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Abstract. We derive and prove a new formulation of the Lerch zeta function as a fractional
derivative of an elementary function. We demonstrate how this formulation interacts very nat-
urally with basic known properties of Lerch zeta, and use the functional equation to obtain
a second formulation in terms of fractional derivatives.

1. Introduction. Zeta functions are among the most important objects in the field of
analytic number theory. The most famous of these is the Riemann zeta function, defined
by

ζ(s) =
∞∑
n=1

n−s for Re(s) > 1, (1)

and by analytic continuation for all s ∈ C. This function has been the subject of intense
study for nearly two hundred years, mostly due to its connection with the distribution of
prime numbers [7, 12, 32]. It can be generalised in a number of directions: for example,
the Dirichlet L-functions are number-theoretical generalisations depending on both the
complex variable s and a Dirichlet character modulo some base d, while the Hurwitz zeta
function and Lerch zeta function are analytic generalisations depending on two or three
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independent complex variables. Specifically, the Hurwitz zeta function is defined by

ζ(x, s) =
∞∑
n=0

(n+ x)−s for Re(s) > 1, Re(x) > 0, (2)

and by analytic continuation for all s ∈ C, while the Lerch zeta function is defined by

L(t, x, s) =
∞∑
n=0

(n+ x)−se2πitn for Re(s) > 1, Re(x) > 0, Im(t) ≥ 0, (3)

and by analytic continuation for (t, x, s) in larger domains [17], extending to a universal
cover of the manifold C \Z×C \Z−0 ×C. (We note that t here is not the imaginary part
of s, which it has sometimes [7, 32] been used to denote, but an entirely independent
variable.) It is clear that the Riemann, Hurwitz, and Lerch zeta functions are related by
the following identities:

ζ(s) = ζ(1, s); ζ(x, s) = L(0, x, s).

Many of the techniques used for analysing the Riemann zeta function and Dirichlet
L-functions, such as the Euler product formula, have no general analogues for the Hurwitz
or Lerch zeta functions. This is because the latter functions have a less direct connection
to number theory, and are more readily studied using analytic methods. Indeed, many
important facts about the Riemann zeta function do have analogues in the Hurwitz and
Lerch cases [29, 9, 8], which are even proved in some cases by analogous methods. And
analysing the Hurwitz and Lerch zeta functions can still be significant for number theory,
purely because they include the Riemann zeta function as a special case.

In the current work, we shall be using the theory of fractional calculus: derivatives and
integrals to non-integer orders. It is possible to define the nth derivative of a function
not just for n ∈ N but for any n ∈ R or even n ∈ C. This field of study has a long
history, stretching back to Hardy, Littlewood, Riemann, and even Leibniz, but only in
recent decades has it begun to expand more rapidly. Much of this expansion is due to
applications of fractional models being discovered throughout many areas of science,
including chaos theory [11, 28], bioengineering [21], stochastic processes [22], and control
theory [3].

Fractional-order derivatives and integrals can be defined in a number of ways, from
the classical Riemann–Liouville and Caputo formulae [23, 30] to more recent variants
such as the Caputo–Fabrizio, Atangana–Baleanu, and other models [4, 2, 13, 14]. Here,
we shall be using the basic Riemann–Liouville model, in which the fractional integral is
defined by

cD
−α
t f(t) = 1

Γ(α)

∫ t

c

(t− u)α−1f(u) du for Re(α) > 0, (4)

and the fractional derivative is defined by

cD
α
t f(t) = dn

dtn
(
cD

α−n
t f(t)

)
, n := bRe(α)c+ 1, for Re(α) ≥ 0. (5)

In both (4) and (5), the quantity c is a complex constant, which can be thought of as
a constant of integration. In most applications of Riemann–Liouville fractional calculus,
c is taken to be either 0 or −∞. The term differintegral is used in fractional calculus to



LERCH ZETA AS A FRACTIONAL DERIVATIVE 115

cover both derivatives and integrals, which in certain models can both be expressed by
a unified formula.

When t is a complex variable, the issue of branches and contours arises, since the term
(t − u)α−1 appearing in (4) is in general a multi-valued function. We usually take the
contour of integration to be the straight line-segment from c to t in the complex u-plane,
so that the argument of t − u is fixed as u varies. In the present work, we shall mostly
be using c = −∞, so the contour of integration is a horizontal ray extending to the left
from t, and we assume arg(t − u) = 0 so that the integrand of (4) is a real multiple
of f(u).

