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QUANTILE ESTIMATION VIA DISTRIBUTION FITTING

Abstract. This paper focuses on nonparametric estimation of quantiles,
based on estimators of the distribution function. We review some known
and recommended quantile estimators and propose a new one, which has all
the desired properties of quantile estimators. The consistency and asymp-
totic normality of the estimators is proved. The estimators considered are
compared in a small simulation study.

1. Introduction. Let X be a real-valued random variable with cumu-
lative distribution function (c.d.f.) F (t) = P (X ≤ t). This article deals with
estimating quantiles of X of level p ∈ (0, 1), i.e.,

xp = inf{t ∈ R : F (t) ≥ p} =: Q(p).

The function Q is called the quantile function. Throughout this paper we
assume that F ∈ F , where F is the family of all continuous and strictly
increasing distribution functions on the real line, i.e., F ∈ F if and only if
F (a) = 0, F (b) = 1, and F is strictly increasing on (a, b) for some −∞ ≤ a <
b ≤ +∞, where a and b are unknown. Under this assumption xp = F−1(p),
where F−1 is the inverse of F in the usual sense.

Given a random sample Xn = (X1, . . . , Xn) from the distribution F we
are interested in estimation of xp. A natural estimator of the xp is the value
of the empirical quantile function (EQF)

x̂Ep,n := Q̂En (p;Xn) := inf{t : F̂En (t) ≥ p},
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where

(1.1) F̂En (t) :=
1

n

n∑
i=1

I(−∞,t](Xi)

is the empirical distribution function (EDF), and IA(x) = 1 if x ∈ A and 0
otherwise. The estimators x̂Ep,n are called sample quantiles. In the literature
and statistical software there are a large number of different definitions of
sample quantiles. In a widely cited article [11], the authors analysed nine dif-
ferent definitions. Most of them are based on quantile function estimators Q̂n
constructed by linearly interpolating between so called plotting positions, i.e.,
the points pk, k = 1, . . . , n, for which Q̂n(pk) = Xk:n, where X1:n, . . . , Xn:n

denote the order statistics of the sample Xn. In [11] the authors compared
sample quantiles by describing their motivation and analyzing whether or
not they enjoy the following six properties:

P1: Q̂n(p) is a continuous function of p for each realization xn = (x1, . . . , xn)
of the random sample Xn,

P2: for each realization xn of Xn, and for each p ∈ (0, 1),
n∑
i=1

I(−∞,Q̂n(p)]
(xi) ≥ np,

P3: for each realization xn of Xn, and for each p ∈ (0, 1),
n∑
i=1

I(−∞,Q̂n(p)]
(xi) =

n∑
i=1

I[Q̂n(1−p),∞)(xi),

P4: where Q̂−1n (x) is uniquely defined,

Q̂−1n (Xk:n) + Q̂−1n (X(n−k+1):n) = 1 for k = 1, . . . , n,

P5: where Q̂−1n (x) is uniquely defined,

Q̂−1n (X1:n) > 0 and Q̂−1n (Xn:n) < 1,

P6: Q̂n(0.5) is equal to the sample median defined by{
(Xl:n +X(l+1):n)/2 if n = 2l,

X(l+1):n if n = 2l + 1.

Among the estimators compared in [11], only the estimator proposed by
Hazen [7], which is based on the plotting positions

(1.2) pHk =
k − 1/2

n
, k = 1, . . . , n,

has all six properties. However, Hyndman and Fan [11] recommend the esti-
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mator based on the plotting positions

(1.3) pHFk =
k − 1/3

n+ 1/3
, k = 1, . . . , n,

because it gives approximately median-unbiased estimates of Q(p) regardless
of the distribution (it fails to satisfy P3). The need for a standard definition
of sample quantiles was also discussed by Langford [13] who identified twelve
different definitions used in statistical software. In [15] the sample quantiles
proposed by Weibull [21] and Gumbel [6], based on plotting positions

(1.4) pWG
k =

k

n+ 1
, k = 1, . . . , n,

are recommended.
In quantile estimation, smoothed versions of the empirical distribution

function F̂En have also been considered. As a result one obtains order statis-
tics or their linear combinations (see e.g. [2]), or some more sophisticated
estimators for more advanced smoothing techniques ([1], [3], [4], [5], [23]).

A different approach was presented in a series of Zieliński’s papers (e.g.,
[24], [25], [26], [28]), where the best equivariant nonparametric estimators of
quantiles are derived under various criterions.

Let us notice that if an estimator Q̂n is based on an estimator F̂n of the
distribution function, i.e. Q̂n(p) = F̂−1n (p), then it satisfies P1–P6 if for each
realization xn of Xn the estimator F̂n has the following properties:

PF1: F̂n(t) is a continuous and strictly increasing function of t,
PF2: F̂n(xk:n) ≤ k/n for k = 1, . . . , n,
PF3:

∑n
i=1 I(−∞,p](F̂n(xi)) =

∑n
i=1 I[1−p,∞)(F̂n(xi)) for p ∈ (0, 1),

PF4: F̂n(xk:n) + F̂n(x(n−k+1):n) = 1,
PF5: F̂n(x1:n) > 0 and F̂n(xn:n) < 1,
PF6: F̂n((xl:n + x(l+1):n)/2) = 0.5 if n = 2l and F̂n(x(l+1):n) = 0.5 if n =

2l + 1.

In Section 2 we recall some known quantile estimators and propose new
estimators, based on known continuous versions of the EDF and an estimator
based on a new distribution function estimator which satisfies PF1–PF6. The
distribution function estimator proposed also satisfies

PF7: F̂n(ct+ a; cx1 + a, . . . , cxn + a) = F̂n(t;x1, . . . , xn) for all a, t ∈ R and
c > 0.

The estimator F̂n satisfying PF7 leads to the quantile function estimator Q̂n
which is equivariant with respect to affine transformations, i.e.,

P7: Q̂n(p; cX1 + a, . . . , cXn + a) = cQ̂n(p;X1, . . . , Xn) + a.
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Asymptotic properties of the estimators proposed are given in Section 3.
In Section 4 some results from simulation studies are provided. Real data
analysis is carried out in Section 5. The paper ends with some concluding
remarks in Section 6.

