FUNCTION SPACES XII BANACH CENTER PUBLICATIONS, VOLUME 119 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2019

THE APPROXIMATION PROPERTY FOR WEIGHTED SPACES OF DIFFERENTIABLE FUNCTIONS

KARSTEN KRUSE

Institute of Mathematics, Hamburg University of Technology Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany E-mail: karsten.kruse@tuhh.de

Abstract. We study spaces $\mathcal{CV}^k(\Omega, E)$ of k-times continuously partially differentiable functions on an open set $\Omega \subset \mathbb{R}^d$ with values in a locally convex Hausdorff space E. The space $\mathcal{CV}^k(\Omega, E)$ is given a weighted topology generated by a family of weights \mathcal{V}^k . For the space $\mathcal{CV}^k(\Omega, E)$ and its subspace $\mathcal{CV}_0^k(\Omega, E)$ of functions that vanish at infinity in the weighted topology we try to answer the question whether their elements can be approximated by functions with values in a finite dimensional subspace. We derive sufficient conditions for an affirmative answer to this question using the theory of tensor products.

1. Introduction. This paper is dedicated to the following problem: Which vector-valued k-times continuously partially differentiable functions can be approximated in a weighted topology by functions with values in a finite dimensional subspace? The answer to this question is closely related to the theory of tensor products and the so-called approximation property. A locally convex Hausdorff space X is said to have (Schwartz') approximation property if the identity I_X on X is contained in the closure of $\mathfrak{F}(X)$ in $L_{\kappa}(X)$ where $L_{\kappa}(X)$ denotes the space of continuous linear operators from X to X equipped with the topology of uniform convergence on the absolutely convex compact subsets of X and $\mathfrak{F}(X)$ its subspace of operators with finite rank.

The case k = 0 is well-studied. In [1], [2] and [3] Bierstedt considered the space $\mathcal{CV}(\Omega, E)$ of all continuous functions $f: \Omega \to E$ from a completely regular Hausdorff space Ω to a locally convex Hausdorff space $(E, (p_{\alpha})_{\alpha \in \mathfrak{A}})$ over a field \mathbb{K} with a topology

²⁰¹⁰ Mathematics Subject Classification: Primary 46E40, 46A32; Secondary 46E10.

 $K\!ey$ words and phrases: approximation property, tensor product, differentiable, weight, vector-valued.

The paper is in final form and no version of it will be published elsewhere.

induced by a Nachbin-family $\mathcal{V} := (\nu_j)_{j \in J}$ of weights, i.e. the space

$$\mathcal{CV}(\Omega, E) := \{ f \in \mathcal{C}(\Omega, E) \mid \forall \ j \in J, \ \alpha \in \mathfrak{A} : |f|_{j,\alpha} < \infty \}$$

where $\mathcal{C}(\Omega, E) := \mathcal{C}^0(\Omega, E)$ is the space of continuous functions from Ω to E and

$$|f|_{j,\alpha} := \sup_{x \in \Omega} p_{\alpha}(f(x))\nu_j(x)$$

Recall that a family $\mathcal{V} := (\nu_j)_{j \in J}$ of non-negative functions $\nu_j : \Omega \to [0, \infty)$ is called a Nachbin-family of weights if the functions ν_j are upper semi-continuous and the family is directed, i.e. for every $j, i \in J$ there are $k \in J$ and C > 0 such that $\max(\nu_i, \nu_j) \leq C\nu_k$. The notion $\mathcal{U} \leq \mathcal{V}$ for two Nachbin-families means that for every $\mu \in \mathcal{U}$ there is $\nu \in \mathcal{V}$ such that $\mu \leq \nu$.

From the perspective of our problem the space $\mathcal{CV}(\Omega, E)$ has an interesting topological subspace, namely, the space $\mathcal{CV}_0(\Omega, E)$ consisting of the functions that vanish at infinity when weighted which is given by

 $\mathcal{CV}_0(\Omega, E) := \{ f \in \mathcal{CV}(\Omega, E) \mid \forall \ \varepsilon > 0, \ j \in J, \ \alpha \in \mathfrak{A} \ \exists \ K \subset \Omega \ \text{compact} : |f|_{\Omega \setminus K, j, \alpha} < \varepsilon \}$ where

$$|f|_{\Omega\setminus K,j,\alpha} := \sup_{x\in\Omega\setminus K} p_{\alpha}(f(x))\nu_j(x).$$

