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Abstract. The Bishop–Phelps Theorem states the denseness of the set of norm attaining func-
tionals in the topological dual of any Banach space. Bollobás obtained a quantitative version
of this result showing that a pair (x, x∗) given by an element x in the unit sphere of a Banach
space and a functional x∗ in the unit sphere of the dual such that x∗(x) is close to 1 can be
approximated in norm by another pair (y, y∗) satisfying the same conditions and also that y∗

attains its norm at y. In 2008 the problem of obtaining versions of Bollobás result for operators
was considered. In this survey we include most of the results on this topic to the present day.

1. Introduction. Throughout this paper X∗ is the topological dual of a Banach
space X. By BX and SX we denote the closed unit ball and the unit sphere of X,
respectively. The symbol L(X,Y ) denotes the space of (linear and bounded) operators
between two Banach spaces X and Y , endowed with the usual operator norm. Bishop
and Phelps proved in 1961 that for any Banach space the set of continuous and linear
functionals attaining their norms is norm dense in the topological dual [22]. Bollobás [23]
obtained in 1970 the following quantitative version of the previous result.

Bishop–Phelps–Bollobás Theorem ([24, Theorem 16.1]). Let X be a Banach space
and 0 < ε < 1. Given x ∈ BX and x∗ ∈ SX∗ with |1 − x∗(x)| < ε2

4 , there are elements
y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.
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The paper [30] contains an improvement of the previous result. In Corollary 2.4 the
authors show that it suffices to assume that |1−x∗(x)| < ε2

2 to obtain the same assertion.
Bishop and Phelps posed in [22] the problem of extending their result to operators.

In 1963 Lindenstrauss exhibited a counterexample showing that in general the set of
norm attaining operators is not dense in the space of bounded and linear operators [57].
He also provided assumptions on a Banach space in order that the set of norm attaining
operators is dense in the space of linear and bounded operators. For instance, if X is a
reflexive Banach space then the set of norm attaining operators from X to Y is dense in
L(X,Y ), for any Banach space Y [57, Theorem 1]. In 1977 Bourgain proved the parallel
result when X has the Radon–Nikodým property [25]. Afterwards several authors proved
interesting results and there are also many open problems in the subject. The survey [2]
contains some interesting results about the topic and the state of the art until 2006.

This survey deals with versions of the Bishop–Phelps–Bollobás theorem for operators
and some other mappings. Let us mention that this result has been useful to obtain
properties for numerical ranges of operators (see for instance [24, §17]). In 2008 Acosta,
Aron, García and Maestre introduced the following notion.

Definition 1.1 ([4, Definition 1.1]). Let X and Y be both either real or complex Banach
spaces. The pair (X,Y ) is said to have the Bishop–Phelps–Bollobás property for operators
(BPBp) if for every 0 < ε < 1 there exists 0 < η(ε) < ε with the following property:

If T ∈ SL(X,Y ) and x0 ∈ SX satisfy ‖T (x0)‖ > 1− η(ε), then there exist S ∈ SL(X,Y )
and u0 ∈ SX satisfying the conditions

‖S(u0)‖ = 1, ‖u0 − x0‖ < ε and ‖S − T‖ < ε.

The pair (X,Y ) has the Bishop–Phelps property if the set of norm attaining operators
from X to Y is dense in L(X,Y ).

As we already mentioned, there are Banach spaces X and Y such that the pair (X,Y )
does not have the Bishop–Phelps property. In such cases the pair (X,Y ) does not have
the BPBp. In general these two properties are very different.

After the first paper that we mentioned many results have been obtained. Let us say
only that there are some geometric properties both on the domain and on the range
implying the BPBp. For instance, a certain geometrical property on Y , called property β
of Lindenstrauss (see Definition 2.2), implies that the pair (X,Y ) has the Bishop–Phelps–
Bollobás property for operators for any Banach spaceX. If a Banach spaceX is uniformly
convex, then the pair (X,Y ) has the Bishop–Phelps–Bollobás property for operators for
any Banach space Y . We will include such results in Section 2. We devote the next two
sections to results on this topic for classical Banach spaces. Section 3 contains results
where the domain space is an L1 space and Section 4 deals with the case when the
domain is C(K) for some compact Hausdorff topological space K. Section 5 is devoted to
results for n-linear mappings and in Section 6 we examine the Bishop–Phelps–Bollobás
property for numerical radius of operators. Finally we include in Section 7 some open
problems on the topic.
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2. Geometric or isomorphic properties implying the Bishop–Phelps–Bollobás
property for operators. A compactness argument yields the following positive result.

Theorem 2.1 ([4, Proposition 2.4]). The pair (X,Y ) has the BPBp when X and Y are
finite-dimensional normed spaces.

We recall a property used by Lindenstrauss [57, Proposition 3] on the range to get
denseness of the set of norm attaining operators.

Definition 2.2. A Banach space Y is said to have property β (of Lindenstrauss) if there
are two sets {yα : α ∈ Λ} ⊂ SY , {y∗α : α ∈ Λ} ⊂ SY ∗ and 0 ≤ ρ < 1 such that the
following conditions hold:

1) y∗α(yα) = 1.
2) |y∗α(yβ)| ≤ ρ < 1 if α 6= β.
3) ‖y‖ = supα{|y∗α(y)|} for all y ∈ Y .

In the first paper about the topic, the following result was shown.

Theorem 2.3 ([4, Theorem 2.2]). Let X and Y be Banach spaces such that Y has prop-
erty β. Then the pair (X,Y ) has the Bishop–Phelps–Bollobás property for operators.
Indeed, if T ∈ SL(X,Y ), ε > 0 and x0 ∈ SX satisfy ‖T (x0)‖ > 1 − ε2

4 , then for each real
number η such that η > ρ

1−ρ
(
ε+ ε2

4
)
, there are S ∈ L(X,Y ), z0 ∈ SX such that

‖Sz0‖ = ‖S‖, ‖z0 − x0‖ < ε, ‖S − T‖ < η + ε+ ε2

4 .

Roughly speaking, the idea of the proof of this result is to apply condition 3) in
Definition 2.2 to the element T (x0) to get a convenient functional y∗α and then apply the
Bishop–Phelps–Bollobás theorem to the functional T ∗(y∗α) to define a new operator in
L(X,Y ) whose difference with T is a rank-one operator.