There are various ways of motivating the definitions (4) and (5). For example, the
integral formula (4) is a natural generalisation of Cauchy’s formula for repeated integrals,
or of Cauchy’s integral formula in complex analysis, while the derivative formula (5)
arises naturally from consideration of semigroup properties and is also, for holomorphic
functions f , the analytic continuation of (4).

We provide further motivation for the Riemann–Liouville formula by demonstrating
that it works as expected for a few elementary functions f , in the following two lemmas.

Lemma 1.1. The Riemann–Liouville differintegral of a power function, with constant of
differintegration c = 0, is given by

0D
α
t

(
tβ
)

= Γ(β + 1)
Γ(β − α+ 1) t

β−α, (6)

for α, β ∈ C with Re(β) > −1.

Proof. This follows directly from the definition of the beta function; the details may be
found in [23].

Lemma 1.2. The Riemann–Liouville differintegral of an exponential function, with con-
stant of differintegration c = −∞, is given by

−∞D
α
t

(
ekt
)

= kαekt, (7)

for α, k ∈ C with k 6∈ R−0 , where complex power functions are defined by the principal
branch with arguments in the interval (−π, π).

Proof (based on [30]). This follows from the definition of the gamma function, but care
must be taken over the complex substitution in the integral. Note first that it will suffice
to prove the result for Re(α) < 0, since it will then follow for Re(α) ≥ 0 using the
definition (5). Thus we assume Re(α) < 0 and k 6∈ R−0 , and use the definition (4):

−∞D
α
t

(
ekt
)

= 1
Γ(−α)

∫ t

−∞
(t− u)−α−1eku du.

Substituting v = kt− ku yields

−∞D
α
t (ekt) = 1

Γ(−α)

∫ 0

∞

(
v

k

)−α−1
ekt−v

(
1
−k

)
dv

= 1
Γ(−α) e

kt

(
1
k

)−α ∫ ∞
0

v−α−1e−v dv = ekt
(

1
k

)−α
= kαekt,
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where for the last step we used the fact that k is not on the critical branch cut and
therefore k and 1

k both have arguments in (−π, π).
Another way of motivating the Riemann–Liouville definition is to note that it behaves

exactly as expected with respect to Fourier and Laplace transforms. It is well known that
standard differentiation and integration of a function correspond to multiplication of its
Fourier transform by power functions. It turns out [23, 30] that the same is true for
Riemann–Liouville fractional differintegrals:

F
[
−∞D

α
t f(t)

]
= (iω)αF [f(t)];

L
[
0D

α
t f(t)

]
= ωαL[f(t)].

As we are only mentioning these identities for the sake of motivation, and they are not
relevant to the main arguments of this paper, we omit the proofs, and refer the reader to
[30, §7] for rigorous statements of the results with all required assumptions.

The following result concerning fractional integration of series will be used later on
in the proof of the main result.
Lemma 1.3. If the series f(t) =

∑∞
n=1 fn(t) is uniformly convergent on a complex disc

|t− c| ≤ R with c−R 6∈ R+
0 , and the constants δ, α satisfy δ > 0, Re(α) < 0, and[ ∞∑
n=N+1

fn(t)
]
tδ−α → 0 as N →∞

uniformly on the ray from c−R to negative infinity, then we have

−∞D
α
t f(t) =

∞∑
n=1

−∞D
α
t fn(t)

for |t− c| ≤ R, and the series of fractional integrals is locally uniformly convergent.
Proof. This result is established by the proof of [15, Theorem IX]. (In that proof, it was
assumed that c is real, but this was only for convenience — the same argument works for
complex c provided that c−R 6∈ R+

0 .)
Despite the increasing usefulness and applications of fractional calculus, it has so

far been largely neglected as a tool in analytic number theory. The idea of bringing
fractional calculus and analytic number theory together was born in the work of Keiper,
who in his 1975 MSc thesis [15] established a formula for the Riemann zeta function
as a Riemann–Liouville fractional derivative. It has only been revived very recently, in
the work of Guariglia et al. [10, 5, 6] and also Srivastava et al. [19, 20, 31] — but the
Guariglia papers use a different model of fractional calculus, namely a recent variant due
to Ortigueira of the Caputo model, while the Srivastava papers only consider fractional
expressions for generalisations of the Lerch zeta function in terms of each other, not in
terms of elementary functions.

