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1. Introduction. In 1967, the notions of complex extreme points and complex strict
convexity have been introduced by E. Thorp and R. Whitley [37]. They proved that
the strong maximum modulus theorem for analytic functions with values in a complex
Banach space X holds whenever each point of the unit sphere of X is a complex ex-
treme point (see [36]). In 1975, J. Globevnik further introduced the notions of complex
strict and uniform convexity of complex normed spaces and proved that the complex
space L1 is complex uniformly convex (see [17]). W. Davis, D. Darling and N. Tomczak-
Jaegermann in [14] investigated the complex convexity of quasi-normed linear spaces.
P. N. Dowling, Z. B. Hu and D. Mupasiri in [15] studied the complex convexity of
Lebesgue–Bochner function spaces. O. Blasco and M. Pavlović in [1] obtained sufficient
and necessary conditions for a complex Banach space X which is p-uniformly PL-convex.
C. Choi, A. Kamińska and H. J. Lee in [7] obtained criteria for complex extreme points,
complex rotundity and complex uniform convexity in Orlicz–Lorentz spaces. H. Hudzik
and A. Narloch in [19] considered relationships between monotonicity and complex ro-
tundity, for instance, a point f of the complexification EC of a real Köthe space E is a
complex extreme point if and only if |f | is a point of upper monotonicity in E. H. J. Lee
in [26, 27] continued studying relationships between monotonicity and complex convex-
ity in Banach lattices and quasi-Banach lattices respectively. M. M. Czerwińska and
A. Kamińska in [12] discussed the complex rotundity and midpoint local uniform con-
vexity in symmetric spaces of measurable operators and they also obtained the concepts
of complex midpoint local uniform rotundity and complex local uniform rotundity are
equivalent for any complex Banach spaces. Recently, M. M. Czerwińska and A. Parrish
in [13] characterized complex extreme points in Marcinkiewicz spaces.

In this work, we prove that any Orlicz modular function space LΦ,ρ is complex mid-
point locally uniformly convex. As a corollary, LΦ,ρ is also complex strictly convex. Fur-
thermore, we introduce the notions of mean nonexpansive mappings in the modular sense
and prove a fixed point theorem in Orlicz modular function spaces.

Before starting with our results, we need to recall some basic concepts and facts of
the theory of modular spaces and Orlicz spaces. For basic information concerning fixed
point theory for nonexpansive mappings see [18].

Let X be a vector space over the complex field C. A functional ρ : X → [0,∞] is
called a modular provided that for any f, g ∈ X,

(a) ρ(f) = 0 if and only if f = 0;
(b) ρ(αf) = ρ(f) for any α ∈ C with |α| = 1;
(c) ρ(αf + βg) ≤ ρ(f) + ρ(g) for any α, β ≥ 0 with α+ β = 1.

If we replace (c) by

(c′) ρ(αf + βg) ≤ αρ(f) + βρ(g) for any α, β ≥ 0 with α+ β = 1,

then the modular ρ is said to be a convex modular. A modular space Xρ is defined by

Xρ = {f ∈ X : ρ(λf)→ 0 as λ→ 0}.

Let Xρ be a modular space, then

B(Xρ) =
{
x ∈ Xρ : ρ(x) ≤ 1

}
, and S(Xρ) =

{
x ∈ Xρ : ρ(x) = 1

}
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denote the closed unit ball and the unit sphere of Xρ respectively. In the sequel N, R
and C denote the set of natural numbers, the set of real numbers and the set of complex
numbers, respectively. Let i be the complex number satisfying i2 = −1.

A map Φ : R→ [0,∞] is said to be an Orlicz function if Φ is vanishing at zero, even,
convex and continuous, and satisfies limu→0

Φ(u)
u = 0 and limu→∞

Φ(u)
u = ∞. For every

Orlicz function Φ, its complementary function Ψ : R→ [0,∞] is defined by the formula

Ψ(v) = sup
{
u|v| − Φ(u) : u ≥ 0

}
,

the complementary function Ψ is also an Orlicz function.
For an Orlicz function Φ, we define

aΦ = max
{
u ≥ 0 : Φ(u) = 0

}
, bΦ = max{u ≥ 0 : Φ(u) <∞}.

