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Arbitrarily large 2-torsion in
Tate–Shafarevich groups of abelian varieties

by

E. V. Flynn (Oxford)

1. Introduction. There has been substantial research on arbitrarily
large Tate–Shafarevich groups and Selmer groups on elliptic curves ([1], [3],
[8], [11], [12], [13], [14], [15], [16]), which has mainly emphasised the p-tor-
sion part of the Tate–Shafarevich group for p ≤ 13. For higher dimension,
Creutz [6] has shown that for any principally polarised abelian variety A
over a number field K, the p-torsion in the Tate–Shafarevich group can be
arbitrarily large over a field extension L of degree which is bounded in terms
of p and the dimension of A, generalising work of Clark and Sharif [5].

For higher dimension over Q, Flynn [9] has recently shown that the Tate–
Shafarevich groups of absolutely simple Jacobians of genus 2 curves over Q
(in particular, their 2-torsion) can be arbitrarily large. This involved the
examination of the quadratic twists of a genus 2 curve whose Jacobian has
all of its 2-torsion defined over Q, and then showing that the Selmer bounds
for complete 2-descent and descent via Richelot isogeny can differ by an
arbitrarily large amount.

Our desire here is to generalise this result to arbitrary genus. We shall
show the following result.

Theorem 1. For any g ≥ 1, there exists a hyperelliptic curve of genus g
over Q, with absolutely simple Jacobian, such that the 2-torsion part of the
Tate–Shafarevich groups is arbitrarily large amongst its quadratic twists.

We shall make use of a recent elegant construction of Mestre [17] who
describes, for any g, curves of genus g whose Jacobians admit a (2, . . . , 2)
isogeny φ. Our broad principle is the same: we again wish to play the Selmer
group information for complete 2-descent against the Selmer group infor-
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mation for descent via this isogeny. However, for general genus g, this is
impractical, and we show how it is possible to focus on specific elements and
just a small part of the information from the Selmer groups; our method also
does not require any explicit models of the isogenous objects.

2. A construction of Mestre, generalising Richelot’s isogeny. We
summarise the recent construction of Mestre [17], which considers curves of
genus g of the following form, in the variables x, y over the purely transcen-
dental field Q(v, a1, . . . , ag). We define C to be the smooth projective model
of the following affine curve:

(1) C : y2 = (x− v)(vx− 1)(x2 − a1) · · · (x2 − ag).

Let A = 2(v2 + 1)(v2 − a1) · · · (v2 − ag) and define Ĉ to be the smooth
projective model of the following affine curve:

(2) Ĉ : y2 = A(x− v)(vx− (−1)g)(x2 − b1) · · · (x2 − bg),
where bi = (aiv

2 − 1)/(ai − v2) for each i. Note that in [17], the twisting
factor A is placed on C, and we have placed it here instead on Ĉ for later
convenience. Of course, any specialisation to v, a1, . . . , ag ∈ Q will give curves
of genus g over Q provided that 0, v2, 1/v2, a1, . . . , ag are distinct.

First consider the case when g is even. If we set

(3)

S(x, z) = x2z2 − v2(x2 + z2) + 1,

M(x, z) =

g/2∏
i=1

(v2 − a2i)(x2 − a2i−1)(z2 − b2i),

then there is a correspondence Γ on C × Ĉ defined by

(4) S(x, y) = 0, yt =M(x, z)(v2 + 1)(1− xv − zv + xz).

This induces an isogeny φ : J → Ĵ , where J, Ĵ are the Jacobian varieties
of C, Ĉ, respectively. Then φ is a (2, . . . , 2)-isogeny, that is, an isogeny of
degree 2g, with kernel isomorphic to (Z/2Z)g; the kernel of φ is generated
by the divisor classes [(

√
ai, 0) − (−√ai, 0)]. Similarly, the dual isogeny φ̂ :

Ĵ → J has kernel isomorphic to (Z/2Z)g, generated by the divisor classes
[(
√
bi, 0) − (−

√
bi, 0)]. The composition φ̂φ is the multiplication by 2 map

on J .
Mestre also shows (in [17, Section 2.4]) for odd genus that there is an

isogeny φ : J → Ĵ of degree 2g and dual isogeny φ̂ : Ĵ → J with kernels as
described above.