One of the main results from [2] solves our problem for k = 0, Nachbin-families of weights and involves $k_{\mathbb{R}}$ -spaces. A completely regular space Ω is a $k_{\mathbb{R}}$ -space if for any completely regular space Y and any map $f: \Omega \to Y$ whose restriction to each compact $K \subset \Omega$ is continuous the map is already continuous on Ω (see [5, (2.3.7) Proposition, p. 22]). Obviously, every locally compact Hausdorff space is a $k_{\mathbb{R}}$ -space. Further examples of $k_{\mathbb{R}}$ -spaces are metrisable spaces by [13, Proposition 11.5, p. 181] and [8, 3.3.20, 3.3.21 Theorem, p. 152] as well as strong duals of Fréchet–Montel spaces by [9, Proposition 3.27, p. 95] and [16, 4.11 Theorem, p. 39].

THEOREM 1.1 ([2, 5.5 Theorem, p. 205–206]). Let E be a locally convex Hausdorff space, Ω a completely regular Hausdorff space and \mathcal{V} a Nachbin-family on Ω such that one of the following conditions is satisfied.

- (i) $\mathcal{Z} := \{ v \colon \Omega \to \mathbb{R} \mid v \text{ constant}, v \ge 0 \} \le \mathcal{V}.$
- (ii) $\mathcal{W} := \{ \mu \chi_K \mid \mu > 0, \ K \subset \Omega \ compact \} \leq \mathcal{V}, \ where \ \chi_K : \Omega \to \mathbb{R} \ is \ the \ characteristic function \ of \ K, \ and \ \Omega \ is \ a \ k_{\mathbb{R}} \text{-space.}$

Then the following holds.

- a) $\mathcal{CV}_0(\Omega) \otimes E$ is dense in $\mathcal{CV}_0(\Omega, E)$.
- b) If E is complete, then

$$\mathcal{CV}_0(\Omega, E) \cong \mathcal{CV}_0(\Omega) \varepsilon E \cong \mathcal{CV}_0(\Omega) \widehat{\otimes}_{\varepsilon} E$$

c) $\mathcal{CV}_0(\Omega)$ has the approximation property.

Here $\mathcal{CV}_0(\Omega) \otimes E$ stands for the tensor product, $\mathcal{CV}_0(\Omega) \widehat{\otimes}_{\varepsilon} E$ for the completion of the injective tensor product and $\mathcal{CV}_0(\Omega)\varepsilon E := L_e(\mathcal{CV}_0(\Omega)'_{\kappa}, E)$ for the ε -product of Schwartz of the spaces $\mathcal{CV}_0(\Omega) := \mathcal{CV}_0(\Omega, \mathbb{K})$ and E. Part a) gives an affirmative answer to our

question for the space $\mathcal{CV}_0(\Omega, E)$ since it implies that for every $\varepsilon > 0$, $\alpha \in \mathfrak{A}$, $j \in J$ and $f \in \mathcal{CV}_0(\Omega, E)$ there are $m \in \mathbb{N}$, $f_n \in \mathcal{CV}_0(\Omega)$ and $e_n \in E$, $1 \leq n \leq m$, such that

$$\left|f - \sum_{n=1}^{m} f_n e_n\right|_{j,\alpha} < \varepsilon.$$

Concerning $\mathcal{CV}(\Omega, E)$, the answer to our question is not that satisfying but still affirmative if we make some restrictions on E. If E has the approximation property, then $E \otimes_{\varepsilon} \mathcal{CV}(\Omega)$ is dense in $E \varepsilon \mathcal{CV}(\Omega)$. Due to the symmetries $\mathcal{CV}(\Omega) \otimes_{\varepsilon} E \cong E \otimes_{\varepsilon} \mathcal{CV}(\Omega)$ and $\mathcal{CV}(\Omega) \varepsilon E \cong$ $E \varepsilon \mathcal{CV}(\Omega)$, we infer that $\mathcal{CV}(\Omega) \otimes_{\varepsilon} E$ is dense in $\mathcal{CV}(\Omega) \varepsilon E \cong \mathcal{CV}(\Omega, E)$ if E is a semi-Montel space with approximation property and $\mathcal{Z} \leq \mathcal{V}$ or Ω is a $k_{\mathbb{R}}$ -space by [3, 2.12 Satz (1), p. 141]. A second condition for an affirmative answer without supposing that E has the approximation property but putting more restrictions on $\mathcal{CV}(\Omega)$ can be found in [3, 2.12 Satz (2), p. 141].

