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Abstract. We study the compact embedding between smoothness Morrey spaces on bounded
domains and characterise its entropy numbers and approximation numbers in some cases.

1. Introduction. Let Ω ⊂ Rd be a bounded C∞ domain. The main purpose of this
short paper is to study the compactness of the embeddings

idN : N s1
u1,p1,q1

(Ω)→ N s2
u2,p2,q2

(Ω) and idE : Es1
u1,p1,q1

(Ω)→ Es2
u2,p2,q2

(Ω), (1)

where N s
u,p,q(Ω) and Esu,p,q(Ω) are Morrey smoothness spaces, with si ∈ R, 0 < pi ≤

ui <∞, 0 < qi ≤ ∞, i = 1, 2. Such spaces have been studied intensely in the past
couple of years opening a wide field of possible applications. The Besov–Morrey spaces
N s
u,p,q(Rd) were introduced in [15] by Kozono and Yamazaki and used by them and Maz-

zucato [16] to study Navier–Stokes equations. Corresponding Triebel–Lizorkin–Morrey
spaces Esu,p,q(Rd) were introduced in [29] by Tang and Xu, where the authors established
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the Morrey version of Fefferman–Stein vector-valued inequality. Properties of these spaces
such as wavelet characterisations were studied in the papers by Sawano [22, 23], Sawano
and Tanaka [25, 26], and Rosenthal [21]. Furthermore, the series [10, 11, 12] deals with
some limiting embedding properties.

Other important, closely related scales of spaces are the so-called Besov-type spaces
Bs,τp,q (Rd) and Triebel–Lizorkin-type spaces F s,τp,q (Rd), introduced in [37], as well as the
local and hybrid spaces dealt with in [33] and [34]. Both subjects are meanwhile studied
in great detail, with interesting applications. But this will be out of the scope of this
short note. We refer to the above monographs as well as to the fine surveys by Sickel
[27, 28] and the recent papers [35, 36].

In [10, 12] we characterised the continuity of the embeddings

id : N s1
u1,p1,q1

(Rd)→ N s2
u2,p2,q2

(Rd) and id : Es1
u1,p1,q1

(Rd)→ Es2
u2,p2,q2

(Rd),

where si ∈ R, 0 < pi ≤ ui <∞, 0 < qi ≤ ∞, i = 1, 2. But these embeddings can never be
compact. However, turning to spaces on bounded domains, we obtained in [11] and [12]
necessary and sufficient conditions for the corresponding embeddings (1) to be compact:
this is the case if and only if

s1 − s2

d
> max

{
0, 1
u1
− 1
u2
,
p1

u1

(
1
p1
− 1
p2

)}
. (2)

Recall that in case of pi = ui, i = 1, 2, we return to the classical situation of Besov and
Triebel–Lizorkin spaces, since Bsp,q = N s

p,p,q and F sp,q = Esp,p,q. Then the above findings (2)
are in perfect agreement with that well-known situation where

idB : Bs1
p1,q1

(Ω)→ Bs2
p2,q2

(Ω) compact ⇐⇒ s1 − s2

d
> max

{
0, 1
p1
− 1
p2

}
, (3)

similarly for idF : F s1
p1,q1

(Ω) → F s2
p2,q2

(Ω). However, a lot more about the compactness
of these embeddings is known in the ‘classical’ situation. The ‘degree of compactness’ as
reflected by the asymptotic behaviour of the corresponding entropy and approximation
numbers, is well-known; for the definition of entropy and approximation numbers as well
as further applications of these concepts we refer to Section 2.3 below. The result for
entropy numbers obtained in [5, 6] reads as

ek
(
idB : Bs1

p1,q1
(Ω)→ Bs2

p2,q2
(Ω)
)
∼ k−(s1−s2)/d, k ∈ N, (4)

where we always assume (3) to hold. The corresponding results for F -spaces and in case
of approximation numbers can be found in Section 2.3 below.