When g = 1, this is the standard 2-isogeny on an elliptic curve (described
in [20, Chapter X]); when g = 2, this is Richelot’s isogeny (described in [2]
and in [4, Chapter 9]).
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Mestre concludes [17, Section 2.4] by showing that C generically has ab-
solutely simple Jacobian J .

3. Descent via (2, . . . , 2)-isogeny. We now wish to take the isogeny φ
described by Mestre and set up the machinery required to perform descent
via this isogeny. From now onwards, we shall take v, a1, . . . , ag ∈ Q such that
0, v2, 1/v2, a1, . . . , ag are distinct, in order that the curves in (1), (2) are of
genus g and defined over Q, the isogenies φ and φ̂ are defined over Q, and
we may consider φ : J(Q)→ Ĵ(Q) and φ̂ : Ĵ(Q)→ J(Q).

It will be more convenient to work with curves that are of odd degree
and monic, so we shall first birationally transform C and Ĉ to this form. Let

(5) P = (v2 − 1)(v2 − a1) · · · (v2 − ag) ∈ Q∗,
and now map (v, 0) to infinity by replacing y by Py/xg+1 and replacing x
by (vx+ P )/x in (1); we may then take C to be

C : y2 =
(
x+

vP

v2 − 1

)
f1(x) · · · fg(x), where(6)

fi(x) = x2 +
2vPx

v2 − ai
+

P 2

v2 − ai
.

Similarly replace y by 2(v2+1)b(g+3)/2c(v2−1)b(g+2)/2cy/xg+1 and replace x
by (vx + 2(v4 − 1))/x in (2), and substitute the definitions of A and the bi
given immediately before and after (2); we may then take Ĉ to be

(7)
Ĉ : y2 =

(
x+ 2v(v2 + (−1)g)

)
f̂1(x) · · · f̂g(x), where

f̂i(x) = x2 + 4v(v2 − ai)x+ 4(v4 − 1)(v2 − ai).
A file which checks the above maps has been placed at [10]. We now describe
the map which allows descent to be performed via this isogeny (sometimes
referred to as the Cassels map for the descent). Let U consist of 2,∞ and
the primes dividing the discriminants of C, Ĉ. Let (Q∗/(Q∗)2)×g denote the
product Q∗/(Q∗)2 × · · · × Q∗/(Q∗)2 (g times), and let M be the subgroup
of (Q∗/(Q∗)2)×g generated by −1 and U \ {∞} in each factor. The recipe
for finding the following maps is described in [19]. For descent via the above
isogeny, we should find an injection on Ĵ(Q)/φ(J(Q)) by using functions
whose divisors generate the kernel of φ̂, namely f̂1(x), . . . , f̂g(x). This is
given by

(8)

qφ : Ĵ(Q)/φ(J(Q))→M ≤ (Q∗/(Q∗)2)×g,[ g∑
i=1

(xi, yi)− g · ∞
]
7→
( g∏
i=1

f̂1(xi), . . . ,

g∏
i=1

f̂g(xi)
)
.

In the above definition, xi, yi ∈ Q for each i, the divisor
∑g

i=1(xi, yi)−g ·∞ is
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Galois stable, and the left hand side is its divisor class. The above definition
applies when all f̂j(xi) are nonzero. When f̂j(xi) = 0, it should be replaced
by (xi + 2v(v2 + (−1)g))f̂1(xi) · · · f̂j−1(xi)f̂j+1(xi) · · · f̂g(xi); note that this
is the evaluation at x = xi of the product of all factors except f̂j(x) on the
right hand side of (7). When (xi, yi) is the point at infinity, f̂j(xi) should
be replaced by 1. Analogous adjustments apply to the maps qφ̂ and q which
will be defined below.

We should similarly find an injection on J(Q)/φ̂(Ĵ(Q)) by using functions
whose divisors generate the kernel of φ, namely f1(x), . . . , fg(x). This is given
by

(9)
qφ̂ : J(Q)/φ̂(Ĵ(Q))→M ≤ (Q∗/(Q∗)2)×g,[ g∑
i=1

(xi, yi)− g · ∞
]
7→
( g∏
i=1

f1(xi), . . . ,

g∏
i=1

fg(xi)
)
.