2. Quantile estimation based on a distribution function estima-
tor. In this section we recall some known distribution function estimators,
propose a new estimator, and give formulae for the quantile estimators based
on them.

2.1. Quantile estimation based on the empirical distribution
function. A traditional nonparametric estimator of the distribution func-
tion is the EDF given by (1.1). Accordingly, a nonparametric estimator of
xp is the empirical quantile

(2.1) x̂Ep,n = X([np]+1):n,

where [x] denotes the greatest integer not greater than x.

Remark 2.1. The function Q̂En (p) = x̂Ep,n only has properties P2, P7,
and for n odd, property P6.

The estimator x̂Ep,n has the desired asymptotic properties, described in
the following two theorems.

Theorem 2.2 ([19, Theorem 2.3.2]). Let X1, . . . , Xn be i.i.d. random
variables with a c.d.f. F satisfying F (xp− ε) < p < F (xp+ ε) for any ε > 0.
Then, for every ε > 0 and n = 1, 2, . . . ,

P (|x̂Ep,n − xp| > ε) ≤ 2 exp(−2nδ2ε ),
where δε = min{F (xp + ε)− p, p− F (xp − ε)}.

Theorem 2.3 ([20, Theorem 5.10]). Let X1, . . . , Xn be i.i.d. random
variables with a c.d.f. F .

(i) limn→∞ P (
√
n(x̂Ep,n − xp) ≤ 0) = Φ(0) = 1/2, where Φ is the c.d.f. of

the standard normal distribution.
(ii) If F is continuous at xp and F ′(xp−) > 0 exists, then

lim
n→∞

P (
√
n(x̂Ep,n − xp) ≤ t) = Φ(t/σ−F ), t < 0,

where σ−F =
√
p(1− p)/F ′(xp−).

(iii) If F is continuous at xp and F ′(xp+) > 0 exists, then

lim
n→∞

P (
√
n(x̂Ep,n − xp) ≤ t) = Φ(t/σ+F ), t < 0,

where σ+F =
√
p(1− p)/F ′(xp+).

(iv) If F ′(xp) exists and is positive, then
√
n(x̂Ep,n − xp)→d N (0, σ2F ), where σF =

√
p(1− p)/F ′(xp).
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The estimator x̂Ep,n is not symmetric. We call an estimator Xk(p):n of
the pth quantile symmetric if k(1 − p) = n − k(p) + 1 (see property P4).
A rationale for this condition is that if a quantile of order p is estimated,
say, by the smallest order statistic X1:n, then the quantile of order 1 − p
should be estimated by the largest order statistic Xn:n. For p = l/n we
have x̂Ep,n = Xl:n, and for p = 1 − l/n we have x̂Ep,n = X(n−l):n instead of
X(n−l+1):n. Another disadvantage of the estimator x̂Ep,n is that if p = 1/2

and n = 2m for an integer m, then x̂E1/2,n equals Xm:n instead of being a
combination of two central-order statistics Xm:n and X(m+1):n.

To overcome the disadvantages of x̂Ep,n, Zieliński [26] defined the estimator

(2.2) x̂EMp,n = Xk(p):n,

where

k(p) =


np if np is an integer and p < 0.5,

np+ 1 if np is an integer and p > 0.5,

n/2 + I(0,1/2](U) if np is an integer and p = 0.5,

[np] + 1 if np is not an integer,

where U is a uniformly U(0, 1) distributed random variable independent of
the observations X1, . . . , Xn.

Remark 2.4. Note that x̂EMp,n may differ from x̂Ep,n only when estimating
quantiles of order p = j/n, j = 1, . . . , n, i.e., if np is an integer. If p = 0.5,
then x̂EMp,n is a median unbiased estimator of the median x0.5; the estimator
x̂Ep,n does not have this property.

2.2. Quantile estimation based on a level crossing empirical dis-
tribution function. Relying on the concept of level crossing, Huang and
Brill [9] constructed a level crossing empirical distribution function (LCEDF)
of the form

F̂HBn (t) =

n∑
i=1

wn,i1(−∞,t](Xi),

where

wn,i =


1

2

(
1− n− 2√

n(n− 1)

)
for i = 1, n,

1√
n(n− 1)

for i = 2, . . . , n− 1.

Remark 2.5. With probability one,

sup
t∈R
|F̂HBn (t)− F̂En (t)| ≤ 1/n.
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In [10] an efficiency function for the LCEDF relative to the EDF has been
derived, and it has been shown that the LCEDF gives more efficient estimates
than the EDF in the tails of any underlying continuous distribution, for both
small and large sample sizes.

Making use of the LCEDF, we obtain the quantile estimator

(2.3) x̂HBn (p) = X([b]+2):n,

where

b =
√
n(n− 1)

[
p− 1

2

(
1− n− 2√

n(n− 1)

)]
.

Remark 2.6. The function Q̂HBn (p) = x̂HBp,n only has properties P2, P7,
and for n odd, property P6.

2.3. Quantile estimation based on a kernel estimator of the dis-
tribution function. It seems unnatural to estimate a continuous distribu-
tion function by a step function. In the abundant literature of the subject, one
can find different approaches to smoothing empirical distribution functions.
The kernel distribution function estimator, first introduced by Nadaraya [16],
provides an alternative to the EDF. It is defined by

F̂Kn (t) =
1

n

n∑
j=1

K
(
t−Xj

hn

)
,

where K(v) =
	v
−∞K(z) dz, K is a kernel function, and hn is a bandwidth

parameter.
The corresponding estimator of the quantile xp is then defined by

(2.4) x̂Kp = inf{t ∈ R : F̂Kn (t) ≥ p}.

Under some assumptions on K, f and h, it is shown in [16] that x̂Kp
(appropriately normalized) has an asymptotic standard normal distribution.
Another notable property of x̂Kp , almost sure consistency, was proved in [22].
Azzalini [2] considered second-order properties of x̂Kp . In [17] necessary and
sufficient conditions for the asymptotic normality of x̂Kp are given.