Let (T,Σ, µ) be a Σ-finite, atomless measure space with a complete µ-measure. Lo is
the family of all Σ-measurable functions defined on T . For a given Orlicz function Φ, the
Orlicz modular is defined by the formula

ρ(f) =
∫
T

Φ
(
|f(t)|

)
dµ ∀ f ∈ Lo.

Let supp(f) =
{
t ∈ T : |f(t)| 6= 0

}
. The Orlicz space LΦ is generated by an Orlicz

function Φ by the formula

LΦ =
{
f ∈ Lo : ρ(cf) <∞, for some c > 0 depending on f

}
.

LΦ is usually equipped with the Luxemburg norm

‖f‖Φ = inf
{
ε > 0 : ρ( fε ) ≤ 1

}
or with the equivalent one

‖f‖◦Φ = sup
{∫

T

|f(t)g(t)| dµ : g ∈ LΨ, ρ(g) ≤ 1
}

called the Orlicz norm.
Indeed, Orlicz spaces and their kinds of generalizations belong to modular spaces. For

the sake of simplicity, we define LΦ,ρ = (LΦ, ρ) and LΦ = (LΦ, ‖ · ‖Φ).
Let Xρ be a modular space. Then

(1) We say that (fn) is ρ-convergent to f if ρ(fn−f)→ 0 as n→∞. We write fn → f(ρ).
(2) A sequence (fn) is said to be ρ-Cauchy if ρ(fn − fm)→ 0 as n,m→∞.
(3) Xρ is said to be complete if any ρ-Cauchy sequence is ρ-convergent.
(4) A subset C ⊂ Xρ is called ρ-closed if f belongs to C for any sequence {fn} ⊂ C

with fn → f(ρ).
(5) A subset C ⊂ LΦ,ρ is called ρ-bounded if

δρ(C) = sup
{
ρ(f − g) : f, g ∈ C

}
< +∞,

where δρ(C) is said to be the ρ-diameter of C.
(6) We say the modular ρ has Fatou property if

ρ(f) ≤ lim inf
n→∞

ρ(fn)

whenever fn → f(ρ).
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Let C be a ρ-bounded subset of Xρ. Then

(a) The ρ-Chebyshev radius of C with respect to f is defined by

rρ(f, C) = sup{ρ(f − g) : g ∈ C}.

(b) The ρ-Chebyshev radius of C is defined by

Rρ(C) = inf{rρ(f, C) : f ∈ C}.

(c) The ρ-Chebyshev center of C is defined by

Zρ(C) = {f ∈ C : rρ(f, C) = Rρ(C)}.

We say that f ∈ C is a ρ-diametral point if rρ(f, C) = δρ(C). The set C is said to be
ρ-diametral if each f ∈ C is a ρ-diametral point.

We say that Xρ has ρ-normal structure if every nonempty ρ-bounded, ρ-closed, convex
subset C of Xρ, not reduced to a single point, is not a ρ-diametral set.

We say that Xρ has property (R) provided that every decreasing sequence (Cn) of
nonempty ρ-bounded, ρ-closed, convex subset of Xρ has nonempty intersection provided
Cn 6= ∅ for any n ∈ N.

For more details on Orlicz spaces we refer to [11, 8, 10, 9, 16, 6, 5, 20, 21, 29, 35] and
for more details on modular spaces one can consult [23, 24, 25, 28, 30, 31, 32, 33, 34].

Let C be a subset of Xρ and let T : C → C be a mapping. If there exists k ∈ [0, 1)
such that

ρ(T (f)− T (g)) ≤ kρ(f − g)

for any f, g ∈ C, then the mapping T is said to be ρ-contractive [23]. If the inequality

ρ(T (f)− T (g)) ≤ ρ(f − g)

holds for any f, g ∈ C, then the mapping T is said to be ρ-nonexpansive. f ∈ C is called
a fixed point of T provided that T (f) = f . The family of the fixed points of T is said to
be the fixed point set and is denoted by Fix T . A subset D ⊂ Xρ is called T -invariant if
T (D) ⊂ D.

