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LIMIT DISTRIBUTION OF THE QUARTET BALANCE
INDEX FOR ALDOUS’S (β ≥ 0)-MODEL

Abstract. This paper builds on T. Martínez-Coronado, A. Mir,
F. Rosselló and G. Valiente’s 2018 work, introducing a new balance index
for trees. We show that this balance index, in the case of Aldous’s (β ≥ 0)-
model, converges weakly to a distribution that can be characterized as the
fixed point of a contraction operator on a class of distributions.

1. Introduction. Phylogenetic trees (connected graphs without cycles
that have a distinguished node, called “root”, interpreted as the “start” of the
tree) are key to evolutionary biology. However, they are not easy to sum-
marize or compare as it may not be obvious how to tackle their topologies,
understood as the internal branching structure. Therefore, many summary
indices have been proposed in order to “project” a tree into R. Such indices
aim to quantify some property of the tree, and one of the most studied prop-
erties is the symmetry of the tree. Tree symmetry is commonly captured
by a balance index. Multiple balance indices have been proposed, including
Sackin’s [S72], Colless’ [C82] or the total cophenetic index [MRR]. A com-
pact introduction to phylogenetics, containing in particular a list of tree
asymmetry measures, can be found in [F04, pp. 562–564]. The present work
concerns a newly proposed balance index, the quartet index QI [MCMRV].

One of the reasons for introducing summary indices for trees is to use
them for significance testing—whether the tree comes from a given proba-
bilistic model. Obtaining the distribution (for a given number n of contem-
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porary species, i.e. leaves of the tree, or in the limit as n → ∞) of indices
is usually difficult and is often done only for the “simplest” Yule (pure-birth
[Y24]) tree case and sometimes for the uniform model (see e.g. [A91, SM01]).

Using the contraction method, central limit theorems were found for var-
ious balance indices, like the total cophenetic index (Yule model case [B18])
and jointly for Sackin’s and Colless’ indices (in the Yule and uniform model
cases [BFJ06]). Furthermore, in [BF06] it was shown that Sackin’s index has
the same weak limit as the number of comparisons of the Quicksort algorithm
[H62], both after normalization of course.

In [CF10] the number of occurrences of patterns in a tree are considered,
where a pattern is understood as “any subset of the set of all phylogenetic
trees of fixed size k”. For a tree with n leaves such a pattern will satisfy the
recursion

Xn,k
D
= XLn,k +X∗n−Ln,k

where Xn,k, X∗n,k and Ln are independent, Xn,k
D
= X∗n,k and Ln is the size of

the left subtree branching from the root. For the Yule and uniform models the
authors of [CF10] derived central limit theorems (normal limit distribution)
with Berry–Esseen bounds and Poisson approximations in the total variation
distance. The above description is rather abstract but can be restated in a
more direct way. The term n is the number of leaves of the tree (i.e. nodes of
degree 1). The pattern of fixed size k is a generic term, but in [CF10, Table 1]
concrete examples are given: k-pronged nodes, k-caterpillars, or nodes with
minimal clade size k.

In the present manuscript we will consider the number of fully balanced
subtrees with k = 4 leaf nodes. However, in our case the recursion will be of
a non-homogeneous form, hence the results from [CF10] do not carry over.
The random variable Xn,k is the number of occurrences of the given pattern
(of size k) in a tree of size n. In principle the index k could be dropped at
this description level, but we kept it here for consistency with [CF10].

Even though the pure-birth model seems to be very widespread in the
phylogenetics community, more complex models need to be studied, espe-
cially in the context of tree balance. From [RS13, Lemma 4] it can be deduced
that Yule trees have to be rather balanced—as the maximum quartet weight
(the maximum of the number of randomly placed marks along branches over
induced subtrees on four leaves) is asymptotically proportional to the expec-
tation of the tree’s height.

