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Abstract. We prove that bilinear operators associated with Lq multipliers with sufficiently many
derivatives in L∞ are bounded from L2 × L2 to L1 when q < 4. In the absence of Plancherel’s
identity on L1, the range q < 4 in the bilinear case should be compared to q =∞ in the classical
L2 → L2 boundedness for linear multiplier operators.

1. Introduction. Function spaces provide quantitative ways to measure integrability,
smoothness, and to certain extent, cancellation properties of functions. A space of central
importance is L2(Rn) which appears at the crossroads of many echelons of function spaces.
An important feature of L2(Rn) is Plancherel’s identity, which says that the Fourier
transform

f̂(ξ) = lim
N→∞

∫
|x|≤N

f(x)e−2πix·ξ dx (limit in L2)

of a square-integrable function f satisfies∥∥f∥∥
L2 =

∥∥f̂ ∥∥
L2 (1)

(here x · y is the dot product on Rn). This simply identity provides an alternative way
to calculate L2 norms. It also trivializes the characterization of the L2-boundedness of
convolution operators ϕ 7→ ϕ ∗ K, where K is a tempered distribution. Plancherel’s
identity yields that such a convolution operator is bounded on L2(Rn) if and only if the
distributional Fourier transform of K is a bounded function. Convolution operators can
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also be expressed as multiplier operators. A multiplier operator has the form

Sm(ϕ)(x) =
∫
Rn
m(ξ)ϕ̂(ξ)e2πix·ξ dξ,

where m is a bounded function on Rn and is initially defined on Schwartz functions ϕ.
We note that Sm(ϕ) = ϕ ∗K whenever K̂ = m. In view of Plancherel’s identity we have∥∥Sm(f)

∥∥
L2 =

∥∥Ŝm(f)
∥∥
L2 =

∥∥mf̂ ∥∥
L2

and it follows from this that Sm is L2 bounded if and only if m is an L∞ function. More-
over, the norm of Sm from L2 to itself is equal to ‖m‖L∞ . This simple characterization of
the L2 → L2 boundedness of multiplier operators is a direct consequence of Plancherel’s
identity, and for this reason we simply refer to it as Plancherel’s criterion.

In this note we ask whether there exist boundedness criteria for bilinear translation-
invariant operators analogous to Plancherel’s criterion. Bilinear translation-invariant op-
erators have the form

T (f, g)(x) = p.v.
∫
Rn

∫
Rn
K(x− y, x− z)f(y)g(z) dy dz, x ∈ Rn,

where f, g are Schwartz functions and K is a distribution on R2n that coincides with
a suitable function on R2n \ {(0, 0)}. These operators can also be expressed as bilinear
multiplier operators, i.e., operators of the form

Tm(f, g)(x) =
∫
Rn

∫
Rn
m(ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη ,

initially defined for Schwartz functions f, g where m is a bounded function on R2n. Note
that m coincides with the distributional Fourier transform of K. We refer to [4, Section 6]
for general material related to the bilinear translation-invariant operators. These opera-
tors may map the product Lp1(Rn) × Lp2(Rn) to Lp(Rn) when 1/p1 + 1/p2 = 1/p but
in this note, we only focus on the L2 × L2 → L1 boundedness of such operators. Such
estimates are central and play the same role in bilinear theory as the L2 boundedness
plays in linear multiplier theory. As Plancherel’s identity (1) does not hold on L1, there
does not seem to be a straightforward way to characterize the boundedness of bilinear
multiplier operators from L2 × L2 → L1. But for functions m with bounded derivatives
up to a certain order, such a characterization is possible.

As we restrict attention to multipliers all of whose derivatives are bounded, we intro-
duce the space

L∞(R2n) =
{
m : R2n → C : ∂αm exist for all α and ‖∂αm‖L∞ <∞

}
.