Here, we establish a new relationship between fractional calculus and zeta functions,
by writing the Lerch zeta function as a fractional derivative of a much simpler function.
We use only the classical Riemann–Liouville model of fractional calculus, without the
complications introduced by newer models. Furthermore, we must necessarily use the
Lerch zeta function rather than the Hurwitz or Riemann zeta functions, since the third
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parameter t in L(t, x, s) plays a vital role in our derivation. This may explain why our
formula has not been discovered before. Nevertheless, it does yield a new expression for
the Riemann zeta function too, simply by setting x = 1 and taking appropriate t.

This paper is organised as follows. In Section 2, we derive the main result, justify its
naturality by several remarks to verify various aspects of it, and use it to deduce further
formulae linking zeta functions with fractional differintegrals. In Section 3, we comment
on possible applications and extensions of our results.

2. The main results. The crux of this work is the following theorem expressing the
Lerch zeta function as a fractional differintegral.

Theorem 2.1. The Lerch zeta function can be written as

L(t, x, s) = (2π)s exp
[
iπ( s2 − 2tx)

]
−∞D

−s
t

(
e2πitx

1− e2πit

)
(8)

for any complex numbers s, x, t satisfying Im(t) > 0 and x 6∈ (−∞, 0].

Proof. We start from the definition (3) of the Lerch zeta function, and use the result of
Lemma 1.2 to rewrite the summand as a fractional differintegral:

L(t, x, s) =
∞∑
n=0

(n+ x)−se2πitn = (2πi)se−2πitx
∞∑
n=0

(2πi)−s(n+ x)−se2πit(n+x)

= (2πi)se−2πitx
∞∑
n=0

−∞D
−s
t

(
e2πit(n+x)). (9)

So far our argument is valid for all t, x, s ∈ C such that Re(s) > 1, Re(x) > 0, and
Im(t) ≥ 0. These conditions come from (3); the extra condition that 2πi(n + x) 6∈ R−0 ,
required by Lemma 1.2, is automatically satisfied for all n ≥ 0 due to the condition
we already have on x. Note that since s has positive real part, the fractional operator
appearing in (9) is an integral and not a derivative.

The next consideration is whether or not the summation and fractional integration
operators in (9) can be swapped. For any ε > 0, the series

∞∑
n=0

e2πit(n+x)

converges uniformly on the closed region Im(t) ≥ ε of the upper half t-plane, and indeed( ∞∑
n=N+1

e2πit(n+x)
)
tδ−s → 0 as N →∞

uniformly on this region for any fixed δ < 1. So, under the slightly strengthened condition
Im(t) > 0, it follows from Lemma 1.3 that the series of fractional integrals also converges
locally uniformly and

−∞D
−s
t

( ∞∑
n=0

e2πit(n+x)
)

=
∞∑
n=0

−∞D
−s
t

(
e2πit(n+x)).
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Substituting this identity into (9) yields:

L(t, x, s) = (2πi)se−2πitx
−∞D

−s
t

( ∞∑
n=0

e2πit(n+x)
)

= (2πi)se−2πitx
−∞D

−s
t

(
e2πitx

∞∑
n=0

(
e2πit)n)

= (2πi)se−2πitx
−∞D

−s
t

(
e2πitx

1− e2πit

)
= (2π)s exp

[
iπ( s2 − 2tx)

]
−∞D

−s
t

(
e2πitx

1− e2πit

)
,

as required.
We have now proved the main result (8) under the following assumptions:

Re(s) > 1, Re(x) > 0, Im(t) > 0.

By analytic continuation, these assumptions can be relaxed to any t, x, s ∈ C such that
both sides of (8) are still holomorphic. We know from [17, Theorem 2.3] that the left-hand
side L(t, x, s) can be extended to a holomorphic function on the domain{

(t, x, s) ∈ C× C× C : Im(t) > 0, x 6∈ (−∞, 0]
}
,

this domain being embeddable into the universal cover of (C \ Z)× (C \ Z−0 )× C.
The right-hand side of (8) is clearly going to be holomorphic in x wherever it is

well-defined, and ditto in s by [30, §2.4]. It is well-defined and holomorphic in t provided
that the fractional differintegral is well-defined and holomorphic in t.