In this work, using the contraction method, we show convergence in law of
the (scaled and centred) quartet index and derive a representation (as a fixed
point of a particular contraction operator) of the weak limit. Remarkably,
this is possible not only for the Yule tree case but also for Aldous’s more
general β-model (in the β ≥ 0 regime).
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The paper is organized as follows. In Section 2 we introduce Aldous’s
β-model and the quartet index. In Section 3 we prove our main result, The-
orem 3.1, via the contraction method. When studying the limit behaviour
of recursive-type indices for pure-birth binary trees one finds that for each
internal node the leaves inside its clade are uniformly split into subclades
as the node splits. However, in Aldous’s β-model this is not the case, the
split is according to a BetaBinomial distribution, and a much finer analysis
is required to show weak convergence, as n→∞, of the recursive-type index
to the fixed point of the appropriate contraction. Theorem 3.1 is not specific
to the quartet index but covers a more general class of models, where each
internal node split divides its leaf descendants according to a BetaBinomial
distribution (with β ≥ 0). In Section 4 we apply Theorem 3.1 to the quartet
index and characterize its weak limit. In Section 5 we illustrate the results
with simulations. Finally, in the Appendix we provide the R code used to
simulate from this weak limit.

2. Preliminaries

2.1. Aldous’s β-model for phylogenetic trees. Birth-death models
are popular choices for modelling the evolution of phylogenetic trees. How-
ever, in [A96, A01] a different class of models was proposed, the so-called
β-model for binary phylogenetic trees.

The main idea behind this model is to consider a (suitable) family {qn}∞n=2

of symmetric, qn(i) = qn(n − i), probability distributions on the natural
numbers. In particular qn : {1, . . . , n − 1} → [0, 1]. The tree grows in a
natural way. The root node of an n-leaf tree defines a partition of the n nodes
into two sets of sizes i and n− i (i ∈ {1, . . . , n−1}). We randomly choose the
number of leaves of the left subtree, Ln = i, according to the distribution qn
and this induces the number of leaves, n−Ln, in the right subtree. We then
repeat this recursively in the left and right subtrees, i.e. splitting according to
the distributions qLn and qn−Ln respectively. Notice that due to qn’s symmetry
the terms left and right do not have any particular meaning attached.

In [A96] a one-parameter, −2 ≤ β ≤ ∞, family of probability distribu-
tions was proposed:

(2.1) qn(i) =
1

an(β)

Γ (β + i)Γ (β + n− i)
Γ (i)Γ (n− i)

, 1 ≤ i ≤ n− 1,

where an(β) is the normalizing constant and Γ (·) the Gamma function.
We may actually recognize this as the BetaBinomial(n − 2, β + 1, β + 1)
distribution and write

(2.2) qn(i) = B(β+1, β+1)−1
1�

0

((
n− 2

i− 1

)
τ i−1(1−τ)n−i−1

)
τβ(1−τ)β dτ,
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where B(a, b) is the Beta function with parameters a and b. Notice that we
changed n to n − 2 and i to i − 1 on the right side of the equations with
respect to [A96] in order to have better correspondence with the rest of our
paper. Writing informally, from the probability distribution function (2.2),
we can see that if we condition under the integral on τ , then we obtain a
binomially distributed random variable. This observation is the key intuition
behind the analysis presented here.

Particular values of β correspond to some well known models. The uni-
form tree model is represented by β = −3/2, and the pure-birth Yule model
by β = 0. The limit case of β = ∞ is qn(i) →

(
n−2
i−1
)
2−(n−2), i.e. the bi-

nomial distribution, with success probability 0.5. This corresponds to the
so-called “symmetric binary tree” in the computer science literature (e.g.
[M92, Ch. 5.3]) and was mentioned as the “random partition tree” in the
evolutionary biology literature [MS91].

Of particular importance to our work is the limiting behaviour of the
scaled size of the left (and hence right) subtree, n−1Ln. Lemma 3 in [A96]
characterizes these asymptotics.

Lemma 2.1 ([A96, Lemma 3 for β > −1]).

(1) For β =∞, n−1Ln
D→ 1/2.

(2) For −1 < β <∞, n−1Ln
D→ τβ, where τβ has the Beta distribution

(2.3) f(x) =
Γ (2β + 2)

Γ 2(β + 1)
xβ(1− x)β, 0 < x < 1.