2.4. Quantile estimation based on a kernel estimator with ran-
dom bandwidth. In kernel distribution function estimation, Zieliński [27]
proposed to replace the standard smoothing parameter hn by a random
bandwidth

Hn = min{Xj:n −X(j−1):n : j = 2, . . . , n}.
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Assuming that

K(t) =


0 for t ≤ −1/2,
1/2 for t = 0,

1 for t ≥ 1/2,

and K is continuous and nondecreasing in (0, 1), he obtained a continuous
estimator of the unknown distribution function with asymptotic properties
similar to the empirical distribution function. We will denote the estimator
proposed in [27] by F̂Zn .

In the special case when

K(t) =


0 for t ≤ −1/2,
t+ 1/2 for −1/2 < t < 1/2,

1 for t ≥ 1/2,

the estimator F̂Zn (x) equals{
1
n

(
x−Xk:n
Hn

+ 1
2

)
+ k−1

n for x ∈ [Xk:n −Hn/2, Xk:n +Hn/2],

k
n for x ∈ (Xk:n +Hn/2, X(k+1):n −Hn/2),

for k = 1, . . . , n, and accordingly

(2.5) x̂Zp,n = Q̂Zn (p) = Xk:n +Hn(np− k + 1/2)

for p ∈ ((k − 1)/n, k/n] and k = 1, . . . , n.

Remark 2.7. With probability one,

sup
t∈R
|F̂Zn (t)− F̂En (t)| ≤ 1/(2n).

Remark 2.8. The function Q̂Zn (p) only fails property P1 and property
P6 if n is even.

To the best of our knowledge, x̂Zp,n, based on the distribution function
estimator F̂Zn , has not been considered in the literature as a quantile esti-
mator.

2.5. Quantile estimation based on a continuous and strictly in-
creasing estimator of the distribution function. The estimator F̂Zn
proposed in [27] is constant on some intervals of the real line R. Conse-
quently, the quantile function estimator Q̂Zn based on F̂Zn is not continuous.
In [12] a construction of a continuous and easily invertible estimator of the
distribution function is proposed, based on Zieliński’s idea [27]. Denote by
X0:n, X(n+1):n random variables such that X0:n ≤ X1:n and X(n+1):n ≥ Xn:n
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almost surely,

Mj(Xn) =
X(j−1):n +Xj:n

2
, j = 1, . . . , n+ 1,

Rj(Xn) =Mj+1(Xn)−Mj(Xn) =
X(j+1):n −X(j−1):n

2
, j = 1, . . . , n.

With this notation, in [12] a distribution function estimator was defined by

F̂ JPn (t) =
1

n

n∑
j=1

T

(
t−Mj(Xn)

Rj(Xn)

)
,

where

T (x) =


0 for x < 0,

r(x) for 0 ≤ x ≤ 1,

1 for x > 1,

where r : [0, 1]→ [0, 1] is a continuous, strictly increasing function such that
r(0) = 0, r(1) = 1, e.g., r(x) = x. In comparison with the kernel estimator,
they replaced the bandwidth hn by the differences Rj(·) =Mj+1(·)−Mj(·).
The plain order statistics have been replaced by the statistics Mj(Xn), indi-
cating the centers of the intervals between the consecutive order statistics.

When r(x) = x,

F̂ JPn (t) =


0 for t < M1(Xn),

t−Mk(Xn)

nRk(Xn)
+
k − 1

n
for Mk(Xn) ≤ t ≤Mk+1(Xn),

1 for t > Mn+1(Xn),

for k = 1, . . . , n. It is easy to see that

F̂ JPn (t) =
2t

n(X(k+1):n −X(k−1):n)
+
k − 1

n
−

X(k−1):n +Xk:n

n(X(k+1):n −X(k−1):n)

if
X(k−1):n +Xk:n

2
≤ t ≤

Xk:n +X(k+1):n

2
for k = 1, . . . , n.

Remark 2.9. With probability one,

sup
t∈R
|F̂ JPn (t)− F̂En (t)| ≤ 1/n.

The corresponding quantile function estimator Q̂JPn is

Q̂JPn (p) =
n(X(k+1):n −X(k−1):n)

2
p− (k − 1)

X(k+1):n −X(k−1):n

2

+
X(k−1):n +Xk:n

2
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if (k − 1)/n < p ≤ k/n for k = 1, . . . , n, and

(2.6) x̂JPp,n = Q̂JPn (p).

Remark 2.10. The function Q̂JPn satisfies P1, P2, P5, P7.

Remark 2.11. For k/n < p ≤ (k + 1)/n, k = 0, . . . , n − 2, and for
(n− 1)/n < p < 1, with probability one,

x̂Ep,n −
X(k+1):n −Xk:n

2
< x̂JPp,n ≤ x̂Ep,n +

X(k+2):n −X(k+1):n

2
.

The function Q̂JPn (p) fails properties P3, P4 and P6. This is a consequence
of the estimator F̂ JPn failing conditions PF3, PF4 and PF6. Therefore, we
propose modifying F̂ JPn in the following way. Denote

X0:n = X1:n −
X2:n −X1:n

2
=

3

2
X1:n −

1

2
X2:n,

X(n+1):n = Xn:n +
Xn:n −X(n−1):n

2
=

3

2
Xn:n −

1

2
X(n−1):n.

If n = 2l + 1 set F̂Mn (X(l+1):n) = 1/2, and for k ∈ {1, . . . , l}, also when
n = 2l,

F̂Mn (Xk:n) = [F̂ JPn (Xk:n)+(1− F̂ JPn (X(n−k+1):n))]/2 = 1− F̂Mn (X(n−k+1):n).

Moreover for j ∈ {1, . . . , n− 1},

F̂Mn ((Xj:n +X(j+1):n)/2) = j/n,

F̂Mn (X0:n) = 0, F̂Mn (X(n+1):n) = 1. The estimator F̂Mn is constructed by
linearly interpolating between the points

(X0:n, 0), (X1:n, F̂
M
n (X1:n)), (X1:n +X2:n)/2,

F̂Mn ((X1:n +X2:n)/2)), . . . , (Xn:n, F̂
M
n (Xn:n)), (X(n+1):n, 1).

Remark 2.12. With probability one,

sup
t∈R
|F̂Mn (t)− F̂En (t)| ≤ 1/n.