We aim to prove a version of Bierstedt's theorem for spaces of weighted continuously partially differentiable functions. To the best of our knowledge the approximation problem was not considered in a general setting for k > 0 and open $\Omega \subset \mathbb{R}^d$, i.e. to derive sufficient conditions on the weights and the spaces such that the answer is positive. For special cases with $\Omega = \mathbb{R}^d$ like the Schwartz space an affirmative answer was already given in e.g. [21, Proposition 9, p. 108] and [21, Théorème 1, p. 111]. For the space of k-times continuously partially differentiable functions on open $\Omega \subset \mathbb{R}^d$ with the topology of uniform convergence of all partial derivatives up to order k on compact sets a positive answer can be found in e.g. [23, Proposition 44.2, p. 448] and [23, Theorem 44.1, p. 449]. Let us consider for a moment the latter space and the corresponding proof given by Trèves in [23]. The space $\mathcal{C}^k(\Omega, E)$ of k-times continuously partially differentiable functions on a locally compact Hausdorff space Ω if k = 0, resp. open $\Omega \subset \mathbb{R}^d$ if $k \in \mathbb{N} \cup \{\infty\}$, is equipped with the system of seminorms given by

$$q_{K,l,\alpha}(f) := \sup_{\substack{x \in K\\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \le l}} p_{\alpha} \left(\partial^{\beta} f(x) \right), \quad f \in \mathcal{C}^{k}(\Omega, E),$$
(1)

for $K \subset \Omega$ compact, $l \in \mathbb{N}_0$, $0 \leq l \leq k$ if $k < \infty$, and $\alpha \in \mathfrak{A}$. For $E = \mathbb{K}$ we fix the notion $\mathcal{C}^k(\Omega) := \mathcal{C}^k(\Omega, \mathbb{K})$ and denote by $\mathcal{C}^k_c(\Omega)$ the space of all functions in $\mathcal{C}^k(\Omega)$ having compact support. Trèves' affirmative answer to our question has the following form.

THEOREM 1.2 ([23, Proposition 44.2, p. 448] and [23, Theorem 44.1, p. 449]). Let E be a locally convex Hausdorff space, $k \in \mathbb{N}_0 \cup \{\infty\}$ and Ω a locally compact Hausdorff space if k = 0, resp. an open subset of \mathbb{R}^d if k > 0. Then the following is true.

- a) $\mathcal{C}^0_c(\Omega) \otimes E$ is dense in $\mathcal{C}^0(\Omega, E)$.
- b) $\mathcal{C}^{\infty}_{c}(\Omega) \otimes E$ is dense in $\mathcal{C}^{k}(\Omega, E)$.
- c) If E is complete, then

$$\mathcal{C}^k(\Omega, E) \cong \mathcal{C}^k(\Omega) \widehat{\otimes}_{\varepsilon} E.$$

We observe that $\mathcal{CW}(\Omega, E) = \mathcal{CW}_0(\Omega, E) = \mathcal{C}^0(\Omega, E)$ equipped with the usual topology of uniform convergence on compact subsets of Ω which means that Theorem 1.1 contains the case k = 0 of the preceding theorem since locally compact Hausdorff spaces

are $k_{\mathbb{R}}$ -spaces. The proofs of Theorem 1.1 a) and Theorem 1.2 a) are done by using different partitions of unity, the first uses the partition of unity from [20, 23, Lemma 2, p. 71] and the second the one from [4, Chap. IX, §4.3, Corollary, p. 186]. The key idea for the proof of Theorem 1.2 b) is an approximation in three steps relying on part a) and convolution. First, for every $f \in \mathcal{C}^k(\Omega, E)$ there is an approximation $\tilde{f} \in \mathcal{C}^k_c(\Omega, E)$ of fby multiplication of f with a suitable cut-off function. Second, for every $\tilde{f} \in \mathcal{C}^k_c(\Omega, E)$ the convolution $\tilde{f} * \rho_n$ of \tilde{f} with a sequence (ρ_n) of mollifiers in $\mathcal{C}^\infty_c(\Omega)$ converges to \tilde{f} in $\mathcal{C}^k(\Omega, \hat{E})$ where \hat{E} denotes the completion of E (approximation by regularisation). Third, for every $\tilde{f} \in \mathcal{C}^k_c(\Omega, E)$ there is an approximation $g \in \mathcal{C}^0_c(\Omega) \otimes E$ in the topology of $\mathcal{C}^0(\Omega, E)$ by part a). Using the properties of the convolution, one gets that $g * \rho_n \in \mathcal{C}^\infty_c(\Omega) \otimes E$ and approximates $\tilde{f} * \rho_n$ for n large enough in $\mathcal{C}^k(\Omega, \hat{E})$ which itself is identical to the completion of $\mathcal{C}^k(\Omega, E)$.