Let us notice that a finite-dimensional space has property β if and only if its unit ball
is a polyhedron. The spaces c0 and `∞, endowed with their usual norms, have property β
of Lindenstrauss. In general, if K is a compact Hausdorff topological space, C(K) has
this property when K has a dense set of isolated points. Under isomorphisms, property β
is not restrictive at all since every Banach space admits an equivalent norm with this
property [58].

In order to state a sufficient condition on the domain implying the BPBp, we recall
that a Banach space X is uniformly convex if for every ε > 0 there is 0 < δ < 1 such that

for all u, v ∈ BX such that ‖u+ v‖
2 > 1− δ, we have ‖u− v‖ < ε.

In such a case, the modulus of convexity of X is given by

δX(ε) := inf
{

1− ‖u+ v‖
2 : u, v ∈ BX , ‖u− v‖ ≥ ε

}
(ε ∈ ]0, 2[).

The following result has been obtained independently by several authors. It was proved
by Kim and Lee in [50, Theorem 3.1] and also by Acosta, Becerra-Guerrero, García and
Maestre in [10, Theorem 2.2]. Both papers provide different estimates of the function η
appearing in Definition 1.1.
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Theorem 2.4. Let X and Y be Banach spaces and assume that X is uniformly convex.
Given ε > 0, if 0 < η < δX(ε) ε

8+2ε , then for every T ∈ SL(X,Y ) and every x0 ∈ SX such
that ‖T (x0)‖ > 1− η, there are a point z0 ∈ SX and S ∈ SL(X,Y ) satisfying the following
conditions:

‖S(z0)‖ = 1, ‖z0 − x0‖ ≤ ε and ‖S − T‖ < ε.

The proofs provided in the mentioned two papers are very different. In [50] the authors
define a sequence of operators in L(X,Y ) such that the difference between two consecutive
terms is a rank-one operator in order to obtain the desired operator S. In the case of
the paper [10] the authors use a perturbation result due to Stegall and valid for spaces
with the Radon–Nikodým property. We also remark that in the first paper mentioned
the authors obtain a characterization of uniformly convex spaces in terms of an assertion
stronger than the Bishop–Phelps–Bollobás theorem [50, Theorem 2.1].

For the case of a Hilbert space, García, Lee and Maestre proved the following result.

Theorem 2.5 ([41, Theorem 2.1]). The class of self-adjoint operators on any complex
Hilbert space satisfy the Bishop–Phelps–Bollobás property.

To finish this section, we mention that there are several papers containing different
estimates of Bishop–Phelps–Bollobás moduli for the scalar case [30, 29, 28, 47, 43] and
also for operators [48].

3. Results when the domain is an L1 space. If Y is a Banach space, an element
T ∈ L(`1, Y ) can be identified with the sequence {T (en)} of elements in Y satisfying
sup{‖T (en)‖ : n ∈ N} = ‖T‖. It is elementary to check that the operator T in L(`1, Y )
attains its norm if and only if the norm of one of the terms of the associated sequence is
the largest norm of all the terms. With this argument it is very easy to show the denseness
of the set of norm attaining operators from `1 to Y in the space L(`1, Y ). However, in
general the pair (`1, Y ) does not have the Bishop–Phelps–Bollobás property for operators.
In the paper [4] the authors obtained a characterization of the Banach spaces Y such
that (`1, Y ) satisfies the BPBp. The property appearing in this characterization is quite
technical and was introduced in [4, Definition 3.1]. Afterwards another geometric property
related to the same topic was used and called the approximate hyperplane property (see
[34, Definition 2.1]). We recall both properties.

Definition 3.1. A Banach space X has the approximate hyperplane property (AHp) if
there exists a function δ : ]0, 1[ −→ ]0, 1[ and a 1-norming subset C of SX∗ satisfying the
following property:

Given ε > 0, there is a function ΥX,ε : C −→ SX∗ with the condition

x∗ ∈ C, x ∈ SX , Rex∗(x) > 1− δ(ε) ⇒ dist(x, F (ΥX,ε(x∗))) < ε,

where F (y∗) = {y ∈ SX : Re y∗(y) = 1} for any y∗ ∈ SX∗ .
A family of Banach spaces {Xi : i ∈ I} has AHp uniformly if every space Xi has

property AHp with the same function δ.

In what follows by a convex series we mean a series
∑
αn, where 0 ≤ αn ≤ 1 for each

n ∈ N and
∑∞
n=1 αn = 1.
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Definition 3.2. A Banach space X has the approximate hyperplane series property
(AHSp) if and only if for every 0 < ε < 1 there exists 0 < η < ε such that for every
sequence {xn} in SX and every convex series

∑
αn with∥∥∥ ∞∑

n=1
αnxn

∥∥∥ > 1− η,

there exist a subset A ⊂ N and a subset {zk : k ∈ A} ⊂ SX satisfying
1)
∑
k∈A αk > 1− ε,

2) ‖zk − xk‖ < ε for all k ∈ A,
3) there is x∗ ∈ SX∗ such that x∗(zk) = 1 for every k ∈ A.

Some characterizations of the AHSp can be found in [5, Proposition 1.2]. It is known
that AHp implies AHSp [34, Proposition 2.2] and most of the spaces with the second
property indeed have the AHp. In fact, it is not known if the two properties are equivalent.

The following classes of spaces have the AHp:
1) uniformly convex spaces,
2) finite-dimensional spaces,
3) separable lush spaces (see [34, p. 246] for the definition of lush space),
4) almost CL-spaces,
5) spaces with the property β of Lindenstrauss.

As a consequence, C(K) and L1(µ) have the AHp for any compact and Hausdorff
topological space K and any positive measure µ since they are CL-spaces. All the results
providing spaces with the AHp that we listed can be found in [34, Section 2] and some
of them appear implicitly in [4]. Moreover, if X is a Banach space satisfying some of
the properties included above, the space L1(µ,X) also has the AHp [34, Corollary 2.12].
It is also known that AHp is not stable under infinite c0, `1 and `∞ sums. The spaces
L(X, C(K)) and K(X, C(K)) have AHSp for every uniformly smooth Banach space X
and every compact Hausdorff topological space K [8, Corollary 4.4].