The corresponding quantile function estimator Q̂Mn is the inverse function
of F̂Mn , i.e.
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Q̂Mn (p) =



X0:n +
X1:n−X0:n

F̂M
n (X1:n)

p for p ∈ [0, F̂Mn (X1:n)],

Xk:n +
X(k+1):n−Xk:n

2[k/n−F̂M
n (Xk:n)]

[p− F̂Mn (Xk:n)]

for p ∈ [F̂Mn (Xk:n), k/n],
Xk:n+X(k+1):n

2 +
X(k+1):n−Xk:n

2[F̂M
n (X(k+1):n)−k/n]

(p− k/n)

for p ∈ [k/n, F̂Mn (X(k+1):n)],

Xn:n +
X(n+1):n−Xn:n

1−F̂M
n (Xn:n)

[p− F̂Mn (Xn:n)]

for p ∈ [F̂Mn (Xn:n), 1],

for k = 1, . . . , n− 1 and

(2.7) x̂Mp,n = Q̂Mn (p).

Remark 2.13. The function Q̂Mn (p) has properties P1–P7.

Remark 2.14. For k/n < p ≤ (k + 1)/n, k = 0, . . . , n − 2, and for
(n− 1)/n < p < 1, with probability one,

x̂Ep,n −
X(k+1):n −Xk:n

2
< x̂Mp,n ≤ x̂Ep,n +

X(k+2):n −X(k+1):n

2
.

3. Asymptotic properties of the quantile estimators based on
continuous versions of the empirical distribution function. Let F̃n
be an estimator of F such that with probability one,

(3.1) sup
t∈R
|F̃n(t)− F̂En (t)| ≤ 1/n.

Denote by
x̃p,n := Q̃n(p) = F̃−1n (p)

the quantile estimator based on F̃n.

Lemma 3.1 ([8]). Let Y1, . . . , Yn be independent random variables satis-
fying P (a ≤ Yi ≤ b)) = 1, i = 1, . . . , n, where a < b. Then, for t > 0,

P
( n∑
i=1

Yi −
n∑
i=1

E(Yi) ≥ nt
)
≤ exp{−2nt2/(b− a)2}.

Theorem 3.2. Let X1, . . . , Xn be i.i.d. random variables with a c.d.f. F
satisfying F (xp − ε) < p < F (xp + ε) for any ε > 0 and p ∈ (0, 1). Denote
δ̃ε = min{F (xp+ε)−p−1/n, p−F (xp−ε)−1/n}, n0(ε, F, p) := min{n ∈ N :

δ̃ε > 0}. Then, for every ε > 0 and n ≥ n0(ε, F, p),

P (|x̃p,n − xp| > ε) ≤ 2 exp(−2nδ̃2ε ).
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Proof. Let ε > 0. Write

P (|x̃p,n − xp| > ε) = P (x̃p,n > xp + ε) + P (x̃p,n < xp − ε).
The first summand above can be written as

P (x̃p,n > xp + ε) = P (p > F̃n(xp + ε))

= P
(
p > F̂En (xp + ε)− F̂En (xp + ε) + F̃n(xp + ε)

)
≤ P (F̂En (xp + ε)− 1/n < p),

where the last inequality follows from (3.1). But

P
(
F̂En (xp + ε)− 1/n < p

)
= P

( n∑
i=1

I(Xi > xp + ε)− n[1− F (xp + ε)] > n[F (xp + ε)− p− 1/n]
)
,

and when F (xp + ε)− p− 1/n > 0, from Lemma 3.1 we have

P (x̃p,n > xp + ε) ≤ exp{−2n[F (xp + ε)− p− 1/n]2}.
In an analogous way we can show that

P (x̃p,n < xp − ε) ≤ exp{−2n[p− F (xp − ε)− 1/n]2},
and the proof is complete.

In view of Remarks 2.7, 2.9 and 2.12, we have

Corollary 3.3. The conclusion of Theorem 3.2 holds for x̂Zp,n, x̂JPp,n
and x̂Mp,n, i.e.,

P (|x̂Zp,n − xp| > ε) ≤ 2 exp(−2nδ̃2ε ),
P (|x̂JPp,n − xp| > ε) ≤ 2 exp(−2nδ̃2ε ),
P (|x̂Mp,n − xp| > ε) ≤ 2 exp(−2nδ̃2ε ).

Corollary 3.4. Under the assumption of Theorem 3.2, the estimators
x̂Zp,n, x̂JPp,n, x̂Mp,n are strongly consistent for xp.

Denote by F ′(xp−) and F ′(xp+) the left and right derivatives of F at xp,
respectively.

Theorem 3.5. Let p ∈ (0, 1). Suppose that F is continuous at xp.

(i) If F ′(xp−) > 0 exists, then for t < 0,

lim
n→∞

P

(
n1/2(x̃p,n − xp)

[p(1− p)]1/2/F ′(xp−)
≤ t
)

= Φ(t).

(ii) If F ′(xp+) > 0 exists, then for t > 0,

lim
n→∞

P

(
n1/2(x̃p,n − xp)

[p(1− p)]1/2/F ′(xp+)
≤ t
)

= Φ(t).
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(iii) lim
n→∞

P
(
n1/2(x̃p,n − xp) ≤ 0

)
= Φ(0) =

1

2
.

Proof. Fix t. Let A > 0 be a normalizing constant to be specified later.
Denote

Gn(t) = P
(
n1/2(x̃p,n − xp)/A ≤ t

)
.

From the fact that F̃−1n (p) ≤ t if and only if F̃n(t) ≥ p, we have

Gn(t) = P (x̃p,n ≤ xp + tAn−1/2) = P
(
p ≤ F̃n(xp + tAn−1/2)

)
.

The estimator F̃n satisfies (3.1), therefore

Gn(t) ≤ P
(
p ≤ F̂En (xp + tAn−1/2) + 1/n

)
,(3.2)

Gn(t) ≥ P
(
p ≤ F̂En (xp + tAn−1/2)− 1/n

)
.(3.3)

We will show that under some assumption, limn→∞Gn(t) = Φ(t) for all
t ∈ R and for A > 0 appropriately chosen. Denote by Sn(∆) a binomial
B(n,∆) random variable,

S∗n(∆) =
Sn(∆)− n∆

[n∆(1−∆)]1/2
,

and set

∆nt = F (xp + tAn−1/2).