We exploit the usual style of commutative diagram (of the type used, for
example, in [4, Chapter 11] and in [18]):

(10)

Ĵ(Q)/φ(J(Q))
qφ //

iφp

��

M

jp

��
Ĵ(Qp)/φ(J(Qp))

qφp //Mp

where qφp and Mp are the local analogues of qφ and M , and the maps iφp and
jp are induced by the natural injection Q ↪→ Qp. We may then compute the
Selmer group Selφ(J/Q), using

(11)
⋂
p∈U

j−1p (im qφp )
∼= Selφ(J/Q),

which contains im qφ, giving an upper bound on the order of Ĵ(Q)/φ(J(Q)).
We have a similar commutative diagram for φ̂:

(12)

J(Q)/φ̂(Ĵ(Q))
qφ̂ //

iφ̂p
��

M

jp

��
J(Qp)/φ̂(Ĵ(Qp))

qφ̂p //Mp

where qφ̂p and Mp are the local analogues of qφ̂ and M , and the maps iφ̂p and
jp are induced by the natural injection Q ↪→ Qp. We may then compute the
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Selmer group Selφ̂(Ĵ/Q), using

(13)
⋂
p∈U

j−1p (im qφ̂p )
∼= Selφ̂(Ĵ/Q),

which contains im qφ̂, giving an upper bound on the order of J(Q)/φ̂(J(Q)).
If one obtains bounds, as above, on the orders of Ĵ(Q)/φ(J(Q)) and

J(Q)/φ̂(Ĵ(Q)), one can deduce a bound on the order of J(Q)/2J(Q) and a
bound on the rank of J(Q).

4. Arbitrarily large 2-torsion part of the Tate–Shafarevich group
in any dimension. We aim to compare descent via the isogeny φ, as de-
scribed in the last section, with complete 2-descent, so we shall take our
curves to be in the form (6), (7), but with each ai equal to α2

i for some
αi ∈ Q∗, and where we apply a quadratic twist by k ∈ Q∗:

Ck : y2 =
(
x+

kvP

v2 − 1

)
h1(x)h̃1(x) · · ·hg(x)h̃g(x), where(14)

hi(x) = x+
kP

v + αi
and h̃i(x) = x+

kP

v − αi
,

and where

(15) P = (v2 − 1)(v + α1)(v − α1) · · · (v + αg)(v − αg).
Similarly, we have

Ĉk : y2 =
(
x+ 2kv(v2 + (−1)g)

)
ĥ1(x) · · · ĥg(x), where(16)

ĥi(x) = x2 + 4kv(v2 − α2
i )x+ 4k2(v4 − 1)(v2 − α2

i ).

Let T be the set of primes dividing k and let S = T ∪U . On Ĵk(Q)/φ(Jk(Q)),
where Jk, Ĵk are the Jacobians of Ck, Ĉk, the injection of (8) becomes

(17)

qφ : Ĵk(Q)/φ(Jk(Q))→M ′ ≤ (Q∗/(Q∗)2)×g,[ g∑
i=1

(xi, yi)− g · ∞
]
7→
( g∏
i=1

ĥ1(xi), . . . ,

g∏
i=1

ĥg(xi)
)
,

whereM ′ is generated by −1 and S \{∞} in each factor. The injection of (9)
becomes

(18)
qφ̂ : Jk(Q)/φ̂(Ĵk(Q))→M ′ ≤ (Q∗/(Q∗)2)×g,[ g∑
i=1

(xi, yi)− g · ∞
]
7→
( g∏
i=1

h1(xi)h̃1(xi), . . . ,

g∏
i=1

hg(xi)h̃g(xi)
)
.

Since the Jacobian Jk of our curve Ck of (14) has all of its 2-torsion in Jk(Q),
we may also perform complete 2-descent. The relevant injection (using the
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method in [18]) is

(19)

q : Jk(Q)/2Jk(Q)→M ′′ ≤ (Q∗/(Q∗)2)×2g,[ g∑
i=1

(xi, yi)− g · ∞
]

7→
( g∏
i=1

h1(xi),

g∏
i=1

h̃1(xi), . . . ,

g∏
i=1

hg(xi),

g∏
i=1

h̃g(xi)
)
,

whereM ′′ is generated by −1 and S \{∞} in each factor. We have our usual
associated commutative diagram

(20)

Jk(Q)/2Jk(Q)
q //

ip

��

M ′′

jp

��
Jk(Qp)/2Jk(Qp)

qp //M ′′p

where qp and M ′′p are the local analogues of q and M ′′, and the maps ip and
jp are induced by the natural injection Q ↪→ Qp. We may then compute the
2-Selmer group Sel(2)(Jk/Q), using