In the linear setting we have m ∈ L∞ if and only if the corresponding linear operator
is bounded on L2. So one may guess that a bilinear operator Tm is bounded from L2×L2

to L1 whenm lies in L∞. However Bényi and Torres [1] provided an example of a function
m ∈ L∞ for which the associated bilinear operator Tm is unbounded from Lp1 × Lp2 to
Lp for any 1 ≤ p1, p2 < ∞ satisfying 1/p = 1/p1 + 1/p2. The counterexample of Bényi
and Torres is also complemented by a subsequent positive result of He, Honzík, and the
author [2, Corollary 8], who showed that the mere L2 integrability of functions in L∞
suffices to yield the L2 × L2 → L1 boundedness of Tm.
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It turns out that the magnitude of integrability of a function m in L∞ characterizes
the boundedness of the bilinear multiplier operator Tm from L2 × L2 → L1. We provide
a proof of the main direction of this equivalence, the one that yields the boundedness of
the operator.
Theorem 1.1 ([3]). Let 1 ≤ q < 4 and set Mq =

⌊ 2n
4−q
⌋

+ 1. Let m be a function in
Lq(R2n) ∩ CMq (R2n) satisfying

‖∂αm‖L∞ ≤ C0 <∞ for all multiindices α with |α| ≤Mq. (2)
Then there is a constant C depending on n and q such that the bilinear operator Tm with
multiplier m satisfies

‖Tm‖L2×L2→L1 ≤ C C1−q/4
0 ‖m‖q/4

Lq . (3)
Additionally, we are aware of examples indicating that for any q ≥ 4 there exist

functions m ∈ Lq(R2n) ∩ L∞(R2n) such that the associated operator Tm does not map
L2 × L2 to L1; see [3] for q > 4 and [5] for q = 4. These counterexamples complement
Theorem 1.1 and indicate its sharpness; as this note is based on the lecture of the author
at the Function Spaces XII conference, we do not describe these counterexamples here.

2. Product-type wavelets. We plan to outline the proof of Theorem 1.1. This is based
on the product-type wavelet method initiated by He, Honzík and the author in [2]. Our
approach here incorporates several crucial combinatorial improvements. For the sake of
a simple and clear presentation, we prove Theorem 1.1 only in the case where n = 1.

We recall some facts related to product-type wavelets that will be crucial in our ap-
proach of proving Theorem 1.1. For a fixed M ∈ N there exist real-valued compactly
supported functions ψF , ψM in Ck(R), called father wavelet and mother wavelet, respec-
tively, that satisfy

‖ψF ‖L2(R) = ‖ψM‖L2(R) = 1
and ∫

R
xkψM (x) dx = 0 for all 0 ≤ k ≤M .

Then the family of functions⋃
µ1,µ2∈Z

{
ψF (x1 − µ1)ψF (x2 − µ2)

}
∪

⋃
µ1,µ2∈Z

∞⋃
λ=0

{
2λ/2ψF (2λx1 − µ1)2λ/2ψM (2λx2 − µ2)

}
∪

⋃
µ1,µ2∈Z

∞⋃
λ=0

{
2λ/2ψM (2λx1 − µ1)2λ/2ψF (2λx2 − µ2)

}
∪

⋃
µ1,µ2∈Z

∞⋃
λ=0

{
2λ/2ψM (2λx1 − µ1)2λ/2ψM (2λx2 − µ2)

}
forms an orthonormal basis of L2(R2). This result is due to Triebel1 and its proof can be
found in Triebel [6].

1as confirmed by him during the Function Spaces XII conference.
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We denote by J the set of all pairs (λ,G) such that either λ = 0 and G = (F, F ), or λ
is a nonnegative integer and G has the form (F,M), (M,F ), or (M,M). For (λ,G) ∈ J
and (µ1, µ2) ∈ Z2 we set

Ψλ,G
µ1,µ2

(x1, x2) = 2λ/2ψG1(2λx1 − µ1)2λ/2ψG2(2λx2 − µ2).
for (x1, x2) ∈ R2, where G = (G1, G2) and (λ,G) ∈ J .

The cancellation of wavelets is manifested in the following result.
Lemma 2.1. Let M be a positive integer. Assume that m ∈ CM+1 is a function on R2

such that
sup

|α|≤M+1
‖∂αm‖L∞ ≤ C0 <∞ .

Then for (λ,G) ∈ J and (µ1, µ2) ∈ Z2 we have
|〈Ψλ,G

µ1,µ2
,m〉| ≤ CC02−(M+2)λ , (4)

provided that ψM has M vanishing moments.
This lemma can be easily proved and is essentially a restatement of Lemma 7 in [2].

