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TWO-POINT METHODS FOR SOLVING EQUATIONS AND
SYSTEMS OF EQUATIONS

Abstract. The aim of this study is to present a convergence analysis of a
frozen secant-type method for solving nonlinear systems of equations defined
on the k-dimensional Euclidean space. The novelty of the paper lies in the
fact that the method is defined using a special divided difference which
is well defined for distinct iterates making it suitable for solving systems
involving a nondifferentiable mapping. The local and semi-local convergence
analysis is based on generalized Lipschitz-type scalar functions that are only
nondecreasing, whereas their continuity is not assumed as in earlier studies.
Numerical examples involving systems of equations are provided to further
validate the theoretical results.

1. Introduction. Let k be a positive integer and let D ⊆ Rk be an open
set. Consider the system of nonlinear equations

(1.1) F (x) = 0,

where F : D → Rk is a continuous mapping. Numerous problems in com-
putational disciplines can be formulated as a system of nonlinear equations
like (1.1) using mathematical modeling [1–18]. One desires the solution x∗ of
(1.1) to be determined explicitly. However, this can be achieved only in spe-
cial situations. Hence, researchers resort to iterative methods for generating
a sequence approximating x∗.

The study of convergence of iterative algorithms is usually centered around
two tasks: semi-local and local convergence analysis. The semi-local conver-
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gence analysis is based on information around an initial point, to obtain
conditions ensuring the convergence of these algorithms, while the local con-
vergence analysis is based on information around a solution in order to find
estimates of the computed radii of the convergence balls. Local results are
important since they reveal the degree of difficulty in choosing initial points.

The convergence analysis of iterative methods that do not use derivatives
requires the mapping associated with the divided difference to satisfy certain
generalized Lipschitz-type conditions implying that the mapping F is differ-
entiable [1, 2, 4, 6–12, 16]. Indeed for the 1-parameter family of secant-type
methods [4, 9] defined for x−1, x0 ∈ D by

yn = λxn + (1− λ)xn−1, λ ∈ [0, 1], n = 0, 1, 2, . . . ,

xn+1 = xn − [yn, xn;F ]−1F (xn)

and its special cases, Newton’s method for λ = 1 and the secant method for
λ = 0, we use the standard divided difference [a, b;F ] := ([a, b;F ]ij)

k
i,j=1 ∈

L(Rk,Rk) [1, 6, 10, 13] defined for 1 ≤ i, j ≤ k by

[a, b;F ]i.j =
Fi(a1, . . . , aj , bj+1, . . . , bk)− Fi(a1, . . . , aj−1, bj , bj+1, . . . , bk)

aj − bj
,

where a = (a1, . . . , ak)
T and b = (b1, . . . , bk)

T . This formula defines a
bounded linear operator which satisfies [b, a;F ](b − a) = F (b) − F (a) for
each a 6= b, a, b ∈ D.

If, for example, k = 3 (see the numerical examples) and

a = (a1, a2, a3)T , b = (b1, b2, b3)T ∈ R3

then

[a, b;F ]i1 =
Fi(a1, b2, b3)− Fi(b1, b2, b3)

a1 − b1
,

[a, b;F ]i2 =
Fi(a1, a2, b3)− Fi(a1, b2, b3)

a2 − b2
,

[a, b;F ]i3 =
Fi(a1, a2, a3)− Fi(a1, a2, b3)

a3 − b3
, i = 1, 2, 3.

Clearly, by using the preceding definition of the divided difference, method
(1.2) is suitable when the mapping F is not differentiable. Therefore, it is
important to study the local as well as semi-local convergence of method
(1.2) under generalized conditions.

The following conditions have been used for semi-local convergence:

• Lipschitz conditions [1–3, 8–11, 16, 17]:

‖[x−1, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ µ(‖x− u‖+ ‖y − v‖)
for some µ > 0 and all x, y, u, v ∈ D;
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• Hölder conditions [17]:

‖[x−1, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ µ(‖x− u‖λ + ‖y − v‖λ)

for some λ ∈ [0, 1];
• generalized conditions [1, 3, 5, 9]:

‖[z̃, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ϕ̄(‖x− y‖, ‖y − v‖),

where ϕ̄ : [0,+∞)2 → [0,+∞) is a continuous and nondecreasing function in
both variables and z̃ is x−1 or some other point in D. The Lipschitz, Hölder
and generalized conditions (for ϕ̄(0, 0) = 0 [4, 7–11, 17]) imply that the
mapping F is differentiable. This limits the applicability of these methods.
As a motivational example consider the equation F (x) = |x| for each x ∈
(−∞,+∞). Clearly, F is not differentiable at x = 0. Therefore, the preceding
methods cannot be used to solve the equation F (x) = 0 although for x−1 = 0
and x0 ∈ (−∞,+∞)−{0} the secant method gives x1 = x∗ = 0. It is worth
noticing that the Fréchet derivative F ′ does not appear in these methods
but it appears in the conditions for the convergence of these methods. That
is why it is important to remove the requirement of the existence of F ′ from
the convergence conditions. In [4], we assumed that the preceding generalized
condition holds for x 6= y and u 6= v and ϕ̄(0, 0) > 0. In the present study
we drop the continuity of ϕ̄.