However, as far as we know, there are almost no results for entropy and approximation
numbers of the compact embeddings (1). We contributed a little to this subject in [35],
in the recent paper [1] one can find approximation number results for the periodic case
with the target space L∞. Apart from this we are not aware of any such outcome.

It is the purpose of this short note to obtain some first result for the corresponding
entropy numbers of the compact embeddings in (1), though we cannot cover all possible
cases with our method here. We want to demonstrate that at least for sufficiently large
smoothness differences the classical asymptotic behaviour of the entropy numbers in (4)



COMPACT EMBEDDINGS IN SMOOTHNESS MORREY SPACES 183

will survive the Morreyfication of the underlying spaces. More precisely, we can prove in
Theorem 3.1 that under the additional assumption s1 − s2 > dmax{0, 1

p1
− 1

u2
},

ek
(
idN : N s1

u1,p1,q1
(Ω)→ N s2

u2,p2,q2
(Ω)
)
∼ k−(s1−s2)/d, k ∈ N. (5)

However, we do not claim that this classical behaviour will be true in all cases given
by (2), but this discussion is out of the scope of the present note. But to prove the
above result (and counterparts for Esu,p,q spaces and approximation numbers) we benefit
from well-known methods like embeddings, interpolation and their interplay with entropy
numbers. Their strength in this situation is demonstrated. Moreover, in case of entropy
numbers this seem to be the first sharp results at all.

The paper is organised as follows. In Section 2 we briefly introduce the corresponding
function spaces and the concepts of entropy and approximation numbers, while Section 3
contains our new results and their proofs.

2. Preliminaries. First we fix some notation. By N we denote the set of natural num-
bers, by N0 the set N ∪ {0}. For a ∈ R, let a+ := max{a, 0}.

All unimportant positive constants will be denoted by C, occasionally with subscripts.
By the notation A . B, we mean that there exists a positive constant C such that
A ≤ CB, whereas the symbol A ∼ B stands for A . B . A.

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X into Y is continuous.

2.1. Smoothness Morrey spaces on Rd. Let S(Rd) be the set of all Schwartz func-
tions on Rd, endowed with the usual topology, and denote by S ′(Rd) its topological dual,
namely, the space of all bounded linear functionals on S(Rd) endowed with the weak
∗-topology. For all f ∈ S(Rd) or S ′(Rd), we use f̂ to denote its Fourier transform, and
f∨ for its inverse.

Let ϕ0, ϕ ∈ S(Rd) be such that

supp ϕ̂0 ⊂ {ξ ∈ Rd : |ξ| ≤ 2} , |ϕ̂0(ξ)| ≥ C if |ξ| ≤ 5/3 (6)

and

supp ϕ̂ ⊂ {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ C if 3/5 ≤ |ξ| ≤ 5/3, (7)

where C is a positive constant. In what follows, for all ϕ ∈ S(Rd) and j ∈ N, ϕj(·) :=
2jdϕ(2j ·).

We introduce smoothness spaces of Morrey type. Recall first that the Morrey space
Mu,p(Rd), 0 < p ≤ u < ∞, is defined to be the set of all locally p-integrable functions
f ∈ Lloc

p (Rd) such that

‖f |Mu,p(Rd)‖ := sup
x∈Rd,R>0

Rd/u−d/p
[∫
B(x,R)

|f(y)|p dy
]1/p

<∞.

Remark 2.1. The spacesMu,p(Rd) are quasi-Banach spaces (Banach spaces for p ≥ 1).
They originated from Morrey’s study on PDE (see [17]) and are part of the wider class
of Morrey–Campanato spaces; cf. [18]. They can be considered as a complement to Lp
spaces, since Mp,p(Rd) = Lp(Rd) with p ∈ (0,∞), extended by M∞,∞(Rd) = L∞(Rd).
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In a parallel way one can define the spacesM∞,p(Rd), p ∈ (0,∞), but using the Lebesgue
differentiation theorem, one arrives atM∞,p(Rd) = L∞(Rd). Moreover,Mu,p(Rd) = {0}
for u < p, and for 0 < p2 ≤ p1 ≤ u <∞,

Lu(Rd) =Mu,u(Rd) ↪→Mu,p1(Rd) ↪→Mu,p2(Rd).