Note that if G = (F, F ) there is no cancellation, however, there is no decay claimed in (4),
as λ = 0 in this case.

3. Proof of Theorem 1.1. To prove the theorem we use the product type wavelets
introduced in the previous section. We begin by fixing a large numberM to be determined
later, which denotes the number of vanishing moments of the mother wavelet.

For (λ,G) ∈ J and µ ∈ Z2 we denote the wavelet coefficient by
bλ,Gµ = 〈Ψλ,G

µ ,m〉.
By [7, Theorem 1.64] and by the fact that Lq = F 0

q,2, we obtain

‖m‖Lq(R2) ≈
∥∥∥( ∑

(λ,G)∈J

∑
µ∈Z2

|bλ,Gµ 2λχQλµ |2
)1/2∥∥∥

Lq(R2)
, (5)

where Qλµ is the cube centered at 2−λµ with sidelength 21−λ.
Now, let us fix (λ,G) ∈ J . For notational simplicity, we write bµ instead of bλ,Gµ in

what follows. We also denote by Q̃λµ the cube centered at 2−λµ with sidelength 2−λ.
Since these cubes are pairwise disjoint in µ (for the fixed value of λ), the equivalence (5)
yields

‖m‖Lq(R2) & 2λ
∥∥∥( ∑

µ∈Z2

|bµ|2χQλµ
)1/2∥∥∥

Lq(R2)
≥ 2λ

∥∥∥(∑
µ∈Z2

|bµ|2χQ̃λµ
)1/2∥∥∥

Lq(R2)

= 2λ
∥∥∥∑
µ∈Z2

|bµ|χQ̃λµ
∥∥∥
Lq(R2)

= 2λ(1−2/q)
(∑
µ∈Z2

|bµ|q
)1/q

.

If we set b = (bµ)µ∈Z2 , the preceding sequence of inequalities yields
‖b‖`q ≤ C2−λ(1−2/q)‖m‖Lq (6)

Also, Lemma 2.1 implies that
‖b‖`∞ ≤ CC02−λ(M+2), (7)

where M is the number of vanishing moments of ψM .
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We have an infinite × infinite matrix of wavelet coefficients indexed by Z2. To better
organize these coefficients, define

Ur =
{

(k, l) ∈ Z× Z = Z2 : 2−r−1‖b‖`∞ < |b(k,l)| ≤ 2−r‖b‖`∞
}
,

where r is a nonnegative integer. Also, we write Ur as a union of the following two disjoint
sets:

U1
r =

{
(k, l) ∈ Ur : card{s : (k, s) ∈ Ur} ≥ K

}
;

U2
r =

{
(k, l) ∈ Ur : card{s : (k, s) ∈ Ur} < K},

where K is a positive number to be determined. Thinking of Ur an infinite × infinite
matrix with integers entries, in this splitting, we placed in U1

r all columns of Ur that
have size greater than or equal to K and in U2

r the remaining ones. We call U1
r the long

columns of Ur and U1
r the short columns. Let us define
E = {k ∈ Z : (k, l) ∈ U1

r for some l ∈ Z}.
This set is exactly the set of projections of all long columns. Then

(cardE)K
[
2−(r+1)‖b‖`∞

]q ≤ ∑
(k,l)∈U1

r

|b(k,l)|q ≤ ‖b‖q`q ,

and therefore
cardE ≤ K−1[2−(r+1)‖b‖`∞

]−q‖b‖q`q . (8)

Having separated the wavelet coefficients in groups we proceed with the analysis of
the sums of the decomposition associated to these groups. Given (k, l) ∈ Z×Z, it follows
from the definition of Ψλ,G

(k,l) that Ψλ,G
(k,l) can be written in the tensor product form

Ψλ,G
(k,l)(x1, x2) = ω1,k(x1)ω2,l(x2)

and
‖ω1,k‖L∞ ≈ ‖ω2,l‖L∞ = 2λ/2.

Define
mr,1 =

∑
(k,l)∈U1

r

b(k,l)Ψλ,G
(k,l) =

∑
(k,l)∈U1

r

b(k,l)ω1,kω2,l.