Moreover, we use the generalized center condition (see Section 2)

‖[z̃, x0;F ]−1([x, y;F ]− [z̃, x0;F ])‖ ≤ ϕ0(‖x− z̃‖, ‖y − x0‖),

where ϕ0 : (0,+∞)2 → (0,+∞) is a nondecreasing function in each variable
and x 6= y, z̃ 6= x0. Notice that we do not require ϕ0 to be a continuous
function. Using this condition, we find a subset D0 of D (which may be
strict) containing the iterates (see, e.g., Theorem 2.2). That motivates us to
introduce the condition

‖[z̃, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ϕ(‖x− z̃‖, ‖y − x0‖),

where ϕ : (0,+∞)2 → (0,+∞) is nondecreasing in each variable and x, y
∈ D0 with x 6= y, z̃ 6= x0. Then we have

ϕ0(s, t) ≤ ϕ̄(s, t), ϕ(s, t) ≤ ϕ̄(s, t),

since D0 ⊆ D and ϕ̄/ϕ0 can be arbitrarily large [2–6, 16]. The ϕ̄ condition
implies the ϕ0 and ϕ conditions. In practice, the computation of ϕ̄ requires
the computation of ϕ0 and ϕ as special cases. Therefore, the latter are not
additional conditions.

However, using tighter sequences, ϕ0 and ϕ we obtain: tighter bounds on
the distances ‖xn+1−xn‖, ‖xn−x∗‖ and at least as precise information on the
location of the solution (see also the Remarks that follow in Sections 2 and 3).
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Similar conditions and advantages are obtained in the local convergence case
(see Section 3).

Next, we shall introduce an iterative method suitable for generating a
sequence approximating x∗, in cases when the mapping F is not necessar-
ily differentiable, since many problems fall in that category (see also the
numerical examples).

Description of the method. Define xn = (x
(1)
n , x

(2)
n , . . . , x

(k)
n ), where

x
(i)
n ∈ R for each n = 0, 1, . . . and i = 1, . . . , k. Choose x0, x−1 ∈ D such

that x(i)
−1 6= x

(i)
0 for each i = 1, . . . , k. Then x−1 6= x0. Define the frozen

secant-type method {xn} for each n = −1, 0, 1, . . . by

(1.2) xn+1 = xn − [un−1, un;F ]−1F (xn),

where [un−1, un;F ] denotes the last divided difference of order one such that
u

(i)
n−1 6= u

(i)
n for each i = 1, . . . , k. Indeed, we have

x1 = x0 − [x−1, x0;F ]−1F (x0)

by the definition of x−1 and x0, so u−1 = x−1 and u0 = x0 in this case. Then

x2 = x1 − [x−1, x0;F ]−1F (x1),

if x(i)
0 = x

(i)
1 for some i = 1, . . . , k and u0 = x−1, u1 = x0 or

x2 = x1 − [x0, x1;F ]−1F (x1),

if x(i)
0 6= x

(i)
1 for some i = 1, . . . , k and u0 = x0, u1 = x1. Clearly, method

(1.2) contains the modified secant method

(1.3) yn+1 = yn − [yn−1, yn;F ]−1F (yn),

and may contain the secant method if u(i)
n−1 6= u

(i)
n for each n = −1, 0, 1, . . . ,

i = 1, . . . , k.

Therefore, depending on which subcase is used the convergence order is
one (modified secant method) or k+1 (secant method), if the third derivative
of F exists in a neighborhood of the solution [1]. One can also compute the
order of convergence using (COC) or (ACOC) [5, 11] which avoid the use
of derivatives. It is worth noticing that method (1.2) is very attractive for
nondifferentiable mappings, since by construction the divided difference is
well defined at distinct points.

The rest of the study is structured as follows. The semi-local and local
convergence analysis for method (1.2) are presented in Sections 2 and 3,
respectively, whereas the numerical examples are provided in Section 4.

2. Semi-local convergence analysis. We present the semi-local con-
vergence analysis of method (1.2) based on the following conditions (A):
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(A1) There exist x0 ∈ D, γ > 0 and z̃ ∈ D, with ‖x0 − z̃‖ = γ, such that
[z̃, x0;F ]−1 ∈ L(Rk,Rk).

(A2) ‖[z̃, x0;F ]−1([x, y;F ]−[z̃, x0;F ])‖ ≤ ϕ0(‖x−z̃‖, ‖y−y0‖) for all distinct
x, y ∈ D, where ϕ0 : [0,+∞) × [0,+∞) → [0,+∞) is nondecreasing
in each variable. Suppose that there exists r ∈ (0,+∞) such that
ϕ0(γ + r, r) < 1. Let r0 = sup{r ∈ (0,+∞) : ϕ0(γ + r, r) < 1}. Set
D0 = D ∩ U(x0, r0).

(A′2) ‖[z̃, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ϕ(‖x−u‖, ‖y−v‖) for all x, y, u, v
in D0 with x 6= y and u 6= v, where ϕ : [0,+∞)× [0,+∞)→ [0,+∞)
is nondecreasing in each variable.

We need an auxiliary result on inverses of divided differences.

Lemma 2.1. Under conditions (A1) and (A′2), if there exists r ∈ [0,+∞)
with U(x0, r) ⊆ D and ϕ0(γ + r, r) < 1, then [x, y;F ]−1 ∈ L(Rk,Rk) and

(2.1) ‖[x, y;F ]−1[z̃, x0;F ]‖

≤ 1

1− ϕ0(‖z̃ − x‖, ‖x0 − y‖)
≤ 1

1− ϕ0(γ + r, r)

for each pair (x, y) ∈ U(x0, r)× U(x0, r) with x 6= y.