2.2. Quartet index. In [MCMRV] a new type of balance index was
proposed for discrete (i.e. without branch lengths, or in the language of
graph theory, without weights assigned to branches) phylogenetic trees—the
quartet index. This index is based on considering the number of so-called
quartets of each type made up by the leaves of the tree. A (rooted) quartet is
the induced subtree (a subtree formed by removing all but some given set of
leaves and then removing all degree two nodes except the root) from choosing
some four leaves. We should make a point here about the nomenclature.
Usually in the phylogenetic literature a quartet is an unrooted tree on four
leaves (e.g. [SS03]). However, here we consider rooted trees and following
[MCMRV] by a (rooted) quartet we mean a rooted tree on four leaves. From
now on we will write just “quartet”, dropping the “rooted” qualification.

For a given tree T , let P4(T ) be the set of quartets of T . Then the quartet
index of T is defined as

(2.4) QI(T ) =
∑
P4(T )

QI(Q),

where QI(Q) assigns a predefined value to a specific quartet (i.e. a given tree
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Fig. 1. The two possible rooted quartets for a binary tree. Left: K4, the four leaf rooted
caterpillar tree (also known as a comb or pectinate tree); right: B4, the fully balanced tree
on four leaves (also known as a fork, see e.g. [CS07] for nomenclature).

topology on four leaves). When the tree is a binary one (as here) there are
only two possible topologies on four leaves (see Fig. 1). Following [MCMRV,
Table 1], we assign the value 0 to K4 quartets and 1 to B4 quartets. There-
fore, the QI for a binary tree (QIB) will be

(2.5) QIB(T ) = number of B4 quartets in T.

Importantly for us, in [MCMRV, Lemma 4] it is shown that for n > 4,
the quartet index has a recursive representation as

(2.6) QIB(Tn) = QIB(TLn) + QIB(Tn−Ln) +

(
Ln
2

)(
n− Ln

2

)
,

where Tn is the tree on n leaves.
In [MCMRV] various models of tree growth were considered: Aldous’s β-

model, Ford’s α-model ([F], but see also [MCMR]) and Chen–Ford–Winkel’s
α-γ-model [CFW09]. In this work we will focus on Aldous’s β model of
tree growth with β ≥ 0 and characterize the limit distribution of the QI
as the number of leaves, n, grows to infinity. We will take advantage of the
recursive representation (2.6) that enables the use of the powerful contraction
method.

We require knowledge of the mean and variance of the QI for Aldous’s
β-model [MCMRV, Corollaries 4 and 7]):

(2.7)

E[QIB(Tn)] =
3β + 6

7β + 18

(
n

4

)
,

Var[QIB(Tn)] =
(β + 2)(2β2 + 9β + 12)

2(7β + 18)2(127β3 + 1383β2 + 4958β + 5880)
n8

+O(n7).

3. Contraction method. Consider the space D of distribution func-
tions with finite second moment and first moment zero. On D we define the
Wasserstein metric

d(F,G) = inf ‖X − Y ‖2
where ‖ ·‖2 denotes the L2 norm and the infimum is over all X ∼ F , Y ∼ G.
Notice that convergence in d induces convergence in distribution.
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Let τ ∈ [0, 1] be a random variable whose distribution is not a Dirac δ
at 0 nor at 1. For r ∈ N+ define a transformation S : D → D by

(3.1) S(F ) = L(τ rY ′ + (1− τ)rY ′′ + C(τ)),

where L(X) denotes the law of the random variable X, and Y ′, Y ′′, τ are
independent with Y ′, Y ′′ ∼ F ; moreover we assume that τ satisfies, for all n,

(3.2) 2
n∑
i=1

pn,i

(
i

n

)2r

< 1,

where pn,i = P ((i− 1)/n < τ ≤ i/n), and the function C(·) is of the form

(3.3) C(τ) =
∑

r1+r2≤r
Cr1,r2τ

r1(1− τ)r2

for some constants Cr1,r2 and furthermore satisfies E[C(τ)] = 0. By [R92,
Thms. 3 and 4], S is well defined, has a unique fixed point and for any F ∈ D
the sequence Sn(F ) converges exponentially fast in the d metric to S’s fixed
point. Using the exact arguments used to show [R91, Thm. 2.1] one can show
that the map S is a contraction. Only the Lipschitz constant of convergence
will differ, being

√
Cτ with Cτ = max{E[τ2r],E[(1−τ)2r]} in our case. Notice

that as τ ∈ [0, 1] and is non-degenerate at the edges, it follows that Cτ < 1
and we have a contraction.