Now we present the smoothness spaces of Morrey type in which we are interested.

Definition 2.2. Let 0 < p ≤ u < ∞ or p = u = ∞. Let q ∈ (0,∞], s ∈ R and ϕ0,
ϕ ∈ S(Rd) be as in (6) and (7), respectively.

(i) The Besov–Morrey space N s
u,p,q(Rd) is defined to be the set of all distributions

f ∈ S ′(Rd) such that∥∥f | N s
u,p,q(Rd)

∥∥ :=
[ ∞∑
j=0

2jsq
∥∥ϕj ∗ f |Mu,p(Rd)

∥∥q]1/q <∞
with the usual modification made in case of q =∞.

(ii) Let u ∈ (0,∞). The Triebel–Lizorkin–Morrey space Esu,p,q(Rd) is defined to be the
set of all distributions f ∈ S ′(Rd) such that∥∥f | Esu,p,q(Rd)∥∥ :=

∥∥∥∥[ ∞∑
j=0

2jsq|ϕj ∗ f |q
]1/q
|Mu,p(Rd)

∥∥∥∥ <∞
with the usual modification made in case of q =∞.

Remark 2.3. In addition to our historical remarks in the introduction, we would like
to refer to the most systematic and general approach to spaces of this type: it can be
found in the book [37] or in the survey papers by Sickel [27, 28]. We recommend the
monograph and the surveys for further references on this subject. Mazzucato has shown
in [16, Prop. 4.1] that

E0
u,p,2(Rd) =Mu,p(Rd), 1 < p ≤ u <∞. (8)

Convention. We adopt the nowadays usual custom to write Asp,q instead of Bsp,q or
F sp,q, and Asu,p,q instead of N s

u,p,q or Esu,p,q, respectively, when both scales of spaces are
meant simultaneously in some context.

Remark 2.4. The spaces Asu,p,q(Rd) are independent of the particular choices of ϕ0, ϕ
appearing in their definitions. They are quasi-Banach spaces (Banach spaces for p, q ≥ 1),
and S(Rd) ↪→ Asu,p,q(Rd) ↪→ S ′(Rd). Moreover, for u = p we re-obtain the usual Besov
and Triebel–Lizorkin spaces, Asp,p,q(Rd) = Asp,q(Rd). There exists extensive literature
on such spaces; we refer, in particular, to the series of monographs [30, 31, 32] for a
comprehensive treatment. In case of u < p we have Asu,p,q(Rd) = {0}. We occasionally
benefit from the elementary embeddings

Bsp,min{p,q}(Rd) ↪→ F sp,q(Rd) ↪→ Bsp,max{p,q}(Rd), (9)
where p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. The result for spaces Asu,p,q is different: Sawano
proved in [22] that, for s ∈ R and 0 < p < u <∞,

N s
u,p,min{p,q}(Rd) ↪→ Esu,p,q(Rd) ↪→ N s

u,p,∞(Rd), (10)
where, for the latter embedding, r =∞ cannot be improved.
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2.2. Function spaces on domains. Unless otherwise stated, we shall assume that
Ω is a bounded C∞ domain in Rd. We consider smoothness Morrey spaces on Ω defined
by restriction. Let D(Ω) be the set of all infinitely differentiable functions supported
in Ω and denote by D′(Ω) its dual. Since we are able to define the extension operator
ext : D(Ω) → S(Rd), the restriction operator re : S ′(Rd) → D′(Ω) can be defined
naturally as an adjoint operator

〈re(f), ϕ〉 = 〈f, ext(ϕ)〉, f ∈ S ′(Rd),

where ϕ ∈ D(Ω). We will write f |Ω = re(f).