Proof. We obtain, by (A′2),

‖[z̃, x0;F ]−1([z̃, x0;F ]− [x, y;F ])‖ ≤ ϕ0(‖z̃ − x‖, ‖x0 − y‖)
≤ ϕ0(‖z̃ − x0‖+ ‖x0 − x‖, ‖x0 − y‖) ≤ ϕ0(γ + r, r) < 1.

Then, by the Banach Lemma on invertible operators [3, 14], the operator
[x, y;F ]−1 is in L(Rk,Rk) so that (2.1) is satisfied.

Notice that if x−1 ∈ D with ‖x−1 − x0‖ = δ > 0, then x−1 ∈ D,
x−1 6= x0 and therefore [x−1, x;F ] ∈ L(Rk,Rk). So, by Lemma 2.1, it follows
that [x−1, x0;F ]−1 ∈ L(Rk,Rk). Suppose ‖[x−1, x0;F ]−1F (x0)‖ ≤ η. If in
addition x−1 ∈ U(x0, r), then x−1 ∈ U(x0, r).

We shall also use the following conditions:

(A3) The equation

(2.2)
(

1 +
g0(t)

1− g(t)

)
η − t = 0,

where g0(t) = ϕ(η+δ,0)
1−ϕ0(γ+t,t) , g(t) = ϕ(2t,2t)

1−ϕ0(γ+t,t) , has at least one positive
zero. Denote by r the smallest such zero.

(A4) U(x0, r) ⊆ D and g0(r) + g(r) < 1.

Conditions (A1), (A2), (A′2), (A3) and (A4) constitute conditions (A).

Theorem 2.2. Suppose that conditions (A) hold and x(i)
−1 6= x

(i)
0 for each

i = 1, . . . , k. Then the sequence {xn} generated for x−1, x0 with ‖x−1−x0‖ =
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δ > 0 by method (1.2) is well defined, remains in U(x0, r) for each n =
0, 1, 2, . . . and converges to a solution x∗ ∈ U(x0, r) of equation (1.1).

Proof. By hypothesis we have x−1 6= x0, so [x−1, x;F ]−1 ∈ L(Rk,Rk)
and x1 is well defined. Moreover, as ‖x1 − x0‖ ≤ η < r by (2.2), we get
x1 ∈ U(x0, r).

Case 1: x(i)
0 6= x

(i)
1 , i = 1, . . . , k. We can write

F (x1) = F (x1)− F (x0)− [x−1, x0;F ](x1 − x0)(2.3)
= ([x1, x0;F ]− [x−1, x0;F ])(x1 − x0).

Then we see that x0 6= x1 and [x0, x1;F ]−1 ∈ L(Rk,Rk). Using (2.1) and
(2.3) we obtain

(2.4) ‖x2 − x1‖
= ‖([x0, x1;F ]−1[z̃, x0;F ])[z̃, x0;F ]−1([x1, x0;F ]− [x−1, x0;F ])(x1 − x0)‖
≤ ‖[x0, x1;F ]−1[z̃, x0;F ]‖‖[z̃, x0;F ]−1([x1, x0;F ]− [x−1, x0;F ])‖ ‖x1 − x0‖

≤ ϕ(‖x1 − x−1‖, 0)

1− ϕ0(‖z̃ − x0‖, ‖x0 − x1‖)
‖x1 − x0‖

≤ ϕ(‖x1 − x0‖+ ‖x0 − x−1‖, 0)

1− ϕ0(‖z̃ − x0‖, ‖x0 − x1‖)
‖x1 − x0‖ ≤

ϕ(γ + δ, 0)

1− ϕ0(γ, r)
‖x1 − x0‖

= g0(r)‖x1 − x0‖.

Case 2: x(i)
0 6= x

(i)
1 for some i = 1, . . . , k. Then instead of (2.3) we write

F (x1) = F (x1)− F (x0)− [x−1, x0;F ](x1 − x0)

= ([x1, x0;F ]− [x−1, x0;F ])(x1 − x0).

As in (2.4), we get

‖x2 − x1‖ = ‖([x1, x0;F ]−1[z̃, x0;F ])[z̃, x0;F ]−1

× ([x1, x0;F ]− [x−1, x0;F ])(x1 − x0)‖

≤ ϕ(η + α, 0)

1− ϕ0(‖z̃ − x0‖, ‖x0 − x1‖)
‖x1 − x0‖

≤ ϕ(γ + α, 0)

1− ϕ0(γ + α, r)
‖x1 − x0‖ = g0(r)‖x1 − x0‖.

As g0(r) < 1 by (A4), from (2.2) and (2.4) we get

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ < (g1(r) + 1)‖x1 − x0‖ < r,

so x2 ∈ U(x0, r). Therefore, in either case,

‖x2 − x1‖ ≤
ϕ(γ + α, 0)

1− ϕ0(γ + α, r)
‖x1 − x0‖ = g0(r)‖x1 − x0‖.
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Case 3: x(i)
1 6=x

(i)
2 for some i=1, . . . , k. Then again x1 6=x2, [x1, x2;F ]−1

∈ L(Rk,Rk) and

(2.5) ‖[x1, x2;F ]−1[z̃, x0;F ]‖ ≤ 1

1− ϕ0(‖z̃ − x1‖, ‖x2 − x0‖)

≤ 1

1− ϕ0(‖z̃ − x0‖+ ‖x0 − x1‖, ‖x2 − x0‖)

≤ 1

1− ϕ0(γ + r, r)
.