(21)
⋂
p∈S

j−1p (im qp) ∼= Sel(2)(Jk/Q),

which contains im q, so gives an upper bound on the order of Jk(Q)/2Jk(Q).
We wish to show arbitrarily large 2-torsion part of the Tate–Shafarevich

group for arbitrary genus by finding elements of Selφ̂(Ĵ/Q) which can be
shown to violate the Hasse principle by using Sel(2)(J/Q). Note that if
(r1, r2, r3, r4, . . . , r2g−1, r2g) ∈ im q then (r1r2, r3r4, . . . , r2g−1r2g) is the cor-
responding member of im qφ̂, so the map q refines qφ̂. Our approach will
not require finding entire Selmer groups, nor will it even require the ex-
plicit model for Ĉk, since we work entirely on specific elements r ∈ M ′,
showing r ∈ Selφ̂(Ĵ/Q) by proving directly, for all p ∈ S, the existence
of D ∈ Jk(Qp) such that qφ̂p (D) = r and by showing r 6∈ im qφ̂ by local
arguments on the qp.

Specifically, our strategy will be to fix a small prime; we shall use 7.
Then congruence conditions on v and the αi will ensure that, for C1 = C, the
prime 7 will, in a certain sense (which will be apparent in the details of the
next result), be relevant for local constraints on im q but not on im qφ̂. If we
twist by k = p1 · · · pt where, for all i, the pi are chosen such that all members
of U \{7,∞} (with U defined just after (7)) and all pj (for j 6= i) are squares
in Q∗pi , but also such that 7 is nonsquare in Q∗pi , then the prime 7 will create
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constraints due to local arguments on im q more severe than those obtained
by local arguments on im qφ̂.

Theorem 2. Let v, α1, . . . , αg ∈ Z, with 0, v,−v, 1/v,−1/v, α1, . . . , αg
distinct, satisfy 71 ‖α1, v ≡ ±2 (mod 7) and αi ≡ ±1 (mod 7) for each
i ≥ 2. Let U consist of 2,∞ and the primes dividing the discriminants
of C1, Ĉ1 (as in (14), (16), with k = 1). Now let k = p1 . . . pt, where t ∈ N
is arbitrary, satisfy

( pi
pj

)
= 1 for distinct i, j, pi ≡ 1 (mod 8) for each i,(

7
pi

)
= −1 for each i, and

(
π
pi

)
= 1 for each π ∈ U \ {7,∞} and each i.

Let Ck be as in (14), Ĉk be as in (16), Jk be the Jacobian of Ck, and Ĵk be
the Jacobian of Ĉk. Then Jk and Ĵk are of dimension g, and X(Ĵk/Q)[φ̂]
becomes arbitrarily large as t increases.

Proof. The given conditions force Ck, Ĉk to have genus g, so Jk, Ĵk have
dimension g. The conditions also imply that, for any prime π ∈ U \ {7,∞}
and any i, we have π ∈ (Q∗pi)

2 and pi ∈ (Q∗π)2; furthermore, pj ∈ (Q∗pi)
2 for

any j 6= i; finally, 7 6∈ (Q∗pi)
2 and pi 6∈ (Q∗7)2 by quadratic reciprocity. By

the Chinese Remainder Theorem and Dirichlet’s Theorem, we can find an
arbitrarily large set of such primes p1, . . . , pt, so t is arbitrarily large.

Let T = {p1, . . . , pt} and let S = T ∪U . The given conditions force 7 - P ,
where P is defined in (15). Let

(22)
β0 =

−kvP
v2 − 1

, β1 =
−kP
v + α1

, β2 =
−kP
v − α1

, . . . ,

β2g−1 =
−kP
v + αg

, β2g =
−kP
v − αg

, all in Z,

be the roots of the polynomial on the right hand side of (14). Also define

(23)
βi,j = βi − βj ∈ Z when i 6= j,

βi,i = (βi − β0)(βi − β1) . . . (βi − βi−1)(βi − βi+1) . . . (βi − β2g) ∈ Z.