Let us mention that Choi and Kim proved that lush spaces have AHSp [32, Theorem 7].
This result extends one for CL-spaces shown by Cheng, Dai and Dong [27, Theorem 2.1].
Also the space L1(µ,X) has the approximate hyperplane series property for any σ-finite
measure µ whenever X is uniformly convex [32, Theorem 14].

The main result that was the motivation to introduce property AHSp is the following
characterization.
Theorem 3.3 ([4, Theorem 4.1]). For a Banach space Y , the pair (`1, Y ) has the Bishop–
Phelps–Bollobás property for operators if and only if Y satisfies AHSp.

The argument in the proof of the previous result uses the fact that an element
T ∈ SL(`1,Y ) can be identified with the sequence {T (en)} of elements in Y satisfying
sup{‖T (en)‖ : n ∈ N} = 1. In this way an element x0 ∈ S`1 such that ‖T (x0)‖ is close
to 1 provides, up to a linear surjective isometry on `1, a convex series

∑
x0(n)T (en) in Y ,

whose norm is also close to 1. This is the idea connecting the fact that T almost attains
its norm at x0 with the condition that appears in the definition of AHSp. If one assumes
that the space has AHSp, the operator S defined by S(en) = T (en) for n ∈ N \ A and



18 M. D. ACOSTA

S(en) = zn for n ∈ A, where {zn : n ∈ A} is the subset appearing in Definition 3.2 for
the sequence {xn} = {T (en)}, is the operator that we want in order to show that the
pair (`1, Y ) has the Bishop–Phelps–Bollobás property for operators.

In general, there are a few stability results for pairs (X,Y ) such that the set of
norm attaining operators from X to Y is dense in the space L(X,Y ). Indeed it is a
longstanding open problem if the pair (X,R2) satisfies the previous property, where R2

has the euclidean norm. Let us also notice that on the range one cannot expect too many
stability results since there are counterexamples for infinite `p-sums for 1 ≤ p < +∞ (see
[45, Theorem, p. 149] and [1, Theorem 2.3]).

However, the following stability results of the Bishop–Phelps–Bollobás property have
been obtained.

Proposition 3.4. The following assertions are satisfied:

1) The pair
(
X,
(⊕∑∞

n=1 Yn
)
c0

)
and

(
X,
(⊕∑∞

n=1 Yn
)
`∞

)
satisfy the Bishop–Phelps–

Bollobás property for operators whenever all pairs (X,Yn) have the Bishop–Phelps–
Bollobás property for operators “uniformly”.

2) If Xi is a Banach space with the AHSp for each 1 ≤ i ≤ N , then the space
∏N
i=1 Xi,

endowed with some normalized absolute norm, also has the AHSp. We recall that an
absolute norm on a finite cartesian product is a norm that depends only on the norms
of all the components. This norm is normalized if the natural embedding of each space
Xi in the cartesian product is a linear isometry.

3) If E is a Banach sequence lattice with the AHSp that is uniformly monotone and
{Xk : k ∈ N} is a family of Banach spaces with the AHp uniformly, then

(
⊕Xn

)
E
has

the AHSp.

The first statement of the result was proved in [20, Proposition 2.4], where some
stability results on the domain can also be found. The result in 2) appears in [16] and
has been obtained previously in [5, Corollary 2.8] for `p-sums of two Banach spaces for
1 ≤ p <∞ and in [15, Theorem 2.6] for any absolute norm on the product of two spaces.
Finally the result 3) appeared in [15, Theorem 2.10]. Section 2 in [15] contains also all
the notions used in the last two assertions.

We also remark that the results in 1) and 2) are indeed characterizations. These facts
have been essentially proved in [20, Proposition 2.4], [42, Theorem 2.3] and [15, Theorem
2.6].

In [54] Kim, Lee and Martín characterized the pairs of Banach spaces (X,Y ) such that
(`1(X), Y ) satisfies the Bishop–Phelps–Bollobás property for operators [54, Theorem 6].
As a consequence they proved the next result.

Proposition 3.5. In the following cases the pair of spaces (X,Y ) is such that (`1(X), Y )
has the BPBp:

1) X and Y are finite-dimensional spaces,
2) Y is a Hilbert space and the pair (X,H) has the Bishop–Phelps–Bollobás property for

operators,
3) X = C(K) for some Hausdorff and compact topological space K and Y is a Hilbert

space.
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The following extension of 2) has been obtained. If {Xi : i ∈ I} is a family of Banach
spaces, H is a Hilbert space such that the pair (Xi, H) has the BPBp for operators for
every i ∈ I with the same function η, then the pair

((
⊕
∑
i∈I Xi

)
`1
, H
)
has the BPBp

[15, Proposition 2.3].
As we already mentioned, there is a characterization of the spaces Y such that the pair

(`1, Y ) has the Bishop–Phelps–Bollobás property for operators that we stated explicitly.
However this is not the case when the domain is any L1 space. So we will include the
known results in this case.

Let us say that when the domain X is a finite-dimensional L1 space, as a consequence
of the argument used in [4, Theorem 4.1], there is a characterization of the spaces Y such
that the pair (X,Y ) has the BPBp. If X has dimension N and it is an L1 space, then
the pair (X,Y ) has the BPBp if Y satisfies Definition 3.2 for convex combinations of N
elements instead of convex series.

So we can consider only infinite-dimensional L1 spaces on the domain. The first result
proved by Choi and Kim on this topic essentially solves the problem in case that the
range is a space with the Radon–Nikodým property.

Theorem 3.6 ([31, Theorem 2.2]). Assume that Y is a Banach space with the Radon–
Nikodým property and µ a σ-finite measure such that L1(µ) is infinite-dimensional. Then
the pair (L1(µ), Y ) has the Bishop–Phelps–Bollobás property for operators if and only if
Y has the approximate hyperplane series property.

The proof of the previous result uses in an essential way that under the assumptions
an operator from L1(µ) to Y can be represented by a function in L∞(µ, Y ).