Let F−1 denote the inverse Fourier transform. Then∥∥Tmr,1(f, g)
∥∥
L1 ≤

∥∥∥ ∑
(k,l)∈U1

r

b(k,l)F−1(ω1,kf̂ )F−1(ω2,lĝ )
∥∥∥
L1

≤
∑
k∈E

∥∥ω1,kf̂
∥∥
L2

∥∥∥ ∑
l:(k,l)∈U1

r

b(k,l)ω2,lĝ
∥∥∥
L2

≤ C
∑
k∈E

∥∥ω1,kf̂
∥∥
L22λ/22−r‖b‖`∞‖g‖L2

≤ C
(∑
k∈E

1
)1/2(∑

k∈E

∥∥ω1,kf̂
∥∥2
L2

)1/2
2λ/22−r‖b‖`∞‖g‖L2

≤ C
{
K−1/2[2−(r+1)‖b‖`∞

]−q/2‖b‖q/2
`q

}{
2λ/22−r‖b‖`∞

}
2λ/2‖f‖L2‖g‖L2 ,

where we used estimate (8) and the property that the supports of the functions ω1,k and
ω2,l have finite overlap.
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Now define
mr,2 =

∑
(k,l)∈U2

r

b(k,l)ω1,kω2,l.

Then

‖Tmr,2(f, g)‖L1 ≤
∥∥∥ ∑

(k,l)∈U2
r

b(k,l)F−1(ω1,kf̂ )F−1(ω2,lĝ )
∥∥∥
L1

≤
∑

l: ∃k (k,l)∈U2
r

∥∥ω2,lĝ
∥∥
L2

∥∥∥ ∑
k:(k,l)∈U2

r

b(k,l)ω1,kf̂
∥∥∥
L2

≤
(∑
l∈Z

∥∥ω2,lĝ
∥∥2
L2

)1/2( ∑
l: ∃k (k,l)∈U2

r

∥∥∥ ∑
k:(k,l)∈U2

r

b(k,l)ω1,kf̂
∥∥∥2

L2

)1/2

≤ C 2λ/2‖g‖L2

( ∑
k: ∃l (k,l)∈U2

r

∥∥ω1,kf̂
∥∥2
L2

∑
l:(k,l)∈U2

r

|b(k,l)|2
)1/2

≤ C 2λ/2‖g‖L22−r‖b‖`∞K1/2
(∑
k∈Z

∥∥ω1,kf̂
∥∥2
L2

)1/2

≤ C 2λ/22−r‖b‖`∞K1/22λ/2‖f‖L2‖g‖L2 .

We have now obtained the estimates for an unknown quantity K:

‖Tσr1 (f, g)‖L1 ≤ CK−1/2[2−(r+1)‖b‖`∞
]−q/2‖b‖q/2

`q 2λ2−r‖b‖`∞‖f‖L2‖g‖L2

‖Tσr2 (f, g)‖L1 ≤ C2λ2−r‖b‖`∞K1/2‖f‖L2‖g‖L2 .

We choose K optimally so that the two quantities on the right above are equal. The
optimal choice of K is

K =
(

2r‖b‖`q
‖b‖`∞

)q/2

which yields for
mr =

∑
(k,l)∈Ur

b(k,l)ω1,kω2,l = mr,1 +mr,2

the estimate
‖Tmr‖L2×L2→L1 ≤ C 2λ 2−r(1−q/4)‖b‖1−q/4

`∞ ‖b‖q/4
`q .

Using (6) and (7) we obtain

‖Tmr‖L2×L2→L1 ≤ CC1−q/4
0 2λ−λ(1−q/4)(M+2)+(2/q−1)λq/42−r(1−q/4)‖m‖q/4

Lq .

But
2λ−λ(1−q/4)(M+2)+(2/q−1)λq/4 = 2λ[1/2−((4−q)/4)(M+1)]

and the exponent is negative only when M + 1 > 2
4−q . Thus, if we choose M = b 2

4−q c, we
can sum first over r and then over (λ,G) in J , obtaining (3). This completes the proof
of Theorem 1.1.
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