The discriminant of the polynomial on the right hand side of C1 (given
by (14) with k = 1) is

(24)

22g((v2 − 1))2g(2g−1)
( g∏
i=1

α2
i

(
(v2 − α2

i )
)2g(2g−1)

(v2α2
i − 1)2

)∏
i<j

(α2
i − α2

j )
4,

so v+1, v−1 and each αi, v±αi, vαi±1, αi±αj is divisible only by the primes
in U \{∞}. The congruence conditions in the hypotheses of the theorem give
71 ‖α1,

(25) 7 - v + 1, v − 1, v ± αi, vαi ± 1 for i = 1, . . . , g,
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and

(26) 7 - αj , α1 ± αj for j = 2, . . . , g,

so each expression in (25), (26) is divisible only by the primes in U \ {7,∞}.
For any j ∈ {0, . . . , 2g},

(27) β0,j =



−k(vα(j+1)/2 + 1)(v − α(j+1)/2)
∏

1≤i≤g
i 6=(j+1)/2

(v2 − α2
i )

for j odd,
k(vαj/2 − 1)(v + αj/2)

∏
1≤i≤g
i 6=j/2

(v2 − α2
i )

for j even,

which shows, by using (25), that

β0,j/k ∈ Z is divisible only by the primes in U \ {7,∞}(28)
for j ∈ {1, . . . , 2g}.

Since βi,0 = −β0,i for each i, it follows that
βi,0/k ∈ Z is divisible only by the primes in U \ {7,∞}(29)
for i ∈ {1, . . . , 2g}.

Also

(30) β1,2 = 2kα1(v
2 − 1)

g∏
i=2

(v2 − α2
i ),

so, by (25) and the fact that 71 ‖α1,

(31) β1,2/(7k) ∈ Z is divisible only by the primes in U \ {7,∞}.
For any j ∈ {3, . . . 2g}, β1,j is

(32)

k(v2 − 1)(α1 − α(j+1)/2)(v − α1)(v − α(j+1)/2)
∏

2≤i≤g
i 6=(j+1)/2

(v2 − α2
i )

for j odd,
k(v2 − 1)(α1 + αj/2)(v − α1)(v + αj/2)

∏
2≤i≤g
i 6=j/2

(v2 − α2
i ) for j even,

which gives, in view of (25), (26),

β1,j/k ∈ Z is divisible only by the primes in U \ {7,∞}(33)
for j ∈ {3, . . . , 2g}.

Since β1,1 = β1,0β1,2β1,3 . . . β1,2g it follows from (29) with i = 1, and from
(31), (33), that

(34) β1,1/(7k
2g) ∈ Z is divisible only by the primes in U \ {7,∞}.
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Hence, combining (28), (31), (33), (34), we see that

β1,1β0,1/(7k
2g+1), β1,2β0,2/(7k

2) ∈ Z and β1,jβ0,j/k2 ∈ Z for each(35)
j ∈ {3, . . . , 2g} are divisible only by the primes in U \ {7,∞}.

Similarly

β2,1β0,1/(7k
2), β2,2β0,2/(7k

2g+1) ∈ Z and β2,jβ0,j/k2 ∈ Z for each(36)
j ∈ {3, . . . , 2g} are divisible only by the primes in U \ {7,∞},

and

for any distinct i, j ∈ {3, . . . , 2g}, βi,1β0,1/k2, βi,2β0,2/k2 ∈ Z(37)
are divisible only by the primes in U \ {7,∞},
and βi,iβ0,i/k2g+1, βi,jβ0,j/k

2 ∈ Z
are divisible only by the primes in U \ {∞}.

For any i ∈ {1, . . . , 2g}, [(βi, 0)−(β0, 0)] = [(βi, 0)+(β0, 0)−2∞] is taken by
the map q of (19) to (βi,1β0,1, βi,2β0,2, . . . , βi,2gβ0,2g), where now each βi,jβ0,j
represents a member of Q∗/(Q∗)2; by (35)–(37), the subset

(38) {[(β1, 0)− (β0, 0)], [(β2, 0)− (β0, 0)], . . . , [(β2g, 0)− (β0, 0)]}

of Jk(Q) is mapped by q of (19) to a set of members of (Q∗/(Q∗)2)×2g of the
following form, where each entry is represented by a squarefree integer:

H = {(7kw(1)
1 , 7w

(1)
2 , w

(1)
3 , w

(1)
4 , . . . , w

(1)
2g−1, w

(1)
2g ),(39)