Let us notice that in general for any Banach space Y , in case that µ is any positive
measure such that L1(µ) is infinite-dimensional, if the pair (L1(µ), Y ) has the Bishop–
Phelps–Bollobás property for operators, then Y has the approximate hyperplane series
property (see [31, Theorem 2.1] and [8, Proposition 2.2]). Because of results that we will
mention later it is known that the Radon–Nikodým property is not needed in order that
the pair (L1(µ), Y ) has the BPBp.

For some classical spaces in the range there are also positive results.

Theorem 3.7. Let µ and ν be positive measures. Then the following assertions are sat-
isfied:

1) The pair (L1(µ), L1(ν)) has the Bishop–Phelps–Bollobás property for operators.
2) If ν is a localizable measure, then the pair (L1(µ), L∞(ν)) has the BPBp.

Both results have been proved by Choi, Kim, Lee and Martín [33, Theorems 3.1
and 4.1]. The second assertion was shown before by Aron, Choi, García and Maestre for
the pair (L1(µ), L∞[0, 1]) when µ is a σ-finite measure [19]. Section 5 in [33] also contains
positive results for certain classes of operators in L(L1(µ), C(K)) in the real case, for any
positive finite measure µ and any compact Hausdorff topological space K.

Inspired by the results in [31], Acosta, Becerra-Guerrero, Kim, García and Maestre
also obtained some positive results about the Bishop–Phelps–Bollobás property for some
classes of operators when the domain is an L1 space. For this, they introduced the fol-
lowing notion.
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Definition 3.8 ([8, Definition 1.3]). Let X and Y be both real or complex Banach
spaces andM a subspace of L(X,Y ). We say thatM satisfies the Bishop–Phelps–Bollobás
property if given ε > 0, there is η(ε) > 0 such that for any T ∈ SM , if x0 ∈ SX satisfies
‖Tx0‖ > 1 − η(ε), then there exist a point u0 ∈ SX and an operator S ∈ SM satisfying
the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < ε and ‖S − T‖ < ε.

Proposition 3.9 ([8, Proposition 2.2]). Let (Ω,Σ, µ) be a measure space such that L1(µ)
is infinite-dimensional, Y a Banach space, and M a subspace of L(L1(µ), Y ) containing
all finite-rank operators. If M has the Bishop–Phelps–Bollobás property, then Y has the
approximate hyperplane series property.

The converse result also holds true for certain classes of subspaces M of L(L1(µ), Y ).

Theorem 3.10 ([8, Theorem 2.3]). Let (Ω,Σ, µ) be a finite measure space, Y a Banach
space with AHSp and M a subspace of L(L1(µ), Y ) that contains all finite-rank operators
and is contained in the subspace of all representable operators. Also, assume that the
operator SA(f) = S(fχA) belongs to M whenever S ∈M and A is any measurable subset
of Ω. Then M has the Bishop–Phelps–Bollobás property for operators.

As a consequence, under the previous assumptions on the measure space, if Y is a
Banach space, then the space of finite-rank operators has the Bishop–Phelps–Bollobás
property precisely when Y has the approximate hyperplane series property. Instead of
the subspace of finite-rank operators, the ideal of compact operators or the subspace of
weakly compact operators can be used (see [8, Corollary 2.4]).

4. Results about the Bishop–Phelps–Bollobás property for operators when
the domain is C(K). The purpose of this section is to state the results known about
the topic when the domain is C(K). In this case the problem seems to be quite com-
plicated even for finite-dimensional spaces. The first result of this type was obtained in
[4, Theorem 5.2] for operators from `n∞ to a uniformly convex Banach space. Here `n∞
denotes the space Rn, endowed with the maximum norm. This result has been extended
later to much more general cases.

It is worth mentioning that in the complex case it is an open problem whether or not
the set of norm attaining operators from C(K) to C(S) is dense in L(C(K), C(S)).

Theorem 4.1 ([6, Theorem 2.5]). Let K and S be compact Hausdorff topological spaces.
Then the pair (C(K), C(S)) has the Bishop–Phelps–Bollobás property for operators in
the real case. Moreover, the function given by η(ε) = ε2

12·62 satisfies Definition 1.1 in this
case for any spaces K and S.

There are also results for concrete classes of operators. For a locally compact Hausdorff
topological space L, we denote by C0(L) either the space of real or complex continuous
functions on L with limit zero at infinity.

The next two results are valid in the real case as well as in the complex case.
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Theorem 4.2 ([6, Theorem 3.3]). Let Y be a uniformly convex Banach space and L a
locally compact Hausdorff topological space. Then the space of compact operators from
C0(L) to Y has the Bishop–Phelps–Bollobás property. Indeed the function η satisfying
Definition 3.8 depends only on the modulus of convexity of Y .

Theorem 4.3 ([6, Theorem 4.2]). Let X be a Banach space and Y be a predual of an
L1-space. Then the space of compact operators from X to Y has the Bishop–Phelps–
Bollobás property. Indeed the function η satisfying Definition 3.8 does not depend on X
or Y .

A striking result is the one obtained by Kim in 2013 [49]. This paper and the arguments
used there have inspired some later results.

Theorem 4.4 ([49, Corollary 2.6]). The pair (c0, Y ) has the Bishop–Phelps–Bollobás
property for operators for any uniformly convex Banach space Y .

As a consequence of this result, in case that Y is a real strictly convex Banach space,
he obtained that the pair (X,Y ) has the BPBp if and only if Y is uniformly convex for
X = c0 or X = `n∞ for some natural number n ≥ 2 [49, Theorem 2.7]. Recall that a
normed space is strictly convex if its unit sphere does not contain proper segments.

The next result is due to Kim and Lee and was proved in case that the domain is
L∞(µ) for some positive measure µ by Kim, Lee and Lin [52, Theorem 5].

Theorem 4.5 ([51, Theorem 2.2]). In the real case the pair (C(K), Y ) has the Bishop–
Phelps–Bollobás property for operators for any compact Hausdorff topological space K,
whenever Y is a uniformly convex Banach space.