For Re(s) > 0, this differintegral can be written as

1
Γ(s)

∫ t

−∞
(t− u)s−1 e2πiux

1− e2πiu du. (10)

The integrand here is holomorphic in u ∈ C \ Z, since we are assuming the contour of
integration to be horizontal in the complex plane. Thus the whole expression is well-
defined and holomorphic for any t, x, s such that Im(t) > 0 and the integral converges at
both endpoints.

Near u = t, the exponential-fraction part of the integrand is constant, so the integral
behaves like (t− u)s, which converges since we have assumed Re(s) > 0.

Near u = −∞, the exponential denominator is bounded (since we have Im(u) > 0),
the numerator has exponential decay provided that Im(x) < 0, and the (t − u)s−1 term
has only polynomial growth.

Thus the expression (10) is well-defined and holomorphic in all three variables pro-
vided that Re(s) > 0, Im(x) < 0, and Im(t) > 0.

We can extend the region of validity to cover x ∈ R\Z−0 too, given an extra restriction
on s. The series

∞∑
n=0

e2πiu(x+n) = e2πiux

1− e2πiu
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is uniformly convergent, since u has a fixed positive imaginary part. Therefore (10) can
be rewritten, regardless of x, in the form of the series

1
Γ(s)

∞∑
n=0

∫ t

−∞
(t− u)s−1e2πiu(x+n) du,

whose integral summand is well-defined for x ∈ R \ Z−0 provided that Re(s) ≤ 1.
Given the definition (5) of fractional derivatives, the requirement Re(s) > 0 can be

eliminated immediately.
So the main result (8) is now proved under the following assumption:

Im(x) < 0, Im(t) > 0 or Re(s) ≤ 1, x ∈ R \ Z−0 , Im(t) > 0.

But we already know that (8) is also valid for Re(s) > 1, Re(x) > 0, Im(t) > 0. Thus, by
taking unions of domains, we can say that it is always valid for

Im(x) < 0 or x ∈ R+, Im(t) > 0.

Finally, it is clear from the definition (3) that the Lerch zeta function satisfies the
following basic functional equation:

L(t, x, s) = L(−t̄, x̄, s̄). (11)

The condition Im(t) > 0 is preserved by mapping t to −t̄, but if Im(x) ≤ 0, then
Im(x̄) ≥ 0. Thus, if (8) is known to be valid for the lower half plane part of C \R−0 , then
by taking complex conjugates it follows that it is also valid for the upper half plane part
of C \ R−0 , and therefore for all x ∈ C \ R−0 .

Remark 2.2. Note that unlike previous results on the fractional calculus of zeta functions
[15, 10], our formula depends crucially on using the Lerch zeta function rather than the
Riemann or Hurwitz zeta functions. The third parameter t— i.e. the one which appears in
the Lerch function L(t, x, s) but not the Riemann or Hurwitz functions — is a fundamental
part of our result (8): we could not have achieved analogous results for ζ(s) or ζ(x, s)
without first introducing this extra parameter in order to differentiate with respect to it.

It is, however, possible to obtain a formula for the Riemann zeta function as a corollary
of Theorem 2.1, as follows.

Corollary 2.3. The Riemann zeta function can be written as

ζ(s) = (2πi)s

21−s − 1 −∞D
−s
t

(
1

e−2πit − 1

)∣∣∣∣
t=1/2

(12)

for any s ∈ C, or alternatively as

ζ(s) = (2πi)s lim
t→0

(
−∞D

−s
t

(
1

e−2πit − 1

))
(13)

for Re(s) > 1.

Proof. The first identity (12) follows by letting t = 1
2 in (8) and noting the fact that

L( 1
2 , 1, s) = (1− 21−s)ζ(s).
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The second identity (13) follows by letting t → 0 in (8) and recalling the series
definitions (1), (3). We note that (13) does not hold in general, because the limit as
t→ 0 of the Lerch function does not always exist [24].