Definition 2.5. Let 0 < p ≤ u < ∞ or p = u = ∞, q ∈ (0,∞] and s ∈ R (with u < ∞
in the case of A = E). Then Asu,p,q(Ω) is defined by

Asu,p,q(Ω) :=
{
f ∈ D′(Ω) : f = g|Ω for some g ∈ Asu,p,q(Rd)

}
endowed with the quasi-norm∥∥f | Asu,p,q(Ω)

∥∥ := inf
{
‖g | Asu,p,q(Rd)‖ : f = g|Ω, g ∈ Asu,p,q(Rd)

}
.

Remark 2.6. The spaces Asu,p,q(Ω) are quasi-Banach spaces (Banach spaces for p, q ≥ 1).
When u = p we re-obtain the usual Besov and Triebel–Lizorkin spaces defined on bounded
smooth domains. Several properties of the spaces Asu,p,q(Ω), including the extension prop-
erty, were studied in [24]. Embeddings within spaces in this latter scale as well as to
classical spaces like C(Ω) or Lr(Ω) were investigated in [11, 12]. In [9] we studied the
question under what assumptions these spaces consist of regular distributions only.

In case of the target space L∞(Ω) we obtained in [11, 12] the following result.

Proposition 2.7. Let s ∈ R, 0 < p < u <∞ and q ∈ (0,∞]. Then

Asu,p,q(Ω) ↪→ L∞(Ω) is compact if and only if s >
d

u
.

The next theorem regards real interpolation of Besov–Morrey spaces on Ω. It can be
proved similarly to the proof of [32, Thm. 1.110], relying on the corresponding assertions
with Ω replaced by Rd that can be found in [28, Thm. 2.2, Prop. 2.3], and on the existence
of a common extension operator, cf. [24, Thm. 5.4].

Theorem 2.8. Let u, q, q0, q1 ∈ (0,∞] and θ ∈ (0, 1).

(i) Let 0 < p ≤ u <∞ and s0, s1 ∈ R with s0 6= s1. Then

N s
u,p,q(Ω) =

(
N s0
u,p,q0

(Ω),N s1
u,p,q1

(Ω)
)
θ,q

if s = (1− θ)s0 + θs1.

(ii) Let 1 ≤ p ≤ u <∞ and s ∈ R. Then

N s
u,p,q(Ω) =

(
N s
u,p,q0

(Ω),N s
u,p,q1

(Ω)
)
θ,q

if 1
q

= 1− θ
q0

+ θ

q1
.

Let us finally state our compactness result as obtained in [11] (for A = N ) and [12]
(for A = E).



186 D. D. HAROSKE AND L. SKRZYPCZAK

Theorem 2.9. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < p1 ≤ u1 < ∞, 0 < p2 ≤ u2 < ∞.
Then the embedding

idA : As1
u1,p1,q1

(Ω) ↪→ As2
u2,p2,q2

(Ω) (11)
is compact if and only if

s1 − s2

d
> max

{
0, 1
u1
− 1
u2
,
p1

u1

(
1
p1
− 1
p2

)}
.

2.3. Entropy and approximation numbers. Let A1 and A2 be two complex (quasi-)
Banach spaces and let T be a linear and continuous operator from A1 into A2. If T is
compact, then for any given ε > 0 there are finitely many balls in A2 of radius ε which
cover the image TU1 of the unit ball U1 = {a ∈ A1 : ‖a |A1‖ ≤ 1}.
Definition 2.10. Let A1 and A2 be two complex (quasi-) Banach spaces, k ∈ N and let
T : A1 → A2 be a linear and continuous operator from A1 into A2.
(i) The k th entropy number ek of T is the infimum of all numbers ε > 0 such that there

exist 2k−1 balls in A2 of radius ε which cover TU1.
(ii) The k th approximation number ak of T is the infimum of all numbers ‖T −S‖ where

S runs through the collection of all continuous linear maps from A1 to A2 with
rankS < k,

ak(T ) = inf
{
‖T − S‖ : S ∈ L(A1, A2), rankS < k

}
.