In order to state an improvement of this result in the complex case, we recall the
notion of C-uniformly convex space, introduced by Globevnik [44]. For a complex Banach
space Y , the C-modulus of convexity δ is defined for every ε > 0 by

δ(ε) = inf
{

sup{‖x+ λεy‖ − 1 : λ ∈ C, |λ| = 1} : x, y ∈ SY
}
.

Recall that the Banach space Y is C-uniformly convex if δ(ε) > 0 for every ε > 0 [44].
Every uniformly convex complex space is C-uniformly convex and the converse is not
true. Indeed the complex space L1(µ) is C-uniformly convex [44, Theorem 1] and it is not
uniformly convex unless L1(µ) is one-dimensional. The next result is valid for complex
spaces.

Theorem 4.6 ([3, Theorem 2.4]). The pair (C0(L), Y ) satisfies the Bishop–Phelps–Bollo-
bás property for operators for any locally compact Hausdorff topological space L and any
C-uniformly convex space Y . As a consequence, the pair (C0(L), Lp(µ)) has the BPBp for
any positive measure µ and 1 ≤ p < +∞.

The proof of this result is quite technical and uses, amongst other facts, that any
operator from C0(L) to a C-uniformly convex space is weakly compact.

From the above result, in the complex case (c0, L1(µ)) has the BPBp for any positive
measure µ. However, in the real case it is an open problem whether or not the parallel
result holds even for the pair (c0, `1). We notice that the set of norm attaining operators
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from c0 to `1 is dense in L(c0, `1) since every operator from c0 to `1 is compact and the
usual basis of c0 is monotone and shrinking.

For the next results of this section we deal only with real normed spaces unless stated
otherwise. It is known that in case that the pair (c0, `1) has the BPBp, then all the pairs
(`n∞, `1) have the BPBp “uniformly” (see [20, Theorem 2.1]). This fact motivated the
study of the Bishop–Phelps–Bollobás property for operators in case that the domain is `n∞.
For n = 1 it is trivially satisfied that the pair (R, Y ) has the Bishop–Phelps–Bollobás
property for operators for any Banach space Y . In the case n = 2 the spaces Y such that
(`2
∞, Y ) has the BPBp are characterized since `2

∞ is isometric to R2, endowed with the
`1 norm. There is a characterization of those Banach spaces Y such that (`3

∞, Y ) has the
BPBp (see [9, Theorem 2.9]). That result was extended in [12, Theorem 3.3] for `4

∞. The
general case when the domain is `n∞ was considered in [11]. In order to recall the intrinsic
property appearing in the characterization we need some notation.

For a natural number n ≥ 2 we define the set In by

In :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k : k odd, k ≤ n and ij < ij+1, ∀j < k
}
.

If Y is a normed space, we denote by Mn
Y the set

Mn
Y :=

{
(yi)i≤n ∈ Y n :

k∑
j=1

(−1)j+1yij ∈ BY , ∀(i1, . . . , ik) ∈ In
}
.

The following notion is similar to the definition of approximate hyperplane series
property for convex combinations of n elements, but we assume more restrictions in the
elements that we approximate.

Definition 4.7 ([11, Definition 2.6]). Let n ≥ 2 be an integer. A Banach space Y has
the approximate hyperplane sum property for `n∞ (AHSp-`n∞) if for every 0 < ε < 1 there
is 0 < γn(ε) < ε satisfying the following condition:

For every (yi)i≤n ∈Mn
Y , if there exist a nonempty subset A of {1, . . . , n} and y∗ ∈ SY ∗

such that y∗(yi) > 1 − γn(ε) for each i ∈ A, then there exists an element (zi)i≤n ∈ Mn
Y

satisfying ‖zi − yi‖ < ε for every i ≤ n and ‖
∑
i∈A zi‖ = |A|.

There is a characterization of AHSp-`n∞ that is essential in order to show the next
result [11, Proposition 2.9].

Theorem 4.8. Let Y be a Banach space. The pair (`n∞, Y ) has the Bishop–Phelps–
Bollobás property for operators if and only if Y has the approximate hyperplane sum
property for `n∞.

In the proof of the previous characterization [11, Proposition 2.5] the identification of
an operator T ∈ SL(`n

∞,Y ) with an element in Mn
Y is also used. For this identification we

associate to each operator its image of a certain basis of Rn whose elements are extreme
points in the unit ball of `n∞. The proof also gives some estimates between the function η
appearing in Definition 1.1 and the function γn in Definition 4.7.

The class of spaces satisfying the approximate hyperplane sum property for `n∞ con-
tains spaces of very different nature (see [11, Section 4]).
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Proposition 4.9. The following classes of Banach spaces satisfy the approximate hy-
perplane sum property for `n∞ for any integer n ≥ 2:

1) finite-dimensional spaces,
2) uniformly convex spaces,
3) spaces with property β of Lindenstrauss,
4) uniform algebras,
5) C0(L, Y ), for any locally compact Hausdorff space L, whenever Y is a space with the

AHSp-`n∞,
6) L1(µ), for any positive measure µ.

The result for the four first cases is a consequence of the characterization in Theorem
4.8 and some positive result for pairs of Banach spaces with the BPBp. These results can
be found in [4, Proposition 2.4], [4, Theorem 5.2], Theorem 2.3 and [26, Theorem 3.6],
respectively. The proof of assertion 5) is a consequence in the argument of [9, Proposi-
tion 2.4]. In [11, Corollary 4.3] it was proved that the space `1 has the AHSp-`n∞ for any
positive integer n. This proof is complicated. The result of the general case follows from
a simple localization argument. In this case the function η such that the pair (`n∞, `1) has
the BPBp depends on n, so we cannot get that (c0, `1) has the Bishop–Phelps–Bollobás
property for operators in the real case.

As we already mentioned in the real case, the pair (c0, Y ) has the Bishop–Phelps–
Bollobás property for operators if Y has property β of Lindenstrauss or if Y is uniformly
convex. In order to state a more general result we need the following notion that was
used by Lindenstrauss in [57].

Definition 4.10. Let Y be a (real or complex) Banach space, E ⊂ SY and F : E−→SY ∗ .
We recall that the family E is uniformly strongly exposed by F if for every ε > 0 there is
δ > 0 such that

y ∈ BY , e ∈ E, ReF (e)(y) > 1− δ ⇒ ‖y − e‖ < ε.