By method (1.2) we have

F (x2) = F (x2)− F (x1)− [x0, x1;F ](x2 − x1)(2.6)
= ([x2, x1;F ]− [x0, x1;F ])(x2 − x1).

Using (1.2), (2.5) and (2.6), we obtain

‖x3 − x2‖ = ‖([x1, x2;F ]−1F (x2)‖(2.7)

≤ ϕ(‖x2 − x0‖, 0)

1− ϕ0(γ + r, r)
‖x2 − x1‖

≤ ϕ(r, 0)

1− ϕ0(γ + r, r)
‖x2 − x1‖.

Using (2.2) and (2.4), we get

‖x3 − x0‖ ≤ ‖x3 − x2‖+ ‖x2 − x1‖+ ‖x1 − x0‖
< (g(r) + 1)‖x2 − x1‖+ ‖x1 − x0‖
< ((g(r) + 1)g0(r) + 1) η < r,

so x3 ∈ U(x0, r).

Case 4: x(i)
1 = x

(i)
2 for some i = 1, . . . , k. By method (1.2) we get

F (x2) = F (x2)− F (x1)− [u0, u1;F ](x2 − x1)(2.8)
= ([x2, x1;F ]− [u0, u1;F ])(x2 − x1),

where u0 = x−1, u1 = x0 or u0 = x0, u1 = x1. We shall choose the pair
(u0, u1) corresponding to the largest m = −1, 0 such that for u0 = xm, u1 =

xm+1, x
(i)
m 6= x

(i)
m+1. Denote that pair by (u1, u2). Notice that such a selection

is always possible, since we can take m = −1 and then x
(i)
−1 6= x

(i)
0 by

hypothesis. Then we have [u1, u2;F ]−1 ∈ L(Rk,Rk) and

‖[u1, u2;F ]−1[z̃, x0;F ]‖ ≤ 1

1− ϕ0(‖z̃ − u1‖, ‖u2 − x0‖)
(2.9)

≤ 1

1− ϕ0(γ + r, r)
,
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since ‖z̃ − u1‖ ≤ ‖z̃ − x0‖+ ‖x0 − u2‖ ≤ γ + r and ‖u2 − x0‖ ≤ r. Then we
obtain

(2.10) ‖x3 − x2‖ = ‖([u1, u2;F ]−1F (x2)‖

≤ ϕ(‖x2 − u0‖, ‖x1 − u1‖)
1− ϕ0(γ + r, r)

‖x2 − x1‖

≤ ϕ(‖x2 − x0‖+ ‖x0 − u0‖, ‖x1 − x0‖+ ‖x0 − u1‖)
1− ϕ0(γ + r, r)

‖x2 − x1‖

<
ϕ(2r, 2r)

1− ϕ0(γ + r, r)
‖x2 − x1‖ = g(r)‖x2 − x1‖.

By (2.7) and (2.10), in either case we get

(2.11) ‖x3 − x2‖ ≤ g(r)‖x2 − x1‖.

Next, we shall show that the sequence {xn} satisfies the following items
for j ≥ 2.

(i) F (xj) = ([xj , xj−1;F ] − [xj−2, xj−1;F ])(xj − xj−1) if x(i)
j−2 6= x

(i)
j−1, i =

1, . . . , k or
(i)′ F (xj) = ([xj , xj−1;F ]− [uj−2, uj−1;F ])(xj − xj−1) if uj−2 = x−1, uj−1

= x0 or uj−2 = x0, uj−1 = x1 . . . or uj−2 = xj−2, uj−1 = xj−1. Choose
the pair (uj−2, uj−1) corresponding to the largest m = −1, 0, . . . , j − 2

such that for uj−2 = xm, uj−1 = xm+1, x
(i)
m 6= x

(i)
m+1, i = 1, . . . , k. De-

note that pair by (uj−1, uj). As noted previously, such a pair always
exists.

(ii) ‖xj+1 − xj‖ ≤ g(r)‖xj − xj−1‖
≤ g(r)j−1‖x2 − x1‖ ≤ g(r)j−1g0(r)‖x1 − x0‖ ≤ η.

(iii) ‖xj+1 − x0‖ ≤
j∑

p=0

‖xp+1 − xp‖

< (g(r)j−1 + . . .+ g(r) + 1)‖x2 − x1‖+ ‖x1 − x0‖

<
1

1− g(r)
‖x2−x1‖+‖x1−x0‖ <

(
g0(r)

1− g(r)
+1

)
η = r.

(iv) xj+1 ∈ U(x0, r).