We now state the main result of our work. We show weak convergence,
with a characterization of the limit for a class of recursively defined models.

Theorem 3.1 (cf. [R91, Thm. 3.1]). For n ≥ 2 and β > 0 let Ln ∈
{1, . . . , n−1} be such that Ln−1 is BetaBinomial(n−2, β+1, β+1) distributed
and let τ be Beta(β + 1, β + 1) =: Fτ distributed. Starting from the Dirac δ
at 0, i.e. Y1 = 0 and with the convention BetaBinomial(0, β+1, β+1) = δ0,
for r ∈ N+ such that the condition (3.2) is met with this choice of Fτ , define
recursively a sequence of random variables by

Yn =

(
Ln
n

)r
YLn +

(
1− Ln

n

)r
Yn−Ln + Cn(Ln),

where

(3.4) Cn(i) = n−r
( ∑
r1+r2+r3≤r

Cr1,r2,r3i
r1(n− i)r2nr3 + hn(i)

)
,

with E[Cn(Ln)] = 0 and supi n
−rhn(i) → 0. If E[Y 2

n ] is uniformly bounded
then the random variable Yn converges in the Wasserstein d-metric to a ran-
dom variable Y∞ whose distribution is the unique fixed point of the transfor-
mation S of (3.1).

Notice that as Y1 = 0 and by the definition of the recursion we have
E[Yn] = 0 for all n.
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The Yule tree case will be the limit of β = 0, and in this case the proof
of the result will be more straightforward (as commented on in the proof of
Theorem 3.1).

Notice that Ln/n
D→ τ . It is tempting to suspect that Theorem 3.1 is a

corollary of a general result related to the contraction method (as presented
in [D09, (8.12), p. 351]). However, to the best of my knowledge, general
results assume L2 convergence of Ln/n (e.g. [D09, Thm. 8.6, p. 354]), while
in our phylogenetic balance index case we will only have convergence in
distribution. In such a case it seems that convergence has to be proved case
by case (see e.g. examples in [RR95]). Here we show the convergence of
Theorem 3.1 similarly to [R91].

We first derive a lemma that controls the non-homogeneous part of the
recursion, i.e. Cn(·) as defined in (3.4).

Lemma 3.2 (cf. [R91, Prop. 3.2]). Let Cn : {1, . . . , n − 1} → R be as in
equation (3.4). Then

(3.5) sup
x∈[0,1)

∣∣Cn(b(n− 1)xc+ 1)− C(x)
∣∣ ≤ sup

i
n−rhn(i) +O(n−1).

Proof. For 1 ≤ b(n− 1)xc+1 ≤ n− 1 and writing i = b(n− 1)xc+1 we
have, due to (3.3) and (3.4),

|Cn(b(n− 1)xc+ 1)− C(x)|

≤ max{Cr1,r2}
(∣∣∣∣( in

)r
− xr

∣∣∣∣+∣∣∣∣(1− i

n

)r
− (1− x)r

∣∣∣∣
+

∑
r1+r2≤r

∣∣∣∣( in
)r1(

1− i

n

)r2
− xr1(1− x)r2

)∣∣∣∣
+ sup

i
n−rhn(i).

Bounding the individual components, using the mean value theorem and the
fact that by construction x cannot differ from i/n by more than 1/n, we
have ∣∣∣∣( in

)r
− xr

∣∣∣∣ ≤ r∣∣∣∣ in − x
∣∣∣∣ ≤ r

n
= O(n−1)

and ∣∣∣∣(1− i

n

)r
− (1− x)r

∣∣∣∣ ≤ r∣∣∣∣ in − x
∣∣∣∣ ≤ r

n
= O(n−1).

Furthermore, by the triangle inequality and the above two inequalities,∣∣∣∣( in
)r1(

1− i

n

)r2
− xr1(1− x)r2

∣∣∣∣ = O(n−1).
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Lemma 3.3 (cf. [R91, Prop. 3.3]). Let an, bn, pn,i, n ∈ N, be three se-
quences such that 0 ≤ bn → 0 as n→∞, 0 ≤ pn,i ≤ 1,

(3.6) 0 ≤ an+1 ≤ 2
n∑
i=1

pn,i

(
i

n

)R(
sup

i∈{1,...,n}
ai

)
+ bn.

and

0 < 2
n∑
i=1

pn,i

(
i

n

)R
= C < 1.