For details and properties of approximation numbers we refer to [3, 4, 14, 20] (re-
stricted to the case of Banach spaces), and [7] for some extensions to quasi-Banach spaces.
Among other features we only want to mention the multiplicativity of entropy numbers
and approximation numbers: let A1, A2 and A3 be complex (quasi-) Banach spaces and
T1 : A1 → A2, T2 : A2 → A3 two operators in the sense of Definition 2.10. Then

ek1+k2−1(T2 ◦ T1) ≤ ek1(T1) ek2(T2), k1, k2 ∈ N, (12)
and ak1+k2−1(T2 ◦ T1) ≤ ak1(T1) ak2(T2), k1, k2 ∈ N. (13)

Note that in general limk→∞ ek(T ) = 0 if and only if T is compact. The last equiva-
lence justifies the saying that entropy numbers measure “how compact” an operator acts.
Dealing with approximation numbers there is no complete counterpart in general; in par-
ticular, one only observes that limn→∞ an(T ) = 0 implies that T is compact. It is known
that it may happen that limn→∞ an(T ) = α(T ) > 0 for some compact T ∈ L(A,B) when
B fails to have the approximation property, see [4] and [19, Prop. 10.1.3, 10.1.4]. Many
spaces possess that property, but there exist spaces without it, cf. [8], [19, Thm. 10.4.7].

Moreover, approximation numbers—unlike entropy numbers—can be regarded as spe-
cial s-numbers, a concept introduced by Pietsch [19, Sect. 11].

Finally we recall the following property of entropy numbers proved in [13, Theo-
rem 3.2] and [7, Theorem 1.3.2]. Let A be a quasi-Banach space and let {B0, B1} be an
interpolation couple of quasi-Banach spaces. Let 0 < θ < 1 and let Bθ be a quasi-Banach
space such that

B0 ∩B1 ↪→ Bθ ↪→ B0 +B1 (naturally quasi-normed)
and

‖b |Bθ‖ ≤ ‖b |B0‖1−θ ‖b |B1‖θ for all b ∈ B0 ∩B1. (14)
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Let T ∈ L(A,B0 ∩B1). Then there is a number c > 0 such that for all k ∈ N,

e2k(T : A ↪→ Bθ) ≤ ce1−θ
k (T : A ↪→ B0) eθk(T : A ↪→ B1). (15)

Remark 2.11. We recall what is well-known in case of the embedding

idA : As1
p1,q1

(Ω)→ As2
p2,q2

(Ω),

where −∞ < s2 ≤ s1 < ∞, 0 < p1, p2 ≤ ∞ (p1, p2 < ∞ in the F -case), 0 < q1, q2 ≤ ∞,
and the spaces Asp,q(Ω) are defined by restriction. Let

δ = s1 − s2 − d
(

1
p1
− 1
p2

)
, δ+ = s1 − s2 − d

(
1
p1
− 1
p2

)
+
. (16)

Then idA is compact when δ+ > 0; cf. [7, (2.5.1/10)]. The extension to values p2 < p1—
compared with the Rd-setting—is due to Hölder’s inequality. In this situation Edmunds
and Triebel proved in [5, 6] (see also [7, Thm. 3.3.3/2]) that

ek(idA) ∼ k−(s1−s2)/d, k ∈ N, (17)

where s1 ≥ s2, 0 < p1, p2 ≤ ∞ (p1, p2 < ∞ in the F -case), 0 < q1, q2 ≤ ∞, and δ+ > 0.
In the case of approximation numbers the situation is more complicated; the result of
Edmunds and Triebel in [7, Thm. 3.3.4], partly improved by Caetano [2], reads as

ak(idA) ∼ k−δ+/d−κ , k ∈ N, (18)

with
κ =

(
min(p′1, p2)

2 − 1
)

+
·min

(
δ

d
,

1
min(p′1, p2)

)
, (19)

and δ is given by (16). The above asymptotic result is almost complete now, apart from
the restrictions that (p1, p2) 6= (1,∞) or δ

d 6=
1

min(p′
1,p2) when 0 < p1 < 2 < p2 ≤ ∞. Note

that κ = 0 unless p1 < 2 < p2, and δ ≥ δ+ with δ = δ+ if p1 ≤ p2.

