q1b1q2b2 6 y4.
This is a problem of shifted convolution type for the divisor-like function λ′ = χ ∗ log.
There is a vast literature on related subjects (see for example [DFI1, Theorem 1], [DFI2,
Proposition 15.1] or [KMV]) but no result is stated which would exactly cover our sum
(5.1). The closest seems to be Theorem 4.4 of [CI], which we adopt here without repeating
the involved arguments (Kloosterman circle method with Weil’s bound for Kloosterman
sums). Fortunately, we do not need to use the results in an explicit form. In our current
situation these arguments yield

Ah(x; q1, b1, q2, b2) =
{
S(h)B(x) +O

(
τ(h)(log x)−20)}x/[q1, b1][q2, b2]

+O
(
τ(h)(q1b1q2b2)6x3/4(log x)4), (5.2)

where S(h) = S(h; q1, b1, q2, b2) is a singular series and
B(x) = B(x; q1, b1, q2, b2)� x(log x)2

by trivial estimations. The error terms are negligible. The main term depends on h only
via the singular series S(h). The key feature of S(h) is that it varies only slightly with
respect to large prime divisors of h. It is given by an absolutely convergent series of
Ramanujan sums. For our application the dependence on q1, b1, q2, b2 does not matter.
Specifically, we can write S = 1 ∗ δ with

δ(d)� τ(d)d−1. (5.3)
Hence, for (k, h) = 1 we derive

S(hk)−S(h) =
∑
d|hk

δ(d)−
∑
d|h

δ(d) =
∑
a|h

∑
c|k
c>1

δ(ac)

�
(∑
a|h

τ(a)
a

)(∑
c|k
c>1

τ(c)
c

)
� ψ(h)2ψ(k)(ψ(k)− 1),

where we recall that ψ(k) = k/ϕ(k). Note that for k free of small prime divisors ψ(k)− 1
is small.

By the above observations we conclude the following
Proposition 5.1. Assume the conditions as in Proposition 4.1. Then, for every k with
(h, k) = 1, 1 6 k 6 H/h, we have

S∗h(x) = S∗hk(x) +O
(
(ψ(k)− 1)x(log x)9 + x(log x)−2) (5.4)

where the implied constant is absolute.
Combining (5.4) with (4.17) we obtain (under the above conditions)

S∗h(x) = S∗hk(x) + xEh,k(x) (5.5)
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where the error term satisfies

Eh,k(x)� ψ(hk)L(1, χ) log x+ (ψ(k)− 1)x(log x)9 + x(log x)−2. (5.6)

6. Proof of Theorem 1.1. Fix a positive even number h. We shall average the rela-
tion (5.5) with respect to k over the set

K = {k : 0 < k 6 K, (k, hP ) = 1}

where K = H/h and P = P (w) is the product of all primes p - h, p < w with
w = (log x)2016. Note that (by elementary sieve methods)

|K| = K
∏
p|hP

(
1− 1

p

)
{1 +O(1/ log x)}, (6.1)

∑
k∈K

ψ(k)� |K|, (6.2)

and ∑
k∈K

(
ψ(k)− 1

)
�
∑
k∈K

(∑
c|k
c>1

c−1
)
6 K

∑
(c,hP )=1
c>1

c−2 � K/w.

Hence, (5.5) yields

Sh(x) = 1
|K|

∑
k∈K

Shk(x) +O
(
L(1, χ)x log x+ x(log x)−2). (6.3)

Here we have ∑
k∈K

Shk(x) =
∑
n6x

(n,hP )=1

Λ(n)
∑
k∈K

Λ(n+ hk) +O(xw)

where the error term O(xw) takes care of the condition (n, hP ) = 1 which is introduced
here for technical reasons.

Next, we are going to execute the summation of Λ(n + hk) over k ∈ K. To this end
we relax the condition (k, hP ) = 1 by means of upper-bound and lower-bound sieves of
level ∆ = x1/2016. First we get an upper bound as follows:∑

k∈K

Λ(n+ hk) 6
∑
d<∆
d|hP

ξd
∑

n<`6n+hK
`≡n(mod dh)

Λ(`)

= hK
∑
d<∆
d|hP

ξd/ϕ(dh) +O
(
x(log x)−A

)
by the Bombieri–Vinogradov theorem. Here g(d) = ϕ(h)/ϕ(dh) is the relevant multiplica-
tive sieve density function for which we get∑

d<∆
d|hP

ξdg(d) =
{

1 +O(1/ log x)
} ∏
p|hP

(
1− g(p)

)
.
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Similarly we deal with the lower bound. Combining the two we obtain∑
k∈K

Λ(n+ hk) =
{

1 +O(1/ log x)
} Kh
ϕ(h)

∏
p|hP

(
1− g(p)

)
= BC(h)|K|{1 +O(1/ log x)}

where B and C(h) are given by (1.2), (1.3). Summing this over n we find
1
|K|

∑
k∈K

Shk(x) = BC(h)x
{

1 +O(1/ log x)
}
. (6.4)

This, together with (6.3), completes the proof of Theorem 1.1.
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