(7w
(2)
1 , 7kw

(2)
2 , w

(2)
3 , w

(2)
4 , . . . , w

(2)
2g−1, w

(2)
2g ),

(w
(3)
1 , w

(3)
2 , ku

(3)
3 , u

(3)
4 , . . . , u

(3)
2g−1, u

(3)
2g ),

(w
(4)
1 , w

(4)
2 , u

(4)
3 , ku

(4)
4 , . . . , u

(4)
2g−1, u

(4)
2g ), . . . ,

(w
(2g−1)
1 , w

(2g−1)
2 , u

(2g−1)
3 , u

(2g−1)
4 , . . . , ku

(2g−1)
2g−1 , u

(2g−1)
2g ),

(w
(2g)
1 , w

(2g)
2 , u

(2g)
3 , u

(2g)
4 , . . . , u

(2g)
2g−1, ku

(2g)
2g )},

where each u(j)i is divisible only by the primes in U \ {∞}, and each w(j)
i is

divisible only by the primes in U \{7,∞}. In (39) the symbol k only appears
in the diagonal entries.

For any i, the hypotheses imply that −1 and all primes of S \ {7, pi,∞}
are squares in Q∗pi , and that the images of 7 and pi in Q∗pi/(Q

∗
pi)

2 are
F2-independent, so 〈−1, S \ {∞}〉 ∩ (Q∗pi)

2 = 〈−1, U \ {7,∞}, (p`)all `6=i〉.
This implies that the above elements of H map to F2-independent elements
of (Q∗pi/(Q

∗
pi)

2)×2g, and since #Jk(Qpi)/2Jk(Qpi) = #Jk(Qpi)[2] = 22g

(see [18, Section 4]), it follows that the elements of H are mapped by qpi to
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an F2-basis of im qpi . Hence

j−1pi (im qpi) =(40)

〈H, (−1, 1, . . . , 1, 1), (1,−1, . . . , 1, 1), . . . ,
(1, 1, . . . ,−1, 1), (1, 1, . . . , 1,−1),

(w, 1, . . . , 1, 1)allw∈U\{7,∞}, (1, w, . . . , 1, 1)allw∈U\{7,∞}, . . . ,

(1, 1, . . . , w, 1)allw∈U\{7,∞}, (1, 1, . . . , 1, w)allw∈U\{7,∞},

(p`, 1, . . . , 1, 1)all 6̀=i, (1, p`, . . . , 1, 1)all ` 6=i, . . . ,

(1, 1, . . . , p`, 1)all 6̀=i, (1, 1, . . . , p`)all `6=i〉.

Recall that T = {p1, . . . , pt}; consider an arbitrary member (r1, . . . , r2g) of
the 2-Selmer group Sel(2)(Jk/Q) of (21), where each ri is a squarefree integer
representing an element of Q∗/(Q∗)2.

Let
t1 =

∏
p∈T
p|r1

p and t2 =
∏
p∈T
p|r2

p.

Consider the case where there does not exist any pi dividing either r1 or r2.
Then t1 = t2 = 1.

Consider the case where some pi divides r1 and r2. From (21), (39), (40)
we see that 7 - r1 and 7 - r2. This case can only arise if the expression of
(r1, . . . , r2g) as a product of generators on the right hand side of (40) involves
the first two elements of H. Hence, for all j, the expression of (r1, . . . , r2g)
as a product of generators on the right hand side of (40) with i = j must
involve both or neither of the first two elements of H, and no other generator
can contribute a factor of pj to r1 or r2. Hence, for all j, pj | r1 ⇔ pj | t2, so
t1 = t2.

Consider the case where some pi divides r1 but does not divide r2.
From (21), (39), (40) we see that 7 | r1 and 7 | r2. This case can only arise if
the expression of (r1, . . . , r2g) as a product of generators on the right hand
side of (40) involves the first and not the second element of H. Hence, for
all j, the expression of (r1, . . . , r2g) as a product of generators on the right
hand side of (40) with i = j must involve exactly one of the first two ele-
ments of H, and no other generator can contribute a factor of pj to r1 or r2.
Hence, for all j, pj |r1 ⇔ pj - t2, so t1t2 = k.

The remaining case, where there exists some pi which divides r2 but does
not divide r1, similarly gives t1t2 = k.