We have

P
(
p ≤ F̂En (xp + tAn−1/2) + 1/n

)
= P (Sn(∆nt) ≥ np− 1)(3.4)
= P (S∗n(∆nt) ≥ −cnt),

where

(3.5) cnt =
n1/2(∆nt − p− 1/n)

[∆nt(1−∆nt)]1/2
.

Applying the Berry–Esséen theorem (see e.g. [19, Theorem 1.9.5]), we can
write

sup
x∈R
|P (S∗n(∆) < x)− Φ(x)| ≤ C ρ∆

σ3∆n
1/2

,

where C is a universal constant, σ2∆ = VarS1(∆) = ∆(1 − ∆), and ρ∆ =

E|S1(∆)−∆|3 = ∆(1−∆)((1−∆)2 +∆2). Therefore

(3.6) sup
x∈R
|P (S∗n(∆) < x)− Φ(x)| ≤ C (1−∆)2 +∆2

[∆(1−∆)]1/2n1/2
.
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From the triangle inequality and (3.6) we have

(3.7) |P (S∗n(∆nt) ≥ −cnt)− Φ(t)|
≤ |Φ(−cnt)− P (S∗n(∆nt) < cnt)|+ |Φ(cnt − Φ(t)|

≤ C (1−∆nt)
2 +∆2

nt

[∆nt(1−∆nt)]1/2n1/2
+ |Φ(cnt)− Φ(t)|.

Since F is continuous at xp, the first summand tends to zero as n → ∞.
Writing

(3.8)

cnt =
tA

[∆nt(1−∆nt)]1/2
F (xp + tAn−1/2)− F (xp)

tAn−1/2
− n−1/2

[∆nt(1−∆nt)]1/2

by (3.5), we see that if either t < 0 and A = [p(1 − p)]1/2/F (xp−)], or
t > 0 and A = [p(1 − p)]1/2/F (xp+)], or t = 0 and A = 1, then cnt → t
as n → ∞. From (3.4), (3.7) and (3.8) we infer that if either t < 0 and
A = [p(1− p)]1/2/F (xp−)], or t > 0 and A = [p(1− p)]1/2/F (xp+)], or t = 0
and A = 1, then

(3.9) P
(
p ≤ F̂En (xp + tAn−1/2) + 1/n

)
→ Φ(t) as n→∞.

Analogously we can show that if either t < 0 and A = [p(1−p)]1/2/F (xp−)],
or t > 0 and A = [p(1− p)]1/2/F (xp+)], or t = 0 and A = 1, then

(3.10) P
(
p ≤ F̂En (xp + tAn−1/2)− 1/n

)
→ Φ(t) as n→∞.

From (3.2), (3.3), (3.9) and (3.10) we deduce that if either t < 0 and A =
[p(1− p)]1/2/F (xp−)], or t > 0 and A = [p(1− p)]1/2/F (xp+)], or t = 0 and
A = 1, then

Gn(t)→ Φ(t) as n→∞,
and the theorem is proved.

Corollary 3.6. Let 0<p< 1. If F is differentiable at xp and F ′(xp)> 0,
then

x̃p,n is AN
(
xp,

p(1− p)
[F ′(xp)]2n

)
.

Corollary 3.7. Let 0 < p < 1. If F has a density f in a neighborhood
of xp and f is positive and continuous at xp, then

x̃p,n is AN
(
xp,

p(1− p)
f2(xp)n

)
.

Taking into account Remarks 2.7, 2.9 and 2.12, we obtain

Corollary 3.8. The conclusion of Theorem 3.5 holds for x̂Zp,n, x̂JPp,n
and x̂Mp,n.
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4. A simulation study. A simulation experiment was conducted in
order to investigate the accuracy of the following ten quantile estimators:

• x̂Ep,n given by (2.1), in tables denoted by E,
• x̂EMp,n given by (2.2), denoted by EM ,
• x̂HBp,n given by (2.3), denoted by HB,
• x̂Kp,n given by (2.4), denoted by K,
• x̂Zp,n given by (2.5), denoted by Z,
• x̂JPp,n given by (2.6), denoted by JP ,
• x̂Mp,n given by (2.7), denoted by M ,
• x̂Hp,n based on plotting positions given by (1.2), denoted by H,
• x̂HFp,n based on plotting positions given by (1.3), denoted by HF ,
• x̂WG

p,n based on plotting positions given by (1.4), denoted by WG,

in the case of small sample sizes.
We generated samples of sizes n = 15 and n = 30 from the following

distributions:

• Student T (r) with r = 3 and r = 15 degrees of freedom,
• generalized Pareto distribution GP(ξ, σ) with distribution function

(4.1) Fξ,σ(t) =


[1− (1 + ξt/σ)−1/ξ]I[0,∞)(t) for ξ > 0, σ > 0,

[1− (1 + ξt/σ)−1/ξ]I[0,−σ/ξ](t) for ξ < 0, σ > 0,

[1− exp(−t/σ)]I[0,∞)(t) for ξ = 0, σ > 0,

with σ = 1 and ξ ∈ {−1/4, 1/4, 2/3}.
The mean and variance of GP(ξ, σ) are given by

E(Xξ,σ) =
σ

1− ξ
for ξ < 1,

Var(Xξ,σ) =
σ2

(1− ξ)2(1− 2ξ)
for ξ < 1/2

(see e.g. [14]). When ξ ≥ 1 the mean is not defined, and when ξ ≥ 1/2 the
variance is not defined. For σ = 1 and ξ = −1/4, 1/4, 2/3 we have

E(X−1/4,1) = 4/5, Var(X−1/4,1) = 32/75,

E(X1/4,1) = 4/3, Var(X1/4,1) = 32/9,

E(X2/3,1) = 3, Var(X2/3,1) is not defined.
All the computations were done in the statistical computing language R.