Then limn→∞ an = 0.

Proof. The proof is exactly the same as in [R91, proof of Prop. 3.3]. In
the last step we will have, with a := lim sup an <∞, the sandwiching for all
ε > 0:

0 ≤ a ≤ C(a+ ε).

Having Lemmata 3.2 and 3.3 we turn to showing Theorem 3.1.

Proof of Theorem 3.1. Denote the law of Yn as L(Yn) = Gn. We take Y∞
and Y ′∞ independent and distributed as G∞, the fixed point of S. Then, for
i = 1, . . . , n − 1 we choose independent versions of Yi and Y ′i . We need to
show d2(Gn, G∞)→ 0. As the metric is the infimum over all pairs of random
variables that have marginal distributions Gn and G∞, the obvious choice is
to take Yn, Y∞ such that Ln/n will be close to τ for large n. The Yule model
(β = 0) was considered in [R91] and there τ ∼ Unif[0, 1] and Ln is uniform
on {1, . . . , n − 1}. Hence, b(n − 1)τc + 1 will be uniform on {1, . . . , n − 1}
(remember P (τ = 1) = 0), and Ln/n

D
= (b(n− 1)τc+ 1)/n.

However, when β > 0 the situation complicates. For a given n, Ln − 1 is
BetaBinomial(n−2, β+1, β+1) distributed (cf. (2.1) and [A96, (1) and (3)]).
Hence, if τ ∼ Beta(β+1, β+1) and Ln−1 ∼ BetaBinomial(n−2, β+1, β+1)

we do not have Ln/n
D
= (b(n − 1)τc + 1)/n exactly. We may bound the

Wasserstein metric by any coupling that retains the marginal distributions
of the two random variables.

Therefore, from now on we will be considering a version where conditional
on τ , the random variable Ln−1 is Binomial(n−2, τ) distributed. Let rn be
any sequence such that rn/n → 0 and n/r2n → 0, e.g. rn = n ln−1 n. Then,
by Chebyshev’s inequality,

P
(
|Ln − E[Ln|τ ]| ≥ rn

∣∣ τ) ≤ nτ(1− τ)
r2n

≤ n

4r2n
→ 0.

We now want to show d2(Gn, G∞)→ 0 and we will exploit the above coupling
in the bound:
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d2(Gn, G∞)

≤ E

[(((
Ln
n

)r
YLn − τ rY∞

)
+

((
n− Ln
n

)r
Yn−Ln − (1− τ)rY ′∞

)
+ (Cn(Ln)− C(τ))

)2]
= E

[((
Ln
n

)r
YLn − τ rY∞

)2]
+ E

[((
n− Ln
n

)r
Yn−Ln − (1− τ)rY ′∞

)2]
+ E[(Cn(Ln)− C(τ))2],

where Y∞, Y ′∞ ∼ G∞ are independent. Remember that E[Yi] = E[Y∞] = 0
so that the expectation of the cross products disappears.

Our main step is to give a bound where the Ln/n term is replaced
by some transformation of τ . Let r̃n be an appropriate random integer in
{±1, . . . ,±drne} and we may write (with the chosen coupling of Ln and τ)

E

[((
Ln
n

)r
YLn−τ rY∞

)2]
= E

[
E

[((
Ln
n

)r
YLn−τ rY∞

)2 ∣∣∣∣ τ]]
= E

[
E

[((
b(n−1)τc+1+r̃n

n

)r
YLn−τ rY∞

)2 ∣∣∣∣ |Ln−E[Ln]| ≤ rn, τ]
· P (|Ln−E[Ln]| ≤ rn | τ)