2. Main results. We first show the notions of complex extreme points and complex
strongly extreme points of Banach spaces to the modular spaces. For more details on
these notions we refer to [3, 4, 2].

Definition 2.1 ([2]). Let Xρ be a modular space. A point x ∈ S(Xρ) is said to be a
complex extreme point of B(Xρ) if for any y ∈ Xρ with y 6= 0

sup
|λ|≤1

ρ(x+ λy) > 1.

Xρ is said to be complex strictly convex if every element of S(Xρ) is a complex extreme
point of B(Xρ).
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Definition 2.2 ([2]). Let Xρ be a modular space. A point x ∈ S(Xρ) is said to be a
complex strongly extreme point of B(Xρ) if ∆c,ρ(x, ε) > 0 for every ε > 0, where

∆c,ρ(x, ε) = inf
{

1− |λ| : λ ∈ C, 0 < |λ| ≤ 1,

and ∃y ∈ Xρ : ρ
(
x± y

λ

)
≤ 1
|λ|
, ρ
(
x± i y

λ

)
≤ 1
|λ|
, ρ(y) ≥ ε

}
.

Xρ is said to be complex midpoint locally uniformly convex if every element of S(Xρ) is
a complex strongly extreme point of B(Xρ).

Theorem 2.3. Let Xρ be a modular space. If x ∈ S(Xρ) is a complex strongly extreme
point of B(Xρ), then x is a complex extreme point of B(Xρ).

Proof. Suppose that x ∈ S(Xρ) is not a complex extreme point of the closed unit ball
B(Xρ). Then there exists z ∈ Xρ \ {0} such that

sup
|λ|≤1

ρ(x+ λz) ≤ 1.

Hence, we have
ρ(x± z) ≤ 1, ρ(x± iz) ≤ 1.

Letting ε0 = ρ(z) > 0, we obtain ∆c,ρ(x, ε0) = 0 which is a contradiction.

The next result is an immediate corollary of the previous theorem.

Corollary 2.4. Let Xρ be a modular space, if Xρ is complex midpoint locally uniformly
convex, it is also complex strictly convex.

In order to prove that every Orlicz modular function space LΦ,ρ is complex midpoint
locally uniformly convex, we have first to recall a useful result ([4, p. 187]).

Lemma 2.5. For any ε > 0, there exists δ ∈ (0, 1
2 ) such that if u, v ∈ C and

|v| ≥ ε

8 max
e
|u+ ev|,

then
|u| ≤ 1− 2δ

4 Σe|u+ ev|,

where

max
e
|u+ ev| = max{|u+ v|, |u− v|, |u+ iv|, |u− iv|},

Σe|u+ ev| = |u+ v|+ |u− v|+ |u+ iv|+ |u− iv|.

Theorem 2.6. Let LΦ,ρ be an Orlicz modular function space. Then LΦ,ρ is complex
midpoint locally uniformly convex.

Proof. Suppose that x0 ∈ S(LΦ,ρ) is not a complex strongly extreme point of the unit
ball B(LΦ,ρ), by Definition 2.2, then there exists ε0 > 0 such that 4c,ρ(x0, ε0) = 0. That
is, there exist λn ∈ C with |λn| → 1 and yn ∈ LΦ,ρ satisfying ρ(yn) ≥ ε0, such that

ρ

(
x0 ±

yn
λn

)
≤ 1
|λn|

, ρ

(
x0 ± i

yn
λn

)
≤ 1
|λn|
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for each n ∈ N. Setting zn = yn/λn, we have

ρ(zn) = ρ

(
yn
λn

)
≥ ρ(yn) ≥ ε0

and
ρ(x0 ± zn) ≤ 1

|λn|
, ρ(x0 ± izn) ≤ 1

|λn|
.

For the above ε0 > 0, by Lemma 2.5, there exists δ0 ∈ (0, 1
2 ), such that if u, v ∈ C and

|v| ≥ ε0

8 max
e
|u+ ev|,

then
|u| ≤ 1− 2δ0

4 Σe|u+ ev|.