The quantile function from the stats package in R was used to calculate the
quantile estimates based on plotting positions, i.e. x̂Hp,n, x̂HFp,n , x̂WG

p,n . The x̂Kp,n
estimates were obtained using the qkde function from the ks package in R.
The remaining quantile estimates were calculated with the use of our own
implementations.
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Since we do not assume that the observable random variable has a fi-
nite expected value, to compare the estimators considered, the differences
between the median of the estimators and the true value of the quantiles,
denoted by ME, and the differences between the upper and lower quartile of
the estimators, denoted by IQR, were used to measure the accuracy of the
estimators. The ME and IQR were estimated by generating 10000 random
samples for each distribution and each n.

The simulation results for the Student and generalized Pareto distribu-
tion are presented in Tables 1, 2 and 3, 4, respectively, where the estimated
ME and IQR of each estimator considered are given. The exact theoreti-
cal quantiles of the Student distribution have been read off from statistical
tables, while in the case of the generalized Pareto distribution, they have
been calculated as appropriate values of the inverse of the distribution func-
tions (4.1), i.e.

Qξ,σ(p) =

{
σ
ξ ((1− p)

−ξ − 1) for ξ 6= 0, σ > 0,

−σ ln(1− p) for ξ = 0, σ > 0.

Table 1. Simulation results for the Student distribution and n = 15

p

0.05 0.25 0.5 0.75 0.95

ME IQR ME IQR ME IQR ME IQR ME IQR

r = 3

E −0.1062 1.7696 −0.0395 0.5898 −0.0061 0.4716 0.0363 0.5953 0.1326 1.8464
EM −0.1062 1.7696 −0.0395 0.5898 −0.0061 0.4716 0.0363 0.5953 0.1326 1.8464
H 0.0849 1.5464 0.0142 0.5603 −0.0061 0.4716 −0.0178 0.5664 −0.0639 1.5875
HF −0.0349 1.6785 −0.0036 0.5712 −0.0061 0.4716 0.0009 0.5738 0.0585 1.7366
WG −0.1062 1.7696 −0.0395 0.5898 −0.0061 0.4716 0.0363 0.5953 0.1326 1.8464
HB −0.1062 1.7696 −0.0395 0.5898 −0.0061 0.4716 0.0363 0.5953 0.1326 1.8464
K −0.1392 1.5015 −0.1286 0.5617 −0.0308 0.4306 0.0697 0.5607 0.1027 1.5481
Z −0.1018 1.7698 −0.0349 0.5879 −0.0061 0.4716 0.0316 0.5942 0.1287 1.8438
JP 0.1366 1.4799 0.0051 0.5532 −0.0061 0.4554 −0.0043 0.5588 −0.1194 1.5303
M 0.1366 1.4799 0.0076 0.5591 −0.0061 0.4716 −0.0097 0.5654 −0.1194 1.5303

r = 15

E −0.0525 0.8451 −0.037 0.4859 −0.0029 0.4331 0.0336 0.4834 0.0618 0.8354
EM −0.0525 0.8451 −0.037 0.4859 −0.0029 0.4331 0.0336 0.4834 0.0618 0.8354
H 0.0651 0.7573 0.0133 0.47 −0.0029 0.4331 −0.0175 0.4644 −0.0569 0.7542
HF −0.0079 0.8086 −0.0051 0.4746 −0.0029 0.4331 0.0009 0.4684 0.0166 0.8017
WG −0.0525 0.8451 −0.037 0.4859 −0.0029 0.4331 0.0336 0.4834 0.0618 0.8354
HB −0.0525 0.8451 −0.037 0.4859 −0.0029 0.4331 0.0336 0.4834 0.0618 0.8354
K −0.169 0.7476 −0.0891 0.4576 −0.0185 0.3861 0.0524 0.444 0.1366 0.7318
Z −0.0477 0.8446 −0.0329 0.4856 −0.0029 0.4331 0.0295 0.484 0.0583 0.8347
JP 0.0966 0.7368 0.0077 0.458 −0.0021 0.4173 −0.011 0.4573 −0.086 0.732
M 0.0966 0.7368 0.0059 0.4676 −0.0029 0.4331 −0.0137 0.4614 −0.086 0.732

It follows from the simulation study that
• among the three estimators x̂HFp,n , x̂WG

p,n and x̂Hp,n, based on plotting po-
sitions, in most of the cases considered, the first two, which are recom-
mended in the literature, have greater estimated IQR than x̂Hp,n;
• in almost all cases considered the estimator x̂HFp,n has the smallest absolute

values of the estimated ME (it is known that x̂HFp,n is median unbiased of
order o(n−1/2), see [18]);
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Table 2. Simulation results for the Student distribution and n = 30

p

0.05 0.25 0.5 0.75 0.95
ME IQR ME IQR ME IQR ME IQR ME IQR

r = 3

E 0.1051 1.088 0.017 0.407 0.0433 0.328 −0.0139 0.4062 −0.1143 1.1058
EM 0.1051 1.088 0.017 0.407 −0.0012 0.3318 −0.0139 0.4062 −0.1143 1.1058
H 0.1051 1.088 0.017 0.407 −0.002 0.3231 −0.0139 0.4062 −0.1143 1.1058
HF −0.0896 1.1985 0.0049 0.4041 −0.002 0.3231 −0.0018 0.4032 0.0792 1.2179
WG −0.4243 1.478 −0.0184 0.4069 −0.002 0.3231 0.021 0.4062 0.4106 1.4982
HB 0.1051 1.088 0.017 0.407 0.0433 0.328 −0.0139 0.4062 −0.1143 1.1058
K −0.1188 0.9713 −0.1225 0.3935 −0.0313 0.3005 0.0662 0.3899 0.0641 0.9838
Z 0.1051 1.088 0.017 0.407 0.041 0.3281 −0.0139 0.4062 −0.1143 1.1058
JP −0.09 1.1926 0.0101 0.3983 −0.002 0.3231 −0.0081 0.3927 0.0885 1.192
M −0.0574 1.1767 0.0105 0.3988 −0.002 0.3231 −0.0105 0.3996 0.0559 1.1861