]
+E

[
E

[((
Ln
n

)r
YLn−τ rY∞

)2 ∣∣∣∣ |Ln−E[Ln]|≥rn, τ]P (|Ln−E[Ln]|≥rn | τ)]
≤ E

[((
b(n−1)τc+1+r̃n

n

)r
YLn−τ rY∞

)2

+
n

4r2n
E

((
Ln
n

)r
YLn−τ rY∞

)2

= E

[(((
b(n−1)τc+1

n

)r
+r

r̃n
n

(
b(n−1)τc+1+ξr̃n

n

)r−1)
YLn−τ rY∞

)2]
+

n

4r2n
E

[((
Ln
n

)r
YLn−τ rY∞

)2]
= E

[((
b(n−1)τc+1

n

)r
YLn−τ rY∞

)2

+ r2n−2 E

[
r̃2n

(
b(n−1)τc+1+ξr̃n

n

)2(r−1)
Y 2
Ln

]
+2rn−1 E

[
r̃n

(
b(n−1)τc+1+ξr̃n

n

)r−1
YLn·

((
b(n−1)τc+1

n

)r
YLn−τ rY∞

)]
+

n

4r2n
E

[((
Ln
n

)r
YLn−τ rY∞

)2]
,
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where ξr̃n ∈ (0, r̃n) is (a random variable) such that the mean value theorem
holds (for the function (·)r). As Yn, Y∞ have uniformly bounded second
moments and 0 ≤ ξr̃n ≤ r̃n ≤ rn ≤ n, we have, by the assumptions rn/n→ 0
and n/r2n → 0,(
r
rn
n

)2

E

[(
b(n−1)τc+1+ξr̃n

n

)2(r−1)
Y 2
Ln

]
+

n

4r2n
E

[((
Ln
n

)r
YLn−τ rY∞

)2]
+2r

rn
n

E

[(
b(n−1)τc+1+ξr̃n

n

)r−1
YLn ·

((
b(n−1)τc+1

n

)r
YLn−τ rY∞

)]
→0,

and hence for some sequence un → 0,

E

[((
Ln
n

)r
YLn − τ rY∞

)2]
≤ E

[((
b(n− 1)τc+ 1

n

)r
YLn − τ rY∞

)2]
+ un.

Remembering the assumption supi n
−rhn(i) → 0, the other component

can be treated in the same way as E[((Ln/n)rYLn−τ rY∞)2] with conditioning
on τ and then controlling Ln’s deviation from its expected value by rn and
Chebyshev’s inequality. Therefore, for some sequence vn → 0,

d2(Gn, G∞) ≤ E

[((
b(n− 1)τc+ 1

n

)r
YLn − τ rY∞

)2]
+ E

[(
Cn(b(n− 1)τc+ 1)− C(τ)

)2]
+ E

[((
n− b(n− 1)τc − 1

n

)r
Yn−Ln − (1− τ)rY ′∞

)2]
+ vn.

In order to estimate the first term of the right-hand side, let us denote
d2n−1 := supi∈{1,...,n−1} d

2(Gi, G∞). Then

E

[((
b(n− 1)τc+ 1

n

)r
YLn − τ rY∞

)2]
= E

[n−1∑
i=1

1(i−1)/(n−1)<τ≤i/(n−1)

((
i

n

)r
YLn − τ rY∞

)2]

≤
n−1∑
i=1

pn−1,i

(
i

n

)2r

E[(YLn − Y∞)2]

=

n−1∑
i=1

pn−1,i

(
i

n

)2r

d2n−1,

where pn,i = P ((i− 1)/(n− 1) < τ ≤ i/(n− 1)). Invoking Lemmata 3.2, 3.3
and using the assumption (3.2) with R = 2r we have
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d2(Gn, G∞) ≤ 2
n−1∑
i=1

pn−1,i

(
i

n

)2r

d2n−1 +
(
n−r sup

i
hn(i)

)2
+ vn +O(n−2),

which converges to 0.

4. Limit distribution of the quartet index for Aldous’s (β ≥ 0)-
model trees. We show here that the QIB of Aldous’s (β ≥ 0)-model trees
satisfies the conditions of Theorem 3.1 with r = 4 and hence the QIB has a
well characterized limit distribution. We define a centred and scaled version
of the QIB for Aldous’s (β ≥ 0)-model tree on n ≥ 4 leaves:

(4.1) Y Q
n = n−4

(
QIB(Tn)−

3β + 6

7β + 18

(
n

4

))
.

We now specialize Theorem 3.1 to the QIB case and assume Y1 = Y2 =
Y3 = 0 for completeness.