Remark 2.4. We verify that our new formula satisfies the complex conjugation relation
(11) for the Lerch zeta function. Using the right-hand side of (8) as the definition of
L(t, x, s), we get:

L(t, x, s) = (2π)s̄ exp
[
−iπ( s̄2 − 2t̄x̄)

]
−∞D

−s
u=t

(
e2πiux

1− e2πiu

)
L(−t̄, x̄, s̄) = (2π)s̄ exp

[
iπ( s̄2 + 2t̄x̄)

]
−∞D

−s̄
u=−t̄

(
e2πiux̄

1− e2πiu

)
(We use the notation Dα

u=tf(u) instead of Dα
t f(t) in order to avoid confusion in the case

where t is replaced by −t̄.) Thus, to verify (11) it will be sufficient to show that

−∞D
−s
u=t

(
e2πiux

1− e2πiu

)
= eiπs −∞D

−s̄
u=−t̄

(
e2πiux̄

1− e2πiu

)
,

or in other words, assuming Re(s) > 0,

1
Γ(s̄)

∫ t

−∞
(t− u)s−1 e2πiux

1− e2πiu du = eiπs
1

Γ(s̄)

∫ −t̄
−∞

(−t̄− u)s̄−1 e2πiux̄

1− e2πiu du.

By writing t = a+ bi and −t̄ = −a+ bi and u = r + bi, this becomes∫ a

−∞
(a− r)s̄−1 e−2πiūx̄

1− e−2πiū dr = eiπs
∫ −a
−∞

(−a− r)s̄−1 e2πiux̄

1− e2πiu dr.

Since b > 0, both denominators can be expanded as series, so it is sufficient to prove that∫ a

−∞
(a− r)s̄−1e−2πiū(x̄+n) dr = eiπs

∫ −a
−∞

(−a− r)s̄−1e2πiu(x̄+n) dr

for all n ∈ Z+
0 . Making a linear substitution and factoring out constant terms, this reduces

to ∫ ∞
0

ps̄−1e2πip(x̄+n) dp = eiπs
∫ ∞

0
ps̄−1e−2πip(x̄+n) dp,

or equivalently ∫ ∞
0

ps̄−1e2πip(x̄+n) dp = −
∫ 0

−∞
ps̄−1e2πip(x̄+n) dp,

where the integral along the negative real axis is assumed to be with argument +π. And
by Jordan’s lemma, closing the real contour in the upper half plane gives∫ ∞

−∞
ps̄−1e2πip(x̄+n) dp = 0

for all n ≥ 0, provided that x ∈ R+ and Re(s) < 1.
So we have re-verified the identity (11) under the assumptions 0 < Re(s) < 1, x ∈ R+,

Im(t) > 0. This acts as a confirmation of the correctness of our result.
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The result of Theorem 2.1 is an expression for the Lerch zeta function as the prod-
uct of a fractional differintegral and a simple explicit term. We now demonstrate how
this explicit term arises naturally from consideration of the Lerch zeta function and its
properties, and thence derive a second formula for the Lerch zeta function in terms of
fractional differintegrals.

Remark 2.5. It is known [1, 16, 18] that for s, t ∈ C with Im(t) > 0 and x ∈ (0, 1), or
with t, x ∈ (0, 1), the Lerch zeta function satisfies the functional equation

L(t, x, 1− s) = Γ(s)
(2π)s

(
exp
[
iπ( s2 − 2tx)

]
L(−x, t, s)

+ exp
[
−iπ( s2 − 2x(1− t))

]
L(x, 1− t, s)

)
.

(14)

Thus, we observe that the exponential multiplier term exp[iπ( s2 − 2tx)] seen in (8) is
already known to arise from essential properties of the Lerch zeta function. This demon-
strates the naturality of the result of Theorem 2.1.

Theorem 2.6. The Lerch zeta function can be written as

L(t, x, 1− s) = Γ(s)eiπs −∞D−su
(

e2πitu

1− e−2πiu

)∣∣∣∣
u=−x

− Γ(s)−∞D−sx
(
e−2πitx

1− e2πix

)
(15)

where s, x, t are any complex numbers satisfying Im(t) > 0 and x ∈ (0, 1).

Proof. In order to use the identity (14) together with the new expression (8), we will
need to show that (8) can be extended from Im(t) > 0 to the line t ∈ R \ Z. This can
be shown by continuity, provided that we choose the right contour for the integration
inherent in the fractional differintegral. When t ∈ R \ Z, the straight ray from t to −∞
contains infinitely many poles of the function e2πitx/(1− e2πit), so the integral must be
defined as a limit:

−∞D
−s
t

(
e2πitx

1− e2πit

)
= lim
ε→0+

[
1

Γ(s)

∫ t′

−∞
(t′ − u)s−1 e2πiux

1− e2πiu du
]
t′=t+iε

, t ∈ R. (16)

With this definition, it is clear by continuity that (8) still holds for all t with Im(t) ≥ 0,
t 6∈ Z.