r = 15

E 0.0512 0.5653 0.009 0.343 0.0425 0.3148 −0.0047 0.343 −0.0493 0.5716
EM 0.0512 0.5653 0.009 0.343 0.0005 0.3211 −0.0047 0.343 −0.0493 0.5716
H 0.0512 0.5653 0.009 0.343 −0.0004 0.309 −0.0047 0.343 −0.0493 0.5716
HF −0.0291 0.5635 −0.0004 0.3407 −0.0004 0.309 0.0042 0.3418 0.0288 0.5761
WG −0.1781 0.6264 −0.0191 0.3422 −0.0004 0.309 0.0224 0.3396 0.1841 0.618
HB 0.0512 0.5653 0.009 0.343 0.0425 0.3148 −0.0047 0.343 −0.0493 0.5716
K −0.173 0.5219 −0.0905 0.3178 −0.0188 0.2723 0.0516 0.3158 0.1314 0.5088
Z 0.0512 0.5653 0.009 0.343 0.0405 0.3142 −0.0047 0.343 −0.0493 0.5716
JP −0.018 0.5462 0.0066 0.3345 −0.0004 0.309 −0.0015 0.3346 0.0191 0.5446
M −0.0062 0.5565 0.0064 0.3388 −0.0004 0.309 −0.0021 0.3394 0.0079 0.5646

Table 3. Simulation results for the GP distribution and n = 15

p

0.05 0.25 0.5 0.75 0.95

ME IQR ME IQR ME IQR ME IQR ME IQR
E −0.0053 0.0728 −0.015 0.1799 −0.0041 0.287 0.0325 0.4219 0.048 0.6928
EM −0.0053 0.0728 −0.015 0.1799 −0.0041 0.287 0.0325 0.4219 0.048 0.6928
H 0.0139 0.0767 0.0085 0.181 −0.0041 0.287 −0.0092 0.4009 −0.0526 0.6184
HF 0.002 0.0731 0.0011 0.1804 −0.0041 0.287 0.0057 0.4079 0.0095 0.6601

ξ = −1
4 WG −0.0053 0.0728 −0.015 0.1799 −0.0041 0.287 0.0325 0.4219 0.048 0.6928

σ = 1 HB −0.0053 0.0728 −0.015 0.1799 −0.0041 0.287 0.0325 0.4219 0.048 0.6928
K −0.196 0.146 −0.0071 0.15 0.0233 0.2495 0.0248 0.384 0.0169 0.628
Z −0.003 0.0727 −0.0125 0.1805 −0.0041 0.287 0.0308 0.422 0.0458 0.6942
JP 0.0187 0.0791 0.0101 0.1773 0.0016 0.2731 −0.0033 0.3869 −0.0795 0.6029
M 0.0187 0.0791 0.0088 0.179 −0.0041 0.287 −0.0062 0.395 −0.0795 0.6029
E −0.0047 0.0739 −0.0156 0.2038 0.0003 0.4094 0.0601 0.8778 0.1852 3.3828
EM −0.0047 0.0739 −0.0156 0.2038 0.0003 0.4094 0.0601 0.8778 0.1852 3.3828
H 0.0151 0.0789 0.0103 0.2093 0.0003 0.4094 −0.0141 0.8145 −0.1691 2.8817
HF 0.0028 0.0746 0.001 0.2064 0.0003 0.4094 0.0095 0.8334 0.0475 3.18

ξ = 1
4 WG −0.0047 0.0739 −0.0156 0.2038 0.0003 0.4094 0.0601 0.8778 0.1852 3.3828

σ = 1 HB −0.0047 0.0739 −0.0156 0.2038 0.0003 0.4094 0.0601 0.8778 0.1852 3.3828
K −0.3249 0.2395 −0.0127 0.184 0.0664 0.3889 0.0317 0.7993 0.0125 3.1803
Z −0.0021 0.0739 −0.0131 0.2049 0.0003 0.4094 0.0573 0.8778 0.1834 3.3796
JP 0.0201 0.0816 0.0134 0.2083 0.0097 0.3987 0.0088 0.8008 −0.268 2.7549
M 0.0201 0.0816 0.0104 0.2083 0.0003 0.4094 −0.0059 0.8067 −0.268 2.7549
E −0.0044 0.0751 −0.0161 0.2337 −0.0018 0.5452 0.108 1.616 0.82 13.7029
EM −0.0044 0.0751 −0.0161 0.2337 −0.0018 0.5452 0.108 1.616 0.82 13.7029
H 0.0156 0.0809 0.0144 0.2418 −0.0018 0.5452 −0.0253 1.4923 −0.2886 11.3304
HF 0.0034 0.076 0.0056 0.239 −0.0018 0.5452 0.0197 1.5331 0.385 12.7587

ξ = 2
3 WG −0.0044 0.0751 −0.0161 0.2337 −0.0018 0.5452 0.108 1.616 0.82 13.7029

σ = 1 HB −0.0044 0.0751 −0.0161 0.2337 −0.0018 0.5452 0.108 1.616 0.82 13.7029
K −0.5082 0.4168 −0.0429 0.2186 0.1062 0.5668 0.0196 1.4752 0.4154 13.3591
Z −0.001 0.0753 −0.0125 0.2351 −0.0018 0.5452 0.1036 1.6145 0.8158 13.703
JP 0.0207 0.0842 0.018 0.2394 0.0215 0.539 0.0457 1.5125 −0.5865 10.7577
M 0.0207 0.0842 0.0138 0.2405 −0.0018 0.5452 0.001 1.5077 −0.5865 10.7577
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Table 4. Simulation results for the GP distribution and n = 30

p
0.05 0.25 0.5 0.75 0.95

ME IQR ME IQR ME IQR ME IQR ME IQR
E 0.0055 0.057 0.0034 0.1328 0.0258 0.2084 −0.0077 0.2944 −0.0436 0.4864
EM 0.0055 0.057 0.0034 0.1328 −0.0015 0.2065 −0.0077 0.2944 −0.0436 0.4864
H 0.0055 0.057 0.0034 0.1328 −0.0017 0.2004 −0.0077 0.2944 −0.0436 0.4864
HF 0.0012 0.053 0.0005 0.1309 −0.0017 0.2004 0.0007 0.2933 0.0145 0.4753