3. The main results. We first want to estimate the entropy numbers of the compact
embedding (11) in case of sufficiently ‘large’ difference of smoothness, and give some
application to approximation numbers afterwards.

3.1. Entropy numbers

Theorem 3.1. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < p1 ≤ u1 < ∞, 0 < p2 ≤ u2 < ∞,
with

s1 − s2

d
> max

{
0, 1
u1
− 1
u2
,
p1

u1

(
1
p1
− 1
p2

)}
. (20)

(i) Assume, in addition, that
s1 − s2

d
> max

{
0, 1
p1
− 1
u2

}
. (21)

Then
ek
(
idA : As1

u1,p1,q1
(Ω) ↪→ As2

u2,p2,q2
(Ω)
)
∼ k−(s1−s2)/d, k ∈ N. (22)

(ii) If u1 ≥ u2, p1 ≥ p2 and s1 − s2 > 0, then (22) is always true.
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Proof. Step 1. In view of the elementary embeddings (10), the independence of (21)
and (22) from the fine parameters q1, q2, and the multiplicativity of entropy numbers (12),
it is sufficient to prove the above result for spaces Asu,p,q = N s

u,p,q.
Step 2. Next we benefit from the classical result (17) and use the following chain of

embeddings,

Bs1
u1,q1

(Ω) ↪→ N s1
u1,p1,q1

(Ω) ↪→ Bs1
p1,q1

(Ω) ↪→ Bs2
u2,q2

(Ω) ↪→ N s2
u2,p2,q2

(Ω) ↪→ Bs2
p2,q2

(Ω). (23)

We consider the embeddings

idout
B : Bs1

u1,q1
(Ω) ↪→ Bs2

p2,q2
(Ω), (24)

idint
B : Bs1

p1,q1
(Ω) ↪→ Bs2

u2,q2
(Ω), (25)

and conclude from Remark 2.11 that idout
B is compact if and only if s1−s2 > d( 1

u1
− 1
p2

)+
with

ek
(
idout
B

)
∼ k−(s1−s2)/d, k ∈ N, (26)

and idint
B is compact if and only if s1 − s2 > d( 1

p1
− 1

u2
)+ with

ek
(
idint
B

)
∼ k−(s1−s2)/d, k ∈ N. (27)

In particular, the compactness of idint
B implies the compactness of idN which implies the

compactness of idout
B . The multiplicativity of entropy numbers (12) yields

ek
(
idout
B

)
≤ cek

(
idN

)
≤ c′ek

(
idint
B

)
. (28)

Hence, if s1 − s2 > d( 1
p1
− 1

u2
)+ ≥ d( 1

u1
− 1

p2
)+, then

ek
(
idN

)
∼ k−(s1−s2)/d. (29)

This completes the proof of (i). Note that the lower estimate

ek
(
idN

)
≥ ck−(s1−s2)/d (30)

is always true in the compact case of Theorem 2.9, due to (28) and (26).
Step 3. It remains to show (ii). In view of (30) only the upper estimate has to be

considered. So far open is the case when

max
{

0, 1
u1
− 1
u2
,
p1

u1

(
1
p1
− 1
p2

)}
<
s1 − s2

d
≤
(

1
p1
− 1
u2

)
+
, (31)

where we have a compact embedding according to Theorem 2.9. It can only appear when
u1 < u2, p1 < p2. Using interpolation arguments, that is, Theorem 2.8 together with the
interpolation property of entropy numbers (15), we may extend (29) to all cases of (20)
where

u1 ≥ u2, p1 ≥ p2, s1 > s2.