Items (i), (i)′–(iv) hold for j = 2 by method (1.2) and the preceding proof.
Suppose that they hold for some j = q. We shall show that they hold for
j = q + 1. As in the case j = 2, we see that (i) and (i)′ hold for j = q + 1.
Concerning (ii), we have first, under Case 1,
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(2.12) ‖xq+2 − xq+1‖ = ‖[xq, xq+1;F ]−1F (xq+1)‖
≤ ‖[xq, xq+1;F ]−1[z̃, x0;F ]‖
× ‖[z̃, x0;F ]−1([xq+1, xq;F ]− [xq−1, xq;F ])(xq+1 − xq)‖

≤ ϕ(‖xq+1 − xq−1‖, ‖xq − xq‖)
1− ϕ0(‖xq+1 − z̃‖, ‖xq+1 − x0‖)

‖xq+1 − xq‖

≤ ϕ(2r, 0)

1− ϕ0(γ + r, r)
‖xq+1 − xq‖

< g(r)‖xq+1 − xq‖ ≤ g(r)qg0(r)‖x1 − x0‖.
For Case 2 we have again, as before,

‖xq+2 − xq+1‖ = ‖[uj , uj+1;F ]−1F (xq+1)‖(2.13)

≤ ‖[uj , uj+1;F ]−1[z̃, x0;F ]‖ ‖[z̃, x0;F ]−1F [xq+1)‖

≤ ϕ(‖xq+1 − uq−1‖, ‖xq − uq‖)
1− ϕ0(‖z̃ − uj‖, ‖uj+1 − x0‖)

‖xq+1 − xq‖

< g(r)‖xq+1 − xq‖.
Hence, in either case (2.12) and (2.13),

(2.14) ‖xq+2 − xq+1‖ < g(r)‖xq+1 − xq‖ ≤ g(r)qg0(r)‖x1 − x0‖.
It follows from the definition of r, the induction hypotheses and the preceding
inequality that

‖xq+2 − x0‖ ≤
q+2∑
p=0

‖xp+1 − xp‖(2.15)

≤ (1 + g(r) + · · ·+ g(r)q)g0(r)‖x1 − x0‖

<

(
g0(r)

1− g(r)
+ 1

)
‖x1 − x0‖ ≤

(
g0(r)

1− g(r)
+ 1

)
η = r,

so xq+2 ∈ U(x0, r). By (2.14) and (ii) the sequence {xn} is Cauchy in Rk
and so it converges to some x∗ ∈ Ū(x0, r). We also have the estimate

(2.16) ‖[z̃, x0;F ]−1F (xq+2)‖ ≤ ϕ(2r, 2r)‖xq+2 − xq‖,
which implies F (x∗) = 0, as q → +∞.

Next, we present a uniqueness result.

Theorem 2.3. Under conditions (A), suppose further that there exists
r1 ≥ r such that

(2.17) ϕ0(γ + r, r1) < 1.

Then the limit point x∗ is the only solution of equation (1.1) in D1 :=
Ū(x0, r1) ∩D.
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Proof. Let y∗ ∈ D1 be such that F (y∗) = 0. Define M = [x∗, y∗;F ].
Using (A2), we get

[z̃;x∗;F ]−1([x∗, y∗;F ]− [z̃, x0;F ])

≤ ϕ0(‖x∗ − z̃‖, ‖y∗ − x0‖) ≤ ϕ0(γ + r, r1) < 1.

Hence, M−1 ∈ L(Rk,Rk). Then, from the identity 0 = F (x∗) = F (y∗) =
M(x∗ − y∗), we conclude that x∗ = y∗.

Remark 2.4. (a) Notice that usually in the studies involving secant-type
methods instead of (A′2), one uses (A′′2) given by

(2.18) ‖[z̃, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ϕ̄(‖x− u‖, ‖y − v‖)
for x, y, u, v ∈ D, where ϕ̄ : [0,+∞)2 → [0,+∞) is continuous and nonde-
creasing. Clearly,

ϕ(s1, s2) ≤ ϕ̄(s1, s2) for all s1, s2 ≥ 0,(2.19)
ϕ0(s1, s2) ≤ ϕ̄(s1, s2) for all s1, s2 ≥ 0,(2.20)

since D0 ⊆ D and ϕ̄/ϕ0 can be arbitrarily large [3, 5]. Moreover, we do
not require the functions ϕ0 and ϕ to be continuous. This way, we can use
conditions (A) to study nondifferentiable equations. This is not possible
using condition (2.18).

(b) Authors prefer to leave equations such as (2.2) as uncluttered as
possible [8–11]. This equation determines the smallness of η (or the accuracy
of the initial point to force the convergence of the method), and also provides
the radius of convergence. The conditions on r and η do not seem immediate
(see, e.g., (2.2)). We can employ some stronger conditions that imply the
solvability of (2.2). As an example, suppose that

(2.21) 0 < g(η) < 1.

Then there exist r ≥ η and µ ∈ (0, 1) such that

(2.22) g(r) ≤ µ < 1.

Therefore, by (2.2) and (2.22), we must have(
1 +

µ

1− µ

)
η ≤ r,

or

η ≤ (1− µ)r(2.23)

(since ϕ0(s, t) ≤ ϕ(s, t)). In practice, we choose µ ∈ (0, 1) and solve

(2.24) g(t) = µ.

By the intermediate value theorem applied to the function ḡ(t) := g(t) − µ
and (2.22), equation (2.24) has positive solutions. Denote by r the smallest
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such solution. Then the sufficient convergence criteria replacing (A3) are
given by (2.21) and (2.23).

3. Local convergence analysis. The local convergence analysis of
method (1.2) is based on the following conditions (C):
(C1) There exist x∗ ∈ D with F (x∗) = 0, α > 0 and z̃ ∈ D with ‖x∗−z̃‖ = α,

such that [x∗, z̃;F ]−1 ∈ L(Rk,Rk).
(C2) ‖[x∗, z̃;F ]−1([x, y;F ] − [x∗, z̃;F ])‖ ≤ w0(‖x − x∗‖, ‖y − z̃‖) for all dis-

tinct x, y ∈ D, where w0 : [0,+∞)× [0,+∞)→ [0,+∞) is nondecreas-
ing in each variable. Suppose that there exists r ∈ (0,+∞) such that
w0(r, α + r) < 1. Let ρ0 = sup{r ∈ (0,+∞) : w0(r, α + r) < 1}. Set
D2 = D ∩ U(x∗, ρ0).