ξ = −1
4 WG −0.0083 0.0448 −0.0059 0.1275 −0.0017 0.2004 0.0181 0.2951 0.1355 0.4852

σ = 1 HB 0.0055 0.057 0.0034 0.1328 0.0258 0.2084 −0.0077 0.2944 −0.0436 0.4864
K −0.1628 0.0873 −0.0034 0.105 0.0149 0.1797 0.0181 0.2783 0.0063 0.4414
Z 0.0055 0.057 0.0034 0.1328 0.0244 0.2081 −0.0077 0.2944 −0.0436 0.4864
JP 0.0075 0.0514 0.0049 0.1279 −0.0017 0.2004 −0.0031 0.2882 −0.0019 0.439
M 0.0054 0.0531 0.0038 0.1293 −0.0017 0.2004 −0.0063 0.2926 −0.0199 0.4546
E 0.0053 0.0597 0.001 0.1544 0.038 0.2952 −0.0165 0.5894 −0.1576 2.1609
EM 0.0053 0.0597 0.001 0.1544 −0.0007 0.2912 −0.0165 0.5894 −0.1576 2.1609
H 0.0053 0.0597 0.001 0.1544 0.0019 0.2814 −0.0165 0.5894 −0.1576 2.1609
HF 0.0009 0.0553 −0.0025 0.1519 0.0019 0.2814 0.001 0.5916 0.2306 2.3616

ξ = 1
4 WG −0.0081 0.0469 −0.0095 0.1478 0.0019 0.2814 0.0364 0.5965 0.8679 2.8967

σ = 1 HB 0.0053 0.0597 0.001 0.1544 0.038 0.2952 −0.0165 0.5894 −0.1576 2.1609
K −0.2689 0.1372 −0.0123 0.1292 0.0392 0.2703 0.0188 0.561 −0.1384 2.1011
Z 0.0053 0.0597 0.001 0.1544 0.0367 0.2947 −0.0165 0.5894 −0.1576 2.1609
JP 0.0076 0.054 0.002 0.151 0.0019 0.2814 −0.0039 0.5775 0.2455 2.3157
M 0.0049 0.0555 0.0008 0.1523 0.0019 0.2814 −0.0117 0.5822 0.0725 2.227
E 0.0064 0.06 0.0031 0.1743 0.0562 0.4063 −0.0326 1.0656 −0.6529 7.1551
EM 0.0064 0.06 0.0031 0.1743 −0.0013 0.3881 −0.0326 1.0656 −0.6529 7.1551
H 0.0064 0.06 0.0031 0.1743 0.0034 0.3787 −0.0326 1.0656 −0.6529 7.1551
HF 0.0017 0.0555 −0.0014 0.1715 0.0034 0.3787 −0.0011 1.0764 1.2442 9.2688

ξ = 2
3 WG −0.008 0.0466 −0.0097 0.1668 0.0034 0.3787 0.0637 1.1057 3.7078 13.4398

σ = 1 HB 0.0064 0.06 0.0031 0.1743 0.0562 0.4063 −0.0326 1.0656 −0.6529 7.1551
K −0.4297 0.2558 −0.0486 0.1615 0.0369 0.3831 −0.0327 1.0253 −0.7062 7.0855
Z 0.0064 0.06 0.0031 0.1743 0.0548 0.4059 −0.0326 1.0656 −0.6529 7.1551
JP 0.0087 0.0547 0.004 0.1683 0.0034 0.3787 −0.0009 1.0542 1.4456 9.802
M 0.0049 0.0554 0.0023 0.1703 0.0034 0.3787 −0.017 1.0557 0.6897 8.7422

• no estimator is uniformly best for all the parameter values and all quantile
levels, but the proposed estimators perform well compared to existing
estimators.

5. Real data analysis. To illustrate all the nonparametric estimators
under study, we apply them to the Flood data from the extRemes package
in R. This data presents United States total economic damage (in billions of
U.S. dollars) caused by floods by hydrologic year from 1932–1997.

Table 5. Quantile estimates based on real data

p 0.05 0.25 0.5 0.75 0.95
E 0.2816 0.6862 1.4177 3.3917 8.0099
EM 0.2816 0.6862 1.4177 3.3917 8.0099
H 0.2557 0.6862 1.3956 3.3917 8.0794
HF 0.2362 0.6843 1.3956 3.4009 8.1316
WG 0.1974 0.6806 1.3956 3.4192 8.2359
HB 0.2816 0.6862 1.4177 3.3917 8.0099
K −0.106 0.6505 1.4159 3.4539 7.9734
Z 0.2813 0.6862 1.417 3.3917 8.0102
JP 0.243 0.6846 1.3956 3.4085 8.0158
M 0.2538 0.6836 1.3956 3.4045 8.0845
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Table 5 presents the quantile estimates considered in this article.
The estimates of quantiles of level 0.25, 0.5, 0.75 do not differ very much.

The value qWG of x̂WG
0.95,66 is the greatest and the value qK of x̂K0.05,66 is the

smallest and much smaller than others.

6. Conclusions and some prospects. In this article certain estima-
tors x̂Zp,n, x̂JPp,n and x̂Mp,n of quantiles in the nonparametric setting have been
proposed. The estimator x̂Zp,n is based on the distribution function estimator
F̂Zn proposed by Zieliński [27], and x̂JPp,n is based on the distribution function
estimator F̂ JPn considered in [12] in the context of ROC curve estimation.
The estimators F̂Zn , F̂ JPn do not satisfy all conditions PF1–PF7, and there-
fore the estimators x̂Zp,n, x̂JPp,n do not have the desired properties P1–P7. We
have proposed a nonparametric distribution function estimator which satis-
fies all conditions PF1–PF7, and provides a quantile estimator x̂Mp,n enjoying
all properties P1–P7. Under some assumptions, the estimators proposed are
asymptotically equivalent to the empirical quantile estimator and also to the
quantile estimators recommended in the literature. In simulations the accu-
racy of the proposed estimators and seven others have been investigated
when the small sizes samples were generated from the Student and Pareto
distributions. Although no estimator is uniformly best for all the parameter
values and all quantile levels, the proposed estimators perform well compared
to existing estimators.
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