The outline of our paper is along the lines of Trèves' proof. After introducing some notation and preliminaries in Section 2, we define the weighted spaces $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ in Section 3 and show that they are complete if the family of weights \mathcal{V}^k is locally bounded away from zero (see Definition 3.6). Then we treat their relation to the space $\mathcal{C}^k_c(\Omega, E)$ of functions in $\mathcal{C}^k(\Omega, E)$ with compact support where the condition of local boundedness of a family of weights comes into play (see Definition 3.8). We formulate a cut-off criterion (see Definition 3.10) which is a sufficient condition for the density of $\mathcal{C}^k_c(\Omega, E)$ in $\mathcal{CV}^k_0(\Omega, E)$ for locally bounded \mathcal{V}^k . We close the third section with the relation between tensor products and our problem on finite dimensional approximation. In Section 4 we define the convolution f * g of $f \in \mathcal{C}^k(\mathbb{R}^d, E)$ and $g \in \mathcal{C}^n(\mathbb{R}^d)$ when one of them is compactly supported and prove an approximation by regularisation result. In the last section we verify the corresponding part a) of Theorem 1.2 for $\mathcal{CV}_0^0(\Omega, E)$ with locally compact Ω where we adapt the proof of Theorem 1.1 a) in a way that we can use the partition of unity from [4, Chap. IX, §4.3, Corollary, p. 186] instead and weaken the condition of upper semi-continuity of the weights to being locally bounded and locally bounded away from zero. Then we mix all ingredients to get our main Theorem 5.2 which is a version of Theorem 1.1 and 1.2 for barrelled $\mathcal{CV}_0^k(\Omega)$ with a family of weights \mathcal{V}^k being locally bounded and locally bounded away from zero if $\mathcal{CV}_0^k(\Omega, E)$ fulfils the cut-off criterion.

2. Notation and preliminaries. We set $\mathbb{N}_{\infty} := \mathbb{N} \cup \{\infty\}$ and $\mathbb{N}_{0,\infty} := \mathbb{N}_0 \cup \{\infty\}$. For $k \in \mathbb{N}_{0,\infty}$ we use the notation $\langle k \rangle := \{n \in \mathbb{N}_0 \mid 0 \leq n \leq k\}$ if $k \neq \infty$ and $\langle k \rangle := \mathbb{N}_0$ if $k = \infty$. We equip the spaces \mathbb{R}^d , $d \in \mathbb{N}$, and \mathbb{C} with the usual Euclidean norm $|\cdot|$, write \overline{M} for the closure of a subset $M \subset \mathbb{R}^d$ and denote by $\mathbb{B}_r(x) := \{w \in \mathbb{R}^d \mid |w - x| < r\}$ the ball around $x \in \mathbb{R}^d$ with radius r > 0.

By E we always denote a non-trivial locally convex Hausdorff space, in short lcHs, over the field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} equipped with a directed fundamental system of seminorms $(p_{\alpha})_{\alpha \in \mathfrak{A}}$. If $E = \mathbb{K}$, then we set $(p_{\alpha})_{\alpha \in \mathfrak{A}} := \{|\cdot|\}$. Further, we denote by \widehat{E} the completion of a locally convex Hausdorff space E. For details on the theory of locally convex spaces see [10], [14] or [18]. A function $f: \Omega \to E$ on an open set $\Omega \subset \mathbb{R}^d$ to a locally convex Hausdorff space E is called continuously partially differentiable $(f \text{ is } C^1)$ if for the *n*-th unit vector $e_n \in \mathbb{R}^d$ the limit

$$(\partial^{e_n})f(x) := (\partial^{e_n})^E f(x) := (\partial_{x_n})^E f(x) := \lim_{\substack{h \to 0 \\ h \in \mathbb{R}, h \neq 0}} \frac{f(x + he_n) - f(x)}{h}$$

exists in E for every $x \in \Omega$ and $\partial^{e_n} f$ is continuous on Ω ($\partial^{e_n} f$ is \mathcal{C}^0) for every $1 \leq n \leq d$. For $k \in \mathbb{N}$ a function f is said to be k-times continuously partially differentiable (f is \mathcal{C}^k) if f is \mathcal{C}^1 and all its first partial derivatives are \mathcal{C}^{k-1} . A function f is called infinitely continuously partially differentiable (f is \mathcal{C}^∞) if f is \mathcal{C}^k for every $k \in \mathbb{N}$. For $k \in \mathbb{N}_\infty$ the linear space of all functions $f \colon \Omega \to E$ which are \mathcal{C}^k is denoted by $\mathcal{C}^k(\Omega, E)$. Its subspace of functions with compact support is written as $\mathcal{C}^k_c(\Omega, E)$ where we denote the support of $f \in \mathcal{C}^k(\Omega, E)$ by supp f.