Theorem 4.1. The sequence of random variables Y Q
n for trees generated

by Aldous’s β-model with β ≥ 0 converges as n → ∞ in the Wasserstein
d-metric (and hence in distribution) to a random variable YQ ∼ Q ≡ G∞
satisfying the following equality in distribution:

YQ
D
= τ4Y ′Q + (1− τ)4Y ′′Q +

3β + 6

24(7β + 18)
(τ4 + (1− τ)4)(4.2)

− 3β + 6

24(7β + 18)
+

1

4
τ2(1− τ)2,

where τ ∼ Fτ has the Beta distribution of equation (2.3), YQ, Y ′Q, Y
′′
Q ∼ Q

and Y ′Q, Y
′′
Q, τ are all independent.

Proof. Denote by P3(x, y) a polynomial of degree at most three in the
variables x, y. From the recursive representation (2.6), for n > 4,

Y Q
n = n−4

(
QIB(TLn)−

3β + 6

(7β + 18)

(
Ln
4

)
+QIB(Tn−Ln)

− 3β + 6

(7β + 18)

(
n− Ln

4

)
+

(
Ln
2

)(
n− Ln

2

)
+

3β + 6

(7β + 18)

(
Ln
4

)
+

3β + 6

(7β + 18)

(
n− Ln

4

)
− 3β + 6

(7β + 18)

(
n

4

))
=

(
Ln
n

)4

Y Q
Ln

+

(
1− Ln

n

)4

Y Q
n−Ln

+
1

4

(
Ln
n

)2(
1− Ln

n

)2

+
3β + 6

24(7β + 18)

(
Ln
n

)4

+
3β + 6

24(7β + 18)

(
1− Ln

n

)4

− 3β + 6

24(7β + 18)

+ n−4P3(n,Ln).



40 K. Bartoszek

We therefore have r = 4 and

Cn(i) =
1

4

(
i

n

)2(
1− i

n

)2

+
3β + 6

24(7β + 18)

((
i

n

)4

+

(
1− i

n

)4)
− 3β + 6

24(7β + 18)
+ n−4P3(n, i).

By scaling and centring we know that EY Q
n = 0 and E(Y Q

n )2 is uniformly
bounded by (2.7). Because of the Beta law of τ we need to examine, for
all i,

pn,i := P

(
i− 1

n
≤ τ < i

n

)
=
Γ (2β + 2)

Γ 2(β + 1)

i/n�

(i−1)/n

xβ(1− x)β dx.

We consider two cases.
If β > 0, we have to check whether (3.2) is satisfied. Let

Bx(β + 1, β + 1) =

x�

0

uβ(1− u)β du

be the incomplete Beta function. Then

pn,i =
Γ (2β + 2)

Γ 2(β + 1)

(
Bi/n(β + 1, β + 1)−B(i−1)/n(β + 1, β + 1)

)
= n−1

Γ (2β + 2)

Γ 2(β + 1)
B′ξ(β + 1, β + 1)

for some ξ ∈ ((i− 1)/n, i/n) by the mean value theorem. Obviously

B′ξ(β + 1, β + 1) = ξβ(1− ξ)β ≤
(
i

n

)β(
1− i− 1

n

)β
and now

n∑
i=1

pn,i

(
i

n

)R
≤ Γ (2β + 2)

Γ 2(β + 1)
n−1

n∑
i=1

(
i

n

)R( i
n

)β(
1− i− 1

n

)β
(4.3)

→ Γ (2β + 2)

Γ 2(β + 1)

1�

0

uβ+R(1− u)β du

=
Γ (2β + 2)

Γ 2(β + 1)

Γ (β +R+ 1)Γ (β + 1)

Γ (2β +R+ 2)

=
Γ (2β + 2)

Γ (β + 1)

Γ (β +R+ 1)

Γ (2β +R+ 2)
.

Take 1 < R1 < R2 and consider the ratio
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A =
Γ (2β + 2)

Γ (β + 1)

Γ (β +R2 + 1)

Γ (2β +R2 + 2)

(
Γ (2β + 2)

Γ (β + 1)

Γ (β +R1 + 1)

Γ (2β +R1 + 2)

)−1
=

Γ (β +R2 + 1)

Γ (2β +R2 + 2)

Γ (β)

Γ (β)

Γ (2β +R1 + 1)

Γ (β +R1 + 1)

=
B(β + 1 +R2, β)

B(β + 1 +R1, β)
.