For every n ∈ N, we define

An =
{
t ∈ T : |zn(t)| ≥ ε0

8 max
e

∣∣x0(t) + ezn(t)
∣∣},

z(1)
n : z(1)

n (t) = zn(t) (t 6∈ An), z(1)
n (t) = 0 (t ∈ An),

z(2)
n : z(2)

n (t) = 0 (t 6∈ An), z(2)
n (t) = zn(t) (t ∈ An).

It is easy to see that zn = z
(1)
n + z

(2)
n for each n ∈ N, and

ρ
(
z(1)
n

)
=
∫
T\An

Φ
(
|zn(t)|

)
dµ ≤

∫
T\An

Φ
(
ε0

8 max
e

∣∣x0(t) + ezn(t)
∣∣) dµ

≤ ε0

8

∫
T\An

Φ
(
max
e

∣∣x0(t) + ezn(t)
∣∣) dµ

≤ ε0

8
∑
e

ρ(x0 + ezn) ≤ ε0

2|λn|
<

3ε0

4

for n large enough since |λn| → 1 as n→∞. Consequently, we deduce that

ρ
(
z(2)
n

)
>
ε0

4
which shows that µ(An) > 0. Furthermore, we have

1 = ρ(x0) =
∫
An

Φ
(
|x0(t)|

)
dµ+

∫
T\An

Φ
(
|x0(t)|

)
dµ

≤
∫
An

Φ
(

1− 2δ0
4 Σe

∣∣x0(t) + ezn(t)
∣∣) dµ+

∫
T\An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ

≤ (1− 2δ0)
∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ+

∫
T\An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ

=
∫
T

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ− 2δ0

∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ

≤ 1
4 Σe

∫
T

Φ
(∣∣x0(t) + ezn(t)

∣∣) dµ− 2δ0
∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ

≤ 1
|λn|

− 2δ0
∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ.
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Notice that∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ ≥ ∫

An

Φ
(
|zn(t)|

)
dµ = ρ

(
z(2)
n

)
>
ε0

4 .

Hence,

1 = ρ(x0) ≤ 1
|λn|

− 2δ0
∫
An

Φ
(

1
4Σe

∣∣x0(t) + ezn(t)
∣∣) dµ < 1

|λn|
− δ0ε0

2 .

Since |λn| → 1 as n→∞, letting n→∞ we get a contradiction

1 = ρ(x0) < 1
|λn|

− δ0ε0

2 < 1,

which completes the proof.

Combining Corollary 2.4 and Theorem 2.6 we obtain immediately the following result.

Corollary 2.7. Let LΦ,ρ be an Orlicz modular function space. Then LΦ,ρ is complex
strictly convex.

Now we study the problem of existence of fixed points for mean nonexpansive map-
pings in the modular sense in Orlicz modular function spaces. Before we state the fixed
point theorem, we have to introduce the concept of mean nonexpansive mappings in the
modular sense.

Definition 2.8. Let C be a subset of Xρ and let T : C → C be a mapping. We say that
T is a mean nonexpansive mapping in the modular sense provided that

ρ(T (f)− T (g)) ≤ aρ(f − g) + bρ(f − T (g)),

where a, b ≥ 0 and a+ b ≤ 1.

Next, we generalize the results for nonexpansive mappings in the modular sense ([22,
Theorem 3.10]) to mean nonexpansive mappings in the modular sense.

Theorem 2.9. Let C ⊂ LΦ,ρ be a nonempty, ρ-closed, ρ-bounded, convex subset and let
T : C → C be a mean nonexpansive mapping in the modular sense. Then there exists
D ⊂ C, which is nonempty, ρ-closed, convex and T -invariant, such that

δρ(D) ≤ 1
2 δρ(C) + 1

2 Rρ(C).

Proof. If Rρ(C) = δρ(C) then we can takeD = C. Assume therefore that Rρ(C) < δρ(C).
Let

γ = 1
2 δρ(C) + 1

2 Rρ(C).

Since Rρ(C) < γ, there exists f ∈ C such that rρ(f, C) ≤ γ. Define the family

F =
{
E ⊂ C : T (E) ⊂ E, f ∈ E, E is ρ-closed and convex

}
and observe that F 6= ∅ since C ∈ F. Let D =

⋂
E∈FE and notice that D ⊂ C, f ∈ D,

D is also ρ-closed and convex and T (D) ⊂ D. Let us define the ρ-balls for all α > 0 by