(C′2) ‖[x∗, z̃;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ w(‖x−u‖, ‖y− v‖) for all x, y, u, v
in D with x 6= y and u 6= v, where w : [0,+∞)× [0,+∞)→ [0,+∞) is
nondecreasing in each variable.

(C3) The equation

(3.1) w(2t, t) + w0(t, α+ t)− 1 = 0

has at least one positive zero. Denote by R the smallest such zero.
(C4) U(x∗, R) ⊆ D and w0(R,α+R) < 1.

Next, we present an auxiliary Banach perturbation result on the inverse
of the divided difference of order one for the operator F.

Lemma 3.1. Suppose that conditions (C) hold. If x, y ∈ U(x∗, R) with
x 6= y, then [x, y;F ]−1 ∈ L(Rk,Rk) and

(3.2) ‖[x, y;F ]−1[x∗, z̃;F ]‖

≤ 1

1− w0(‖x− x∗‖, ‖y − z̃‖)
≤ 1

1− w0(R,α+R)
.

Proof. Using (C2), (C′2) and (C4), we obtain

‖[x∗, z̃;F ]−1([x∗, z̃;F ]− [x, y;F ])‖ ≤ w0(‖x− x∗‖, ‖x∗ − z̃‖)
< w0(R,α+R) < 1.

Then, again by the Banach Lemma on invertible operators [3, 6], we have
[x, y;F ]−1 ∈ L(Rk,Rk) so that (3.2) is satisfied.

Next, we show the main local convergence result for method (1.2) using
conditions (C) and the preceding notation.

Theorem 3.2. Suppose that conditions (C) hold and x(i)
−1 6= x

(i)
0 for all

1, . . . , k. Then sequence {xn} generated for x−1, x0 ∈ U(x∗, R) by method
(1.2) is well defined, remains in U(x∗, R) for all n = 0, 1, . . . and converges
to x∗.
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Proof. By hypothesis x(i)
−1 6= x

(i)
0 for all 1, . . . , k, we have x−1 6= x0.

Then, by Lemma 3.1, [x−1, x0;F ]−1 ∈ L(Rk,Rk). Hence, x1 is well defined
by method (1.2) for n = 0. Using (i) and F (x∗) = 0, we get

x1 − x∗ = x0 − x∗ − [x−1, x0;F ]−1(F (x0)− F (x∗))(3.3)
= x0 − x∗ − [x−1, x0;F ]−1[x0, x∗;F ](x0 − x∗).

Then, by (3.2), (C2), (C3) and (3.3), we have

(3.4) ‖x1 − x∗‖ ≤ ‖[x−1, x0;F ]−1[x∗, z̃;F ]‖
× ‖[x∗, z̃;F ]−1([x−1, x0;F ]− [x0, x∗;F ])‖ ‖x0 − x∗‖

≤ w(‖x−1 − x0‖, ‖x0 − x∗‖)
1− w0(R,α+R)

‖x0 − x∗‖

<
w(2R,R)

1− w0(R,α+R)
‖x0 − x∗‖ = ‖x0 − x∗‖ < R,

so

(3.5) ‖x1 − x∗‖ < ‖x0 − x∗‖ and x1 ∈ U(x∗, R).

Case 1: If x(i)
1 = x

(i)
0 for some i = 1, . . . , k, we can define x2 = x1 −

[x−1, x0;F ]−1F (x1). Then as in (3.3) we have

x2 − x∗ = x1 − x∗ − [x−1, x0;F ]−1(F (x1)− F (x∗))(3.6)
= x1 − x∗ − [x−1, x0;F ]−1[x1, x∗;F ](x1 − x∗),

so

‖x2 − x∗‖ ≤ ‖[x−1, x0;F ]−1[x∗, z̃;F ]‖(3.7)
× ‖[x∗, z̃;F ]−1([x−1, x0;F ]− [x1, x∗;F ])‖ ‖x1 − x∗‖

≤ w(‖x−1 − x1‖, ‖x0 − x∗‖)
1− w0(R,α+R)

‖x1 − x∗‖

<
w(2R,R)

1− w0(R,α+R)
‖x1 − x∗‖ = ‖x1 − x∗‖

< ‖x0 − x∗‖ < R,

so

(3.8) ‖x2 − x∗‖ < ‖x1 − x∗‖ and x2 ∈ U(x∗, R).

Case 2: If x(i)
1 6=x

(i)
0 for all i=1, . . . , k, define x2 =x1−[x0, x1;F ]−1F (x1).

Then x1 6= x0. Since by Lemma 3.1, [x0, x1;F ]−1 exists, we can write

x2 − x∗ = x1 − x∗ − [x0, x1;F ]−1(F (x1)− F (x∗)),

so again
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(3.9) ‖x2 − x∗‖ ≤ ‖[x0, x1;F ]−1[x∗, z̃;F ]‖
× ‖[x∗, z̃;F ]−1([x0, x1;F ]− [x1, x∗;F ])‖ ‖x1 − x∗‖

≤ w(‖x0 − x1‖, ‖x1 − x∗‖)
1− w0(R,α+R)

‖x1 − x∗‖

<
w(2R,R)

1− w0(R,α+R)
‖x1 − x∗‖ = ‖x1 − x∗‖

< ‖x0 − x∗‖ < R.