We have A < 1 as the Beta function is decreasing in each of its arguments,
hence the upper bound in (4.3) is decreasing in R. For R = 1 the bound
equals
Γ (2β + 2)

Γ (β + 1)

Γ (β + 2)

Γ (2β + 3)
=
Γ (2β + 2)

Γ (β + 1)

(β + 1)Γ (β + 1)

(2β + 2)Γ (2β + 2)
=

β + 1

2(β + 1)
=

1

2
,

and hence for all R > 1 and all β > 0,
n∑
i=1

pn,i

(
i

n

)R
<

1

2
.

As in our case we have r ≥ 1, for R = 2r ≥ 2 the assumptions of Lemma 3.3
are satisfied, and the statement of the theorem follows.

If β = 0, then directly pn,i = n−1, (3.2) and the assumptions of Lemma
3.3 are immediately satisfied, and the statement of the theorem follows. This
is the Yule model case, in which the proof of the counterpart of Theorem 3.1
is much more straightforward, as mentioned before.

Remark 4.2. When β < 0 the process Ln/n seems to have a more
involved asymptotic behaviour (cf. [A96, Lemma 3] in the β ≤ −1 case).
Furthermore, the bounds applied here do not hold for β < 0. Therefore, this
family of tree models (including the important uniform model, β = −3/2)
deserves a separate study with respect to its quartet index.

5. Comparing with simulations. To verify the results we com-
pared the simulated values from the limiting theoretical distribution
of YQ with scaled and centred values of Yule tree QI values. The
500-leaf Yule trees were simulated using the rtreeshape() function of the
apTreeshape [BDBF12] R [R17] package and Tomás Martínez-Coronado’s
in-house Python code. Then, for each tree the QI value was calculated by
Gabriel Valiente’s and Tomás Martínez-Coronado’s in-house programs. The
raw values QIB(Yule500) were scaled and centred as

Y Q
n = 500−4

(
QIB(Yule500)−

1

3

(
500

4

))
.

The YQ values were simulated using the heuristic algorithm proposed in
[B18, Algorithm 3] (see R code in Appendix). The results of the simulation
are presented in Fig. 2.
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QI(Yule simulated)
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Fig. 2. Left: histogram of scaled and centred simulated values of the QIB for the Yule tree,
Y Q
n ; right: histogram of YQ for the Yule model, β = 0. The mean, variance, skewness and

excess kurtosis of the simulated values are −3.177 ·10−6, 6.321 ·10−6, −0.308, −0.852 (left,
simulated values) and 1.682 · 10−5, 6.38 · 10−6, −0.317, −0.834 (right, theoretical values
of the heuristic Algorithm 3 in [B18] with recursion depth 15). For β = 0 the leading
constant of the variance in (2.7) is 5/(24 · 33075) ≈ 6.299 · 10−6.

Appendix: R code for simulating from the limit distribution of
the normalized quartet index

fCtau_QIB<−f unc t i on (x , beta=0){
PB4beta<−(3∗beta+6)/(7∗ beta +18);
PB4beta ∗( x^4)/24+PB4beta∗((1−x)^4)/24−PB4beta/24+0.25∗x∗x∗(1−x)^2

}

fd i s t r ibut ion_l imi tQIB<−f unc t i on (num. i t e r =10, pops i z e =10000 ,Y0=0){
r e p l i c a t e ( pops ize , fdraw_limitQIB (num. i t e r ,Y0) )

}

fdraw_limitQIB<−f unc t i on (num. i t e r =15,Y0=0){
res<−0
i f (num. i t e r ==0){

Y1<−Y0
Y2<−Y0

}
e l s e {

Y1<−fdraw_limitQIB (num. i t e r −1,Y0)
Y2<−fdraw_limitQIB (num. i t e r −1,Y0)

}
tau<−r un i f ( 1 )
res <−((tau )^4)∗Y1+((1−tau )^4)∗Y2+fCtau_QIB( tau )
r e s

}

pops ize <−10000 ## s i z e o f sample f o r histogram
num. i t e r <−15 ## depth o f the r e cu r s i on
Y0 <− 0 ## i n i t i a l va lue

vlimitQIB<−f d i s t r i bu t i on_l im i tQIB (num. i t e r=num. i t e r , pops i z e=pops i z e )
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