It now follows that for (r1, . . . , r2g) in the 2-Selmer group Sel(2)(Jk/Q),
the squarefree integer representing r1r2 in Q∗/(Q∗)2 must be divisible either
by no members of T or by all members of T . Since im q ⊆ Sel(2)(Jk/Q), the
same must be true of any member of im q. Furthermore, as we have previously
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observed, for any D ∈ Jk(Q), if q(D) = (r1, r2, r3, r4, . . . , r2g−1, r2g) then
qφ̂(D) = (r1r2, r3r4, . . . , r2g−1r2g). Hence

(41) (γ1, . . . , γg) ∈ im qφ̂ =⇒ (∀i, pi|γ1) or (@i, pi | γ1),

where each γi is a squarefree integer representing an element of Q∗/(Q∗)2.
If we now merge pairs of entries in (39), we see that

(42) qφ̂([(β1, 0)− (β0, 0)]) = (kw
(1)
1 w

(1)
2 , w

(1)
3 w

(1)
4 , . . . , w

(1)
2g−1w

(1)
2g ),

after removing the factor of 72 from the first entry since, as usual, all en-
tries are modulo squares. Recall that the prime factors of w(1)

1 , . . . , w
(1)
2g

come entirely from U \ {7,∞}, and our conditions imply that all members
of U \ {7,∞} are in every (Q∗pi)

2. Recall also that for any distinct i, `, our
conditions show that p` ∈ (Q∗pi)

2.
Hence, for any distinct i, j, the above equals (pipj , 1, . . . , 1) in both

of (Q∗pi/(Q
∗
pi)

2)×g and (Q∗pj/(Q
∗
pj )

2)×g, so (pipj , 1, . . . , 1) is in j−1pi (im qφ̂pi)

and j−1pj (im qφ̂pj ). Also, (pipj , 1, . . . , 1) = (1, . . . , 1) in (Q∗p`/(Q
∗
p`
)2)×g for

all ` 6∈ {i, j} and in (Q∗π/(Q∗π)2)×g for all π ∈ U (including π = 7), so in all of
these cases is the image of the identity under qp` and qπ. Hence (pipj , 1, . . . , 1)
is in j−1p` (im qφ̂p`) for all ` 6∈ {i, j}, and in j−1π (im qφ̂π) for all π ∈ U .

In summary, for any distinct i, j and for any p ∈ S, (pipj , 1, . . . , 1) is in
j−1p (im qφ̂p ), so in Selφ̂(Ĵk/Q). These elements span a (t − 1)-dimensional
F2-subspace V of Selφ̂(Ĵk/Q). By (41), (im qφ̂) ∩ V is contained in the
1-dimensional subspace spanned by (p1 . . . pt, 1, 1, . . . , 1). The intersection
is the kernel of the composition V ↪→ Selφ̂(Ĵk/Q) � X(Ĵk/Q)[φ̂] so the
image of V → X(Ĵk/Q)[φ̂] has dimension at least (t − 1) − 1 = t − 2. It
follows that, for each g, X(Ĵk/Q)[φ̂] can be arbitrarily large.

We note here the following standard result.

Lemma 1. The following is an exact sequence:

(43) 0→X(Ĵk/Q)[φ̂]→X(Ĵk/Q)[2]→X(Jk/Q)[φ],

so X(Ĵk/Q)[φ̂] injects into X(Ĵk/Q)[2].

Proof. The analogous result for elliptic curves appears in the bottom
row of the commutative diagram in [14, Section 5], and the same argument
applies here.

It remains to show that, for each genus g, there exists an example for
which the Jacobian is absolutely simple. We first state the following result,
which is [7, Theorem 8].
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Lemma 2. Let K be an infinite field of finite type over the prime field,
for instance a number field. Let g ≥ 1 be an integer, and let f(x) ∈ K[x] be a
squarefree polynomial of degree 2g. Let As be the Jacobian of the hyperelliptic
curve of genus g over K(s) with the affine model y2 = (x − s)f(x). Then
there are only finitely many s ∈ K such that As is not absolutely simple.

We use this to show the following result.

Lemma 3. There exist v, α1, . . . , αg ∈ Z, with 0, v,−v, 1/v,−1/v,
α1, . . . , αg distinct, satisfying 71 ‖α1, v ≡ 2 (mod 7) and αi ≡ 1 (mod 7)
for all i ≥ 2, such that C1 (as in (14) with k = 1) has absolutely simple
Jacobian.