In a uniformly convex space X the set SX is uniformly strongly exposed by F , where
F (x) ∈ {y∗ ∈ SY ∗ : y∗(x) = 1} for any x ∈ SX .

Theorem 4.11 ([14, Theorem 2.4]). Assume that Y is a (real or complex) Banach space
such that there are a set I, {yi : i ∈ I} ⊂ SY , {y∗i : i ∈ I} ⊂ SY ∗ , a subset E ⊂ SY , a
mapping F : E −→ SY ∗ and 0 ≤ ρ < 1 satisfying

i) y∗i (yi) = 1, ∀i ∈ I.
ii) |y∗i (yj)| ≤ ρ, ∀i, j ∈ I, i 6= j.
iii) E is uniformly strongly exposed by F .
iv) |F (e)(yi)| ≤ ρ, ∀e ∈ E, i ∈ I.
v) The set F (E) ∪ {y∗i : i ∈ I} is a 1-norming set for Y ; that is, for any y ∈ Y

‖y‖ = max
{

sup{|y∗i (y)| : i ∈ I}, sup{|F (e)(y)| : e ∈ E}
}
.

Then the pair (c0, Y ) has the BPBp for operators.

As we already mentioned, if Y has property β of Lindenstrauss or is uniformly convex,
the previous result can be applied. But the class of spaces satisfying the hypothesis of
Theorem 4.11 is large as the next result shows.
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Theorem 4.12 ([14, Corollary 2.8]). Let Y be a uniformly convex Banach space with
dimX ≥ 2. There is an equivalent norm ‖ ‖ on Y arbitrarily close to the original norm
of Y and also satisfying the following two conditions:

1) The assumptions of Theorem 4.11.
2) The space (Y, ‖ ‖) neither is uniformly convex nor satisfies property β of Linden-

strauss.

Let us mention that the space Y = R2, endowed with the norm whose closed unit ball
is the set given by

co{(x, y) ∈ R2 : xy ≤ 0, x2 + y2 ≤ 1},

is a simple example satisfying the two conditions stated in Theorem 4.12.
Our purpose now is to state another very interesting result for operators even when

the domain can be a space different from C(K). We recall that a uniform algebra is a
closed subalgebra A ⊂ C(K), endowed with the norm induced by C(K), that separates
the points of K. The techniques used by the next result are very different from the rest of
the results that we mentioned. It uses the w∗-to-norm fragmentability of the w∗-compact
subsets of the dual of an Asplund space and a Urysohn type result valid for uniform
algebras provided by the authors of [26].

Theorem 4.13 ([26, Theorem 3.6 and p. 380]). Let X be a real or complex Banach space,
A ⊂ C(K) be a uniform algebra and T ∈ SL(X,A) be an Asplund operator. Assume that
x0 ∈ SX satisfies ‖T (x0)‖ > 1 − ε2

2 for some 0 < ε <
√

2. Then there is an Asplund
operator S ∈ SL(X,A) and z ∈ SX satisfying

‖S(z)‖ = 1, ‖S − T‖ < 2ε and ‖z − x0‖ ≤ ε.

Indeed, the subspaces of finite rank operators, compact operators, weakly compact and
Asplund operators in L(X,A) have the BPBp.

The previous result extends the one due to Aron, Cascales and Kozhushkina for C0(L)
[18, Corollary 2.5] where the techniques used are similar.

The paper [38] contains several results providing sufficient conditions for the subspace
of compact operators between two spaces to have the Bishop–Phelps–Bollobás property
for operators. We include here one example of these results.

Theorem 4.14 ([38, Theorem 3.6]). Let X be a Banach space such that X∗ is isomet-
ric to `1 and Y a Banach space. If the space of compact operators from c0 to Y has
the Bishop–Phelps–Bollobás property, the space of compact operators from X to Y also
satisfies the same property.

By the way, the paper [38] also includes a wide list of pairs of Banach spaces X and Y
such that the subspace K(X,Y ) (compact operators from X to Y ) has the Bishop–
Phelps–Bollobás property.

5. The Bishop–Phelps–Bollobás property for multilinear mappings. Choi and
Song introduced the corresponding version of the BPBp for bilinear forms in [35]. For a
family of Banach spaces X1, . . . , Xn, Y we denote by Ln(X1 × . . . ×Xn, Y ) the Banach
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space of all continuous n-linear mappings from X1× . . .×Xn to Y . When Y is the scalar
field we remove it, i.e. we simply write Ln(X1× . . .×Xn). The following notion has been
introduced by Choi and Song for bilinear forms [35] and by Dantas, García, Kim, Lee
and Maestre for n-linear mappings [37, Definition 2.1].

Definition 5.1. Let X1, X2, . . . , Xn and Y be Banach spaces. We say that
(X1, . . . , Xn;Y ) has the Bishop–Phelps–Bollobás property for n-linear mappings (BPBp
for n-linear mappings, for short) if for any ε > 0, there is η(ε) > 0 such that whenever
A ∈ SLn(X1×...×XN ,Y ) and (x1, . . . , xn) ∈

∏n
i=1 SXi satisfy ‖A(x1, . . . , xn)‖ > 1 − η(ε),

there are B ∈ SLn(X1×...×XN ,Y ) and (z1, . . . , zn) ∈
∏n
i=1 SXi

such that

‖B(z1, . . . , zn)‖ = 1, ‖B −A‖ < ε and ‖zi − xi‖ < ε, ∀1 ≤ i ≤ n.

If Y is the scalar field we just say that (X1, . . . , Xn) has the Bishop–Phelps–Bollobás
property for n-linear forms.

There are examples of pairs of Banach spaces (X,Y ) such that the set of norm at-
taining bilinear forms on X × Y is not dense in L2(X × Y ). So these pairs do not satisfy
the BPBp for bilinear forms. The following counterexample is due to Choi and Song.

Proposition 5.2 ([35, Theorem 2]). The pair (`1, `1) does not satisfy the Bishop–Phelps–
Bollobás property for bilinear forms.

As a consequence the authors deduce that the same negative result also holds for
n-linear forms on `1.