Assume u1 ≥ u2, p1 ≥ p2 and d( 1
p1
− 1

u2
)+ ≥ s1 − s2 > 0, hence idN is compact, but the

situation is not covered by (i). Note that

id1
N : N s1

u1,p1,q1
(Ω)→ N s1

u2,p2,v1
(Ω)

is continuous for v1 ≥ q1, hence ek
(
id1
N
)
≤ c, k ∈ N. Now choose σ such that

σ < s1 − d
(

1
p1
− 1
u2

)
≤ s2, hence s1 − σ > d

(
1
p1
− 1
u2

)
+
.
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Then (i) implies that

ek
(
id2
N : N s1

u1,p1,q1
(Ω)→ N σ

u2,p2,v2
(Ω)
)
≤ ck−(s1−σ)/d.

On the other hand, Theorem 2.8 yields

N s2
u2,p2,q2

(Ω) =
(
N s1
u2,p2,v1

(Ω),N σ
u2,p2,v2

(Ω)
)
θ,q2

if s2 = (1− θ)s1 + θσ,

that is, θ(s1 − σ) = s1 − s2. But now the interpolation property (15) leads to

ek
(
idN

)
≤ cek

(
id1
N
)1−θ

ek
(
id2
N
)θ ≤ c′k−(s1−σ)/dθ = c′k−(s1−s2)/d.

This completes the proof.

Remark 3.2. Note that apart from case (ii) there always remains a gap between the
situation covered by (i) and the precise condition (20), recall (31). Whenever p1 < p2, or
p1 ≥ p2 with u1 < u2, the right-hand side in (31) is in general larger than the left-hand
side. This means that the only extension of (i) we can cover by our method is described
in (ii).

Now we can strengthen Proposition 2.7 for sufficiently large s as follows.

Corollary 3.3. Let s ∈ R, 0 < q ≤ ∞, 0 < p ≤ u <∞, with s > d
p . Then

ek
(
idA : Asu,p,q(Ω)→ L∞(Ω)

)
∼ k−s/d, k ∈ N. (32)

Proof. We apply Theorem 3.1(i) with s2 = 0, u2 = p2 =∞ and elementary embeddings.

3.2. Approximation numbers. By a similar line of arguments as above we can prove
the following corollary. The second part of it was obtained in [35].

Corollary 3.4.

(i) Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ui <∞, i = 1, 2, with

s1 > s2 and p1 ≥ u2. (33)

Then
ak
(
idA : As1

u1,p1,q1
(Ω) ↪→ As2

u2,p2,q2
(Ω)
)
∼ k−(s1−s2)/d, k ∈ N. (34)

(ii) Let u ≥ 2, 0 < p ≤ u, and d
u < s < d

u + 1. Then

ak
(
idA : Asu,p,q(Ω)→ L∞(Ω)

)
∼ k−s/d+1/u, k ∈ N. (35)

Proof. First we apply the same arguments as above in Steps 1 and 2 of the proof of
Theorem 3.1 using again the embeddings (23) and the multiplicativity of approximation
numbers (13). This leads to

ak
(
idout
B

)
≤ cak

(
idN

)
≤ c′ak

(
idint
B

)
. (36)

Now assume s1 > s2, u2 ≤ p1, then p2 ≤ u1 and

ak
(
idout
B

)
∼ ak

(
idint
B

)
∼ k−(s1−s2)/d, (37)

which leads to
ak
(
idN

)
∼ ek

(
idN

)
∼ k−(s1−s2)/d (38)

if s1 > s2 and u2 ≤ p1.
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Remark 3.5. In [1, Sect. 6] one can find similar results for the periodic case and more
general Morrey type spaces.
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