Proof. Let d1, . . . , dg be any choice of distinct integers satisfying 71 ‖ d1
and di ≡ 4 (mod 7) for all i ≥ 2 (for example, take d1 = 7 and di = 4 + 7i
for i ≥ 2). Now an application of Lemma 2, with K = Q, to the polynomial

(44) f(x) = ((x+ 1)2 − d21x2) . . . ((x+ 1)2 − d2gx2)
shows that there are only finitely many s ∈ Q for which the Jacobian of
y2 = (x−s)f(x) is not absolutely simple. For any s ∈ Q there are at most two
values of v ∈ Q such that v2/(1− v2) = s, so there must also be only a finite
set of values of v ∈ Q for which the Jacobian of y2 = (x−v2/(1−v2))f(x) is
not absolutely simple. Hence there exists v ∈ Z, with v ≡ 2 (mod 7) which
is outside this finite set. Define αi = vdi ∈ Z for all i, so 71 ‖α1 and αi ≡ 1
(mod 7) for all i ≥ 2. Hence the Jacobian of the following curve is absolutely
simple:

(45) y2 =

(
x− v2

1− v2

)(
(x+1)2−

(
α1

v

)2

x2
)
. . .

(
(x+1)2−

(
αg
v

)2

x2
)
.

Replacing y by y
√
v/(v2 − 1)/(x − v)g+1 and x by v/(x − v) takes this

to (1) with ai = α2
i for each i (a check of the above map has been included

in [10]), so these are birationally equivalent over C. We have already seen
that (1), with ai = α2

i for each i, is birationally equivalent to C1 (as in (14)
with k = 1), so C1 must also have absolutely simple Jacobian.

We are now in a position to prove the main theorem, which was stated
in the introduction.

Proof of Theorem 1. For any g, let v, α1, . . . , αg ∈ Z be as in Lemma 3,
so C1 has absolutely simple Jacobian J1. Then Ĵ1, the Jacobian of Ĉ1, must
also be absolutely simple, since it is isogenous to J1. Note that v, α1, . . . , αg
∈ Z then also satisfy the conditions of Theorem 2, and let k be as described
in the statement of that theorem. By Theorem 2, X(Ĵk/Q)[φ̂] is arbitrarily
large, so, by Lemma 1, X(Ĵk/Q)[2] is arbitrarily large. Hence Ĉ1 is a hy-
perelliptic curve of genus g over Q, with absolutely simple Jacobian, such
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that the 2-torsion part of the Tate–Shafarevich groups is arbitrarily large
amongst its quadratic twists.

The congruence conditions modulo 7 in Theorem 2 hold for a positive
density set of (v, α1, . . . , αg) ∈ Zg+1. For s = a/b ∈ Q with a, b ∈ Z coprime,
let H(s) = max(|a|, |b|). Let n ∈ N; for z = (z1, . . . , zn) ∈ Qn, let H(z) =
max(H(z1), . . . ,H(zn)). For any subsets W1,W2 of Qn with W1 ⊆ W2, if
the limit of |{z ∈ W1 : H(z) ≤ B}|/|{z ∈ W2 : H(z) ≤ B}| exists as
B →∞, then we call this the density of W1 in W2. The proof of Theorem 2
might be modified to apply to a positive density set of the (v, α1, . . . , αg)
in Qg+1; if one varies the theorem to conditions modulo q for other q ≥ 7, and
combines these, then one might aim to show that there are density 1 of these
in Qg+1. We may similarly define the density of a given set of hyperelliptic
curves of genus g over Q, given by y2 = f(x), where f(x) is a polynomial of
degree 2g+1 or 2g+2 with no repeated roots, by regarding both the given set
and the set of all hyperelliptic curves of genus g over Q as subsets of Q2g+2

by identifying each curve y2 = f(x) with the sequence of coefficients of f(x).
One might hope for the following to be true.

Conjecture 1. For any g ≥ 1, density 1 of hyperelliptic curves C :
y2 = f(x) of genus g over Q have the property that the 2-part of the Tate–
Shafarevich group of the Jacobian is arbitrarily large amongst quadratic twists
Ck : y2 = kf(x) with k ∈ Q.

It is also possible that the above conjecture holds for all hyperelliptic
curves over Q.
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