As in the proof of Theorem 2.2, x0 = x∗ for j ≥ 2.

Case 3: We can write

xj+1 − x∗ = xj − x∗ − [uj−1, uj ;F ]−1F (xj)(3.10)
= [uj−1, uj ;F ]−1([uj−1, uj ;F ]− [xj , x∗;F ])(xj − x∗).

Using Lemma 3.1, (C′2) and (3.10), we get

(3.11) ‖xj+1 − x∗‖ ≤ ‖[uj−1, uj ;F ]−1[x∗, z̃;F ]‖
× ‖[x∗, z̃;F ]−1([uj−1, uj ;F ]− [xj , x∗;F ])‖ ‖xj − x∗‖

≤ w(‖uj−1 − xj‖, ‖uj − x∗‖)
1− w0(‖uj−1 − x∗‖, ‖uj − z̃‖)

‖xj − x∗‖

<
w(2R,R)

1− w0(R,α+R)
‖xj − x∗‖.

Case 4: We have

xj+1 − x∗ = xj − x∗ − [xj−1, xj ;F ]F (xj),

and as in (3.10) and (3.11) for xj−1 = uj−1, xj = uj , we again arrive at

(3.12) ‖xj+1 − x∗‖ ≤
w(2R,R)

1− w0(R,α+R)
‖xj − x∗‖.

Hence, we have show

(3.13) ‖xn+1 − x∗‖ ≤
w(2R,R)

1− w0(R,α+R)
‖xn − x∗‖ ≤ c‖xn − x∗‖ < R,

where c = w(2R,R)
1−w0(α,α+R) ∈ [0, 1), which shows that limn→∞ xn = x∗ and

xn+1 ∈ U(x∗, R).

As in Theorem 2.3 for the uniqueness of the solution x∗, we have the
following result.

Theorem 3.3. Under conditions (C), suppose further that there exists
R1 ≥ R such that

(3.14) w0(0, α+R1) < 1.



268 I. K. Argyros and S. George

Then the limit point x∗ is the only solution of equation (1.1) in D3 =
U(x∗, R1) ∩D.

Proof. Let y∗ ∈ D3 be such that F (y∗) = 0. Define againM = [x∗, y∗;F ].
Then, by using (C2) and (2.14), we get

‖[x∗, z̃;F ]−1(M − [x∗, z̃;F ])‖ ≤ w0(‖x∗−x∗‖, ‖y∗− z̃‖) ≤ w0(0, α+R1) < 1.

Hence, M−1 ∈ L(Rk,Rk). Then, from the identity 0 = F (x∗) − F (y∗) =
M(x∗ − y∗), we conclude that x∗ = y∗.

Remark 3.4. Comments similar to the ones given for the semi-local case
in Remark 2.4 can also be made for the local case.

4. Numerical examples. We present two numerical examples, involv-
ing systems on R3 and R2, respectively. In the first example, we show how to
compute the majorant function appearing in Theorems 2.2 and 3.2. More-
over, we show that the new majorant functions ϕ0, ϕ are tighter than ϕ,
and w0, w are tighter than ω0, ω used in [4]. Notice that the results in [4]
improved those of [9, 10]. The emphasis in the second example is to show
convergence of method (1.2) and to present some error bounds and the solu-
tion x∗ without necessarily verifying the convergence conditions introduced
in the previous sections.

Example 4.1 ([4]). Let k = 3, D = U(0, 1) and for h = (h1, h2, h3)T

define a mapping F on D by

(4.1) F (h) = (h1 + 0.0125|h1|, h2
2 + h2 + 0.0125|h2|, eh3 − 1)T .

Clearly, a solution of F (h) = 0 is given by x∗ = (0, 0, 0)T . Using the definition
of the divided differences provided in the introduction, we obtain:

Local case:

• ‖[x∗, z̃;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ d
[

1
2e(‖x− u‖+ ‖y − v‖) + 0.025

]
for

all x, y, u, v ∈ D,
• ‖[x∗, z̃;F ]−1([x, y;F ]− [x∗, z̃;F ])‖ ≤ d[‖x− x∗‖+ ‖y − z̃‖+ 0.025] for all
x, y ∈ D,

• ‖[x∗, z̃;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ d
[

1
2e
ρ0(‖x−u‖+‖y−v‖) + 0.025

]
for

all x, y, u, v ∈ D2,

where d = ‖[x∗, z̃;F ]−1‖. Therefore, we can define

ω(s, t) = d
(

1
2e(s+ t) + 0.025

)
,

ω0(s, t) = w0(s, t) = d((s+ t) + 0.025),

w(s, t) = d
(

1
2e
ρ̄0(s+ t) + 0.025

)
,

where ρ̄ = min{1, ρ0}. Then
w0(s, t) < ω(s, t)
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and

(4.2) w(s, t) ≤ ω(s, t)

for all s, t>0.Then, in [4] using the secant method (1.3) for z̃=(0.2, 0.2, 0.1)T ,
we find for α = 0.2, d = 0.987654 by solving the equation ω(2t, t)+ω0(t, α+t)
− 1 = 0 that R̄ = 0.125464, ω0(R,α + R) = 0.470053 < 1, and R̄1 =
0.78749. Therefore, the hypotheses of [4, Theorem 2] are satisfied. Hence,
limn→∞ zn = x∗ ∈ U(x∗, R) ⊆ D and x∗ is the only solution of the equation
F (x) = 0 in D ∩ Ū(x∗, R̄1).