Dai [36] showed that (X1, . . . , Xn) has the BPBp for n-linear forms whenever
(X1, . . . , Xn+1) has the BPBp for (n+ 1)-linear forms and Xn+1 6= {0}.

By using the standard identification of L2(X × Y ) and L(X,Y ∗) it is immediate
that (X,Y ∗) has the BPBp for operators whenever the pair (X,Y ) satisfies the Bishop–
Phelps–Bollobás property for bilinear forms. The next result gives a partial converse.

Proposition 5.3 ([10, Proposition 2.4] and [36, Theorem 1.1]). Let X be a Banach space
and Y a uniformly convex space. If the pair (X,Y ∗) has the Bishop–Phelps–Bollobás prop-
erty for operators then (X,Y ) satisfies the Bishop–Phelps–Bollobás property for bilinear
forms.

In general, if Y is a nontrivial space and (X1, . . . , Xn;Y ) has the BPBp for n-linear
mappings then (X1, . . . , Xn) has the BPBp for n-linear forms [37, Proposition 2.7]. Dai
showed a partial converse of that result in case that Y has property β of Lindenstrauss
[36]. As a consequence, he obtained that (`1, `p;Y ) for 1 < p <∞ and (`2, `2;Y ) has the
Bishop–Phelps–Bollobás property for bilinear mappings when Y satisfies property β.

Now we will state some positive results about the BPBp for multilinear forms. We
begin with a result proved by Acosta, Becerra-Guerrero, García and Maestre.

Theorem 5.4 ([10, Theorem 2.2]). If Xi is a uniformly convex Banach space for
1 ≤ i ≤ n then (X1, X2, . . . , Xn;Y ) satisfies the Bishop–Phelps–Bollobás property for
n-linear mappings for any Banach space Y .

Besides the use of the geometric assumption on the spaces the proof of the previous
theorem uses the Stegall perturbed optimization principle.
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The paper [37] contains more results on the topic, including a section devoted to
BPBp for polynomials. Another section dealing with this topic for polynomials can be
found in [7].

Proposition 5.5 ([37, Proposition 2.3]). Let Xi be a finite-dimensional normed space for
1 ≤ i ≤ n and Y a Banach space. Then (X1, . . . , Xn;Y ) has the Bishop–Phelps–Bollobás
property for n-linear mappings.

Theorem 5.6 ([37, Theorem 2.9]). Assume that Xi is a Banach space for 1 ≤ i ≤ n

and Y is a Banach space whose dual is an L1-space. If (X1, . . . , Xn) has the Bishop–
Phelps–Bollobás property for n-linear forms, then (X1, . . . , Xn;Y ) has the Bishop–
Phelps–Bollobás property for compact n-linear mappings.

The paper [10] also contains a characterization of those Banach spaces Y such that
the pair (`1, Y ) has the BPBp for bilinear forms. The property appearing in this charac-
terization implies that Y ∗ has the AHSp.

Definition 5.7 ([10, Definition 3.1]). For a Banach space Y we will say that the pair
(Y, Y ∗) satisfies the Approximate Hyperplane Series property (shortly AHSp) if for every
ε > 0 there are 0 < δ, η < ε satisfying: for every convex series

∑
n αn and for every

sequence of functionals {y∗n} in SY ∗ and y0 ∈ SY such that Re
∑
n αny

∗
n(y0) > 1 − η,

there are a subset C ⊂ N, {z∗k : k ∈ C} ⊂ SY ∗ and z0 ∈ SY such that∑
k∈C

αk > 1− δ, ‖z∗k − y∗k‖ < ε, z∗k(z0) = 1, for all k ∈ C and ‖z0 − y0‖ < ε.

By using similar ideas for the characterization of BPBp for operators whose domain
is `1 the following characterization is proved.

Theorem 5.8 ([10, Theorem 3.6]). Let Y be a Banach space. Then (`1, Y ) has the
Bishop–Phelps–Bollobás property for bilinear forms if and only if the pair (Y, Y ∗) sat-
isfies the Approximate Hyperplane Series property.

As a consequence, the authors of [10] provide several classes of examples in Section 3.
Here we include a list of such spaces:

1) uniformly smooth spaces,
2) finite-dimensional spaces,
3) C0(L), for any locally compact Hausdorff topological space L,
4) the space of compact operators on any Hilbert space.

However, the pair (L1(µ), L1(µ)∗) does not have the AHSp [10, Proposition 4.8] when-
ever L1(µ) is infinite-dimensional. We notice that L∞(µ) always has the approximate
hyperplane series property.

In the case that X = L1(µ) in general there is no characterization of the spaces Y such
that (X,Y ) has the Bishop–Phelps–Bollobás property for bilinear forms. But at least it
is known under some isomorphic condition on Y .

Proposition 5.9 ([7, Theorem 2.4]). Let Y be a Banach space, µ a positive measure
and assume that L1(µ) is infinite-dimensional. Then (Y, Y ∗) has the AHSp whenever
(L1(µ), Y ) has the BPBp for bilinear forms.
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Theorem 5.10 ([7, Theorem 2.6]). Let µ be a σ-finite measure and assume that L1(µ) is
infinite-dimensional and Y an Asplund space. Then the pair (L1(µ), Y ) has the Bishop–
Phelps–Bollobás property for bilinear forms if and only if (Y, Y ∗) has the approximate
hyperplane series property.

If µ is a σ-finite measure, for the following Banach spaces X the pair (L1(µ), X) has
the BPBp for bilinear forms (see [7, Corollary 2.7]):

1) finite-dimensional normed spaces,
2) the space c0,
3) if X is smooth and L1(µ) is infinite-dimensional, then (L1(µ), X) has the Bishop–

Phelps–Bollobás property for bilinear forms if and only if X is uniformly smooth.

Kim, Lee and Martín proved the following result. The parallel result in the real case
is an open problem even for c0.

Theorem 5.11 ([56, Theorem 2]). Let L1 and L2 be locally compact Hausdorff topologi-
cal spaces. Then the pair

(
C0(L1), C0(L2)

)
has the Bishop–Phelps–Bollobás property for

bilinear forms in the complex case.

Some more examples of pairs with the BPBp for bilinear forms can be found in [17,
Section 4].