Now we can start from the functional equation (14) and substitute (8) for the two
Lerch functions on the right-hand side. For simplicity, we shall drop the left-subscript
−∞ on the fractional operators, since they all use the same constant of differintegration.
We also use the notation Dα

u=xf(u) instead of Dα
xf(x), just to avoid confusion in the case

where x is replaced by −x.

L(t, x, 1− s)

= Γ(s)
(2π)s

(
exp
[
iπ( s2 − 2tx)

]
L(−x, t, s) + exp

[
−iπ( s2 − 2x(1− t))

]
L(x, 1− t, s)

)
= Γ(s)

(2π)s

(
exp
[
iπ( s2 − 2tx)

]
(2π)s exp

[
iπ( s2 + 2tx)

]
D−su=−x

(
e2πitu

1− e2πiu

)
+ exp

[
−iπ( s2 − 2x(1− t))

]
(2π)s exp

[
iπ( s2 − 2(1− t)x)

]
D−su=x

(
e2πi(1−t)u

1− e2πiu

))
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= Γ(s)
(

exp[iπs]D−su=−x

(
e2πitu

1− e2πiu

)
+D−su=x

(
e2πi(1−t)u

1− e2πiu

))
= Γ(s)

(
eiπsD−su=−x

(
e2πitu

1− e2πiu

)
−D−su=x

(
e−2πitu

1− e−2πiu

))
,

and the required result follows.

Remark 2.7. The results of Theorems 2.1 and 2.6 can be used to provide a new elemen-
tary proof of the functional equation (14).

In the proof of Theorem 2.6, we used the new expression (8) for the Lerch zeta function
to reduce the right-hand side of the functional equation (14) to an expression in terms of
two fractional differintegrals. If we can rewrite this expression using elementary methods
as simply L(t, x, 1 − s), then we have rederived the functional equation using fractional
calculus.

Therefore, we start from the right-hand side of (15) and proceed as follows:

(RHS of (15)) = eiπs
∫ −x
−∞

(−x− u)s−1 e2πitu

1− e−2πiu du−
∫ x

−∞
(x− u)s−1 e−2πitu

1− e2πiu du

= eiπs
∫ ∞
x

(−x+ u)s−1 e−2πitu

1− e2πiu du−
∫ x

−∞
(x− u)s−1 e−2πitu

1− e2πiu du

= −
∫ ∞
−∞

(x− u)s−1 e−2πitu

1− e2πiu du,

where the contour of integration from −∞ to +∞ crosses the real axis at x, passing
above all the poles to the left of x and below all the poles to the right of x. This choice
of contour follows from the definition given by (16).

By Jordan’s lemma, for t ∈ R and Re(s) < 1, the contour can be closed in the lower
half plane. Then the residue theorem yields

(RHS of (15)) = 2πi
∞∑
n=0

Res
u=−n

(
(x− u)s−1 e−2πitu

1− e2πiu

)

= 2πi
∞∑
n=0

(x+ n)s−1 e
2πitn

2πi =
∞∑
n=0

(x+ n)s−1e2πitn = L(t, x, 1− s),

as required. Thus we have proved the functional equation (14) in the case where 0 < x < 1,
0 < t < 1, Re(s) < 1.

3. Conclusions. In this paper, we have forged a new connection between fractional cal-
culus and the theory of zeta functions. This connection is different from others that have
previously been discovered: it was found by using the Lerch zeta function, a significant
generalisation of the more commonly seen Riemann and Hurwitz zeta functions, and it
enables all of these zeta functions to be expressed as fractional derivatives of very basic
functions.

We have also demonstrated the usefulness of our result by indicating its natural
interplay with fundamental properties of zeta functions, and how it can even be used to
provide new proofs of some of these properties.
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Any new formula for zeta functions is potentially useful, as it gives a new angle of
attack in the ceaseless attempts to establish important properties of such functions. It
is especially important to establish more links between fractional calculus and analytic
number theory, in order to increase the probability that all the machinery of one field
can be brought to bear on the problems of the other.

The formulae proved in this paper could be just the start of a whole new project
bringing together two distinct fields of study. For example, basic theorems of fractional
calculus, such as analogues of the product rule and chain rule [25, 26, 27], may now
be usable to generate significant new expressions for zeta functions. Creating new links
between different areas is always an opportunity, and this is surely no exception.
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