In the case of Theorem 3.2 (i.e., using method (1.2)), we have ρ0 =
0.39375016, so ρ̄0 = ρ0 and (4.2) holds with a strict inequality. Moreover, by
solving equation (3.1) we obtain

(4.3) R = 0.0512, R1 = 0.78749.

However, if we solve (3.1) with w0, w (following [4]) replaced by ω0, ω, re-
spectively, we get

(4.4) ¯̄R = 0.1255, ¯̄R1 = 0.78749.

If we use the secant method, so we can directly compare the present
results to the corresponding ones in [4], we must solve the equation (see in
[4, (8)])

(4.5) w(2t, t) + w0(t, α+ t)− 1 = 0.

This time, we obtain

(4.6) R∗ = 0.1525, R∗1 = 0.78749.

It follows from the above that for the secant method, the new results improve
the ones in [4, 9, 10], since

(4.7) ¯̄R < R∗, ¯̄R1 ≤ R∗1.

In view of (4.7), we obtain more initial points, tighter error bounds and
better information on the location of the solution.

Semi-local case [4]: (a) For z̃ = (0.02, 0.02, 0)T we also obtain

ϕ0(s, t) = ϕ̄0(s, t) = d0(s+ t+ 0.025),

ϕ̄(s, t) = d0

(
1
2e(s+ t) + 0.025

)
,

ϕ(s, t) = d0

(
1
2e
r̄0(s+ t) + 0.025

)
,(4.8)

where d0 = ‖[z̃, x0;F ]−1‖, r̄0 = min{1, r0} and ϕ̄0, ϕ̄ are ϕ0, ϕ, respectively
but defined on D (see also [4] and (2.18)). Then again we have

ϕ0(s, t) < ϕ̄(s, t),(4.9)
ϕ0(s, t) = ϕ̄0(s, t) ≤ ϕ̄(s, t).(4.10)
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Choose x0 = (0.1, 0.1, 0.01)T , and x−1 = (0.11, 0.11, 0.02)T . It follows that
δ = 0.01, γ = 0.08, η = ‖x1−x0‖ ≤ 0.1497, d0 = 0.995008. Then, by solving
the equation [4] (

1 +
ḡ0(t)

1− ḡ(t)

)
η − t = 0,

where ḡ0(t) = ϕ̄(η+δ,0)
1−ϕ̄0(γ+t,t) , ḡ(t) = ϕ̄(2η,0)

1−ϕ̄0(γ+t,t) , we get r̄ = 0.163106, r̄1 =

0.736785, ḡ0(r̄) + ḡ(r̄) = 0.822036 < 1. Therefore, the conclusions of [4,
Theorem 5] are satisfied, so limn→∞ zn = x∗ ∈ U(x0, r̄) and x∗ is the only
solution of F (x) = 0 in D ∩ U(x0, r̄1).

If we use the secant method, we must solve the equation [4]

(4.11)
(

1 +
g0(t)

1− g(t)

)
η − t = 0,

where

g0(t) =
ϕ(η + δ, 0)

1− ϕ0(γ + t, t)
, g(t) =

ϕ(2η, 0)

1− ϕ0(γ + t, t)
.

We obtain

(4.12) r∗ = 0.1497, r∗1 = 0.736785.

Hence, we conclude again as in the local case that the present results
improve the corresponding ones in [4, 9, 10].

(b) In order to use Remark 2.4(b), let z̃ = (0.01, 0.01, 0)T , x0 =
(0.001, 0.001, 0)T , and x−1 = (0.002, 0.002, 0.001)T . Then we get δ = 0.001,
γ = 0.009, η = 0.0014 and d0 = 0.9877. In the present case for method (1.2),
we have r0 = 0.4832, so r̄0 = r0 and the right hand inequality of (4.10) strict.
Moreover, we have

(4.13) r = 0.0015, r1 = 0.762738534131.

That is, (2.21) and (2.23) hold for µ = 0.0666667.

Therefore, we again obtain improved results over the corresponding ones
in [4].

Example 4.2. Let k = 2. For h = (h1, h2)T consider the system

f1(h) = 3h2
1h2 + h2

2 − 1 + |h1 − 1| = 0,(4.14)
f2(h) = h4

1 + h1h
3
2 − 1 + |h2| = 0,(4.15)

which can be written as F (h) = 0, where F = (f1, f2)T . Using the standard
divided difference ([a, b;F ]ij)

2
i,j=1 ∈ L(Rk,Rk) (see also the introduction),

for x−1 = (1, 0)T , x0 = (5, 5)T , we obtain by (1.2)
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n x
(1)
n x

(2)
n ‖xn − xn−1‖

0 5 5 5
1 1 0 5
2 0.909090909090909 0.363636363636364 3.0636E−01
3 0.894886945874111 0.329098638203090 3.453E−02
4 0.894655531991499 0.327827544745569 1.271E−03
5 0.894655373334793 0.327826521746906 1.022E−06
6 0.8946655373334687 0.327826521746298 6.089E−13
7 0.8946655373334687 0.327826421746298 2.710E−20

Hence, the solution x∗ is given by

x∗ = (0.894655373334687, 0.3278626421746298)T .

Notice that the mapping F is not differentiable, so the earlier results men-
tioned in the introduction of this study cannot be used.
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