There are also a few results on the same topic for specific classes of bilinear forms or
even for sesquilinear forms on a Hilbert space. As an example, we mention the following
results, that can be found in [41, Theorems 3.2 and 3.4] and [41, Corollary 2.2].

Theorem 5.12. Let H be a Hilbert space.

1) The space of symmetric bilinear forms on H satisfies the Bishop–Phelps–Bollobás
property both in the real and in the complex case.

2) If H is a complex Hilbert space, the parallel result also holds for the space of symmetric
sesquilinear forms.

6. Results for numerical radius. In 2013 Guirao and Kozhushkina studied versions
of a Bishop–Phelps–Bollobás theorem for numerical radius of operators [46]. We recall
some concepts.

If X is a Banach space and T ∈ L(X), the numerical radius of T , ν(T ), is defined as

ν(T ) = sup
{
|x∗(T (x))| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
.

In general the numerical radius is a semi-norm on L(X) satisfying ν(T ) ≤ ‖T‖ for each
T ∈ L(X). The numerical index of X, n(X) is defined as

n(X) = inf{ν(T ) : T ∈ SL(X)}.

Hence, n(X) is the greatest constant t such that t‖T‖ ≤ ν(T ) for each T ∈ L(X). We
always have 0 ≤ n(X) ≤ 1 and, in case n(X) = 1, it is said that X has numerical index
equal to 1. In this case ν(T ) = ‖T‖ for each T ∈ L(X). It is well known that the spaces
L1(µ) and C(K) have numerical index equal to 1 for any measure µ and any compact
Hausdorff space K [39, Theorem 2.2].
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Guirao and Kozhushkina introduced the definition of the BPBp-ν [46, Definition 1.2].
Afterwards a slightly different concept was introduced by admitting subclasses of the
space of bounded linear operators on a Banach space X [13, Definition 2.1]. We recall
these notions.

Definition 6.1. Let X be a Banach space and M a subspace of L(X). We say that
M has the Bishop–Phelps–Bollobás property for numerical radius (BPBp-ν) if for every
0 < ε < 1, there is η(ε) > 0 such that whenever S ∈M, ν(S) = 1, x0 ∈ SX and x∗0 ∈ SX∗
are such that x∗0(x0) = 1 and |x∗0(S(x0))| > 1 − η(ε), there are T ∈ M, x1 ∈ SX and
x∗1 ∈ SX∗ such that

i) x∗1(x1) = 1,
ii) |x∗1(T (x1))| = ν(T ) = 1,
iii) ν(T − S) < ε, ‖x1 − x0‖ < ε and ‖x∗1 − x∗0‖ < ε.

If the previous property is satisfied forM = L(X) we say that X has the Bishop–Phelps–
Bollobás property for numerical radius (BPBp-ν for short).

The BPBp-ν is not satisfied for every Banach space. Guirao and Kozhushkina obtained
the first result for spaces satisfying the previous property.

Proposition 6.2 ([46, Theorems 5.2 and 5.3]). For any set Γ the spaces `1(Γ) and c0(Γ)
have the Bishop–Phelps–Bollobás property for numerical radius in the real and in the
complex case.

Avilés, Guirao and Rodríguez obtained a result valid for some C(K) spaces in the real
case. Although they proved a more general result (see [21, Theorem 3.2]) we state the
following special case.

Theorem 6.3 ([21, Corollary 3.3]). The space C(K) has the BPBp-ν for any metric
compact space K.

Falcó proved that the space L1(R) also satisfies the Bishop–Phelps–Bollobás property
for numerical radius in the real case [40, Theorem 9]. For the proof of this result he used
the partition of the real line into dyadic intervals. He also stated in the last section of the
same paper that the result is also valid for L1(Rn) for any positive integer n. The next
result extends the one just mentioned.

Theorem 6.4 ([53, Theorem 9]). For any positive measure µ the real or complex space
L1(µ) has the BPBp-ν.

Kim, Lee and Martín also provided more classes of Banach spaces with the same
property and a very general result from the isomorphic point of view.

Theorem 6.5 ([53, Propositions 2 and 4]). The following classes of spaces satisfy the
Bishop–Phelps–Bollobás property for numerical radius:

1) finite-dimensional normed spaces,
2) Banach spaces that are uniformly convex and uniformly smooth.



THE BISHOP–PHELPS–BOLLOBÁS PROPERTY 29

The result stated in 1) uses a compactness argument. To prove the second a convergent
sequence of operators is defined by using perturbations of the original operator by rank-
one operators. By using the uniform convexity of the space and its dual it can be proved
that the limit of the sequence of operators attains its numerical radius.

As a consequence of 2), the spaces Lp(µ) have the BPBp-ν for 1 < p <∞.
Theorem 6.6 ([53, Theorem 17]). Every infinite-dimensional and separable space is iso-
morphic to a space with the BPBp-ν.

Kim, Lee and Martín also found some relation between BPBp-ν and the BPBp for
operators under certain restrictions (see for instance [55, Corollary 2.2]).

We finish this section with a result obtained by Acosta, Fakhar and Soleimani-
Mourchehkhorti. For a result valid for some other classes of subspaces of operators that
are not stated here see [13, Theorem 2.1].
Theorem 6.7 ([13, Corollary 2.1]). Let µ be a σ-finite measure. The following subspaces
of L(L1(µ)) have the Bishop–Phelps–Bollobás property for numerical radius:
1) The space of all finite-rank operators on L1(µ).
2) The subspace of all compact operators on L1(µ).
3) The space of all weakly compact operators on L1(µ).

In the proof of the above result it is used that all operators considered are repre-
sentable and that the previous subspaces are stable under composition with all continuous
operators.

7. Some open problems. Even though there have been published a certain number of
papers about the topic in the last years, many problems remain open. Here are some of
them.
Open questions.
1) Does the pair (c0, `1) have the Bishop–Phelps–Bollobás property for operators in the

real case?
2) Characterize those Banach spaces Y such that the pair (L1([0, 1], Y ) has the Bishop–

Phelps–Bollobás property for operators.
3) In the complex case, does the pair (C(K), C(S)) have the BPBp?
4) Does the space C(K) have the Bishop–Phelps–Bollobás property for numerical ra-

dius?
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