Bρ(g, α) =
{
h ∈ LΦ,ρ : ρ(g − h) ≤ α

}
, g ∈ LΦ,ρ.
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Then we observe that every ρ-ball Bρ(g, α) is convex and ρ-closed by Fatou’s lemma. Let
G be a family of all ρ-balls which contain T (D) ∪ {f}. The convex hull of T (D) ∪ {f} is
denoted by conv

(
T (D) ∪ {f}

)
. It is not difficult to see that

conv(T (D) ∪ {f}) =
⋂
B∈G

B ∩D

and the set conv
(
T (D) ∪ {f}

)
is ρ-closed, convex and contains f . We will prove that it

is also T -invariant. Indeed, let F = conv(T (D) ∪ {f}) and notice that F ⊂ D. Then

T (F ) ⊆ T (D) ⊆ F

which implies F = D. Let

Dr = {h ∈ D : rρ(h,D) ≤ r},

then f ∈ Dr since rρ(f, C) ≤ r. Notice that

Dr =
⋂
g∈D

Bρ(g, r) ∩D.

Hence, Dr is convex and ρ-closed. Let us prove that Dr is T -invariant. Take h ∈ Dr, then
h ∈ D. In view of the definition of Dr, we have D ⊂ Bρ(h, r). For any z ∈ T (D) ⊂ D,
there exists g ∈ D such that T (g) = z. Then

ρ(T (h)− z) = ρ(T (h)− T (g)) ≤ aρ(h− g) + bρ(h− T (g))
≤ ar + bρ(h− T (g)) ≤ (a+ b)r ≤ r

which implies T (D) ⊂ Bρ(T (h), r). On the other hand, f belongs to Bρ(T (h), r) since
rρ(f, C) ≤ r and T (h) ∈ D. Thus

D = F ⊂ Bρ(T (h), r),

which implies rρ(T (h), D) ≤ r. Then T (h) ∈ Dr, we obtain T (Dr) ⊆ Dr. Consequently,
Dr ∈ F and by the definition of D, we have D = Dr. Hence, δρ(D) ≤ r which shows that
D is the desired set.

Theorem 2.10. Suppose that LΦ,ρ has property (R) and ρ-normal structure. Let
C ⊂ LΦ,ρ be a nonempty, ρ-closed, ρ-bounded, convex subset and let T : C → C be
a mean nonexpansive mapping in the modular sense. Then the mapping T has a fixed
point in C.

Proof. Let A be a family of all nonempty, ρ-closed, convex and T -invariant subsets of C.
Define δ0 : A→ R+ by the formula

δ0(A) = inf
{
δρ(B) : B ∈ A, B ⊂ A

}
.

Let εn > 0 for each n ∈ N and εn → 0 as n→∞. Then we can find a decreasing sequence
{An} satisfying An ∈ A and δρ(An+1) ≤ δ0(An) + εn. Since LΦ,ρ has property (R), we
have A0 =

⋂
n∈NAn 6= ∅. Clearly, A0 ∈ A. It remains to show that A0 has only one

point. Indeed, by Theorem 2.9, there exists D ∈ A with D ⊂ A0 such that

δρ(D) ≤ 1
2
(
δρ(A0) +Rρ(A0)

)
. (1)
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Since D ⊂ An for each n ∈ N, it follows that δ0(An) ≤ δρ(D). Hence,

δρ(D) ≤ δρ(A0) ≤ δρ(An+1) ≤ δ0(An) + εn ≤ δρ(D) + εn,

which implies that
δρ(D) ≤ δρ(A0) ≤ δρ(D) + εn.

Letting n→∞, we obtain δρ(D) = δρ(A0). By combining with inequality (1), it follows
that

δρ(A0) ≤ Rρ(A0).

Since always δρ(A0) ≥ Rρ(A0), we obtain δρ(A0) = Rρ(A0). Since LΦ,ρ has ρ-normal
structure, we deduce that A0 is reduced to a single point. Since A0 is T -invariant, this
point is a fixed point for T .
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