Let $f \in \mathcal{C}^k(\Omega, E)$. For $\beta \in \mathbb{N}_0^d$ with $|\beta| := \sum_{n=1}^d \beta_n \leq k$ we set $\partial^{\beta_n} f := (\partial^{\beta_n})^E f := f$ if $\beta_n = 0$, and

$$\partial^{\beta_n} f := (\partial^{\beta_n})^E f := \underbrace{(\partial^{e_n})^E \cdots (\partial^{e_n})^E}_{\beta_n \text{-times}} f$$

if $\beta_n \neq 0$ as well as

$$\partial^{\beta} f := (\partial^{\beta})^{E} f := \partial^{\beta_{1}} \cdots \partial^{\beta_{d}} f.$$

Due to the vector-valued version of Schwarz' theorem $\partial^{\beta} f$ is independent of the order of the partial derivatives on the right-hand side and we call $|\beta|$ the order of differentiation. Further, we observe that $e' \circ f \in \mathcal{C}^k(\Omega)$ and $(\partial^{\beta})^{\mathbb{K}}(e' \circ f) = e' \circ (\partial^{\beta})^E f$ for every $e' \in E'$, $f \in \mathcal{C}^k(\Omega, E)$ and $|\beta| \leq k$.

By L(F, E) we denote the space of continuous linear operators from F to E where F and E are locally convex Hausdorff spaces. If $E = \mathbb{K}$, we just write $F' := L(F, \mathbb{K})$ for the dual space. If F and E are (linearly topologically) isomorphic, we write $F \cong E$. The so-called ε -product of Schwartz is defined by

$$F\varepsilon E := L_e(F'_{\kappa}, E) \tag{2}$$

where F' is equipped with the topology of uniform convergence on absolutely convex compact subsets of F and $L(F'_{\kappa}, E)$ is equipped with the topology of uniform convergence on equicontinuous subsets of F' (see [22, Chap. I, §1, Définition, p. 18]). It is symmetric which means that $F \varepsilon E \cong E \varepsilon F$ and in the literature the definition of the ε -product is sometimes done the other way around, i.e. $E \varepsilon F$ is defined by the right-hand side of (2). We write $F \otimes_{\varepsilon} E$ for the completion of the injective tensor product $F \otimes_{\varepsilon} E$ and denote by $\mathfrak{F}(E)$ the space of linear operators from E to E with finite rank. We recall from the introduction that a locally convex Hausdorff space E is said to have (Schwartz') approximation property if the identity I_E on E is contained in the closure of $\mathfrak{F}(E)$ in $L_{\kappa}(E) := L_{\kappa}(E, E)$ which is equipped with the topology of uniform convergence on the absolutely convex compact subsets of E. The space E has the approximation property if and only if $E \otimes F$ is dense in $E \varepsilon F$ for every locally convex Hausdorff space (every Banach space) F by [15, Satz 10.17, p. 250]. For more information on the theory of ε -products and tensor products see [6], [14] and [15]. 3. Weighted vector-valued differentiable functions and the ε -product. In this section we introduce the spaces $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ we want to consider. Then we turn to the question of completeness of $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ and when $\mathcal{C}_c^k(\Omega, E)$ is dense in the latter space. At the end of this section we describe their connection to the ε -product and the (completion of the) injective tensor product and derive sufficient conditions such that they coincide.

DEFINITION 3.1 (weight). Let $k \in \mathbb{N}_{0,\infty}$. We say that $\mathcal{V}^k := (\nu_{j,l})_{j \in J, l \in \langle k \rangle}$ is a (directed) family of weights on a locally compact Hausdorff space Ω if $\nu_{j,l} : \Omega \to [0,\infty)$ for every $j \in J, l \in \langle k \rangle$ and

$$\forall \ j_1, j_2 \in J, \ l_1, l_2 \in \langle k \rangle \ \exists \ j_3 \in J, \ l_3 \in \langle k \rangle, \ C > 0 \ \forall \ i \in \{1, 2\} : \nu_{j_i, l_i} \leq C \nu_{j_3, l_3}$$

as well as

$$\forall l \in \langle k \rangle, \ x \in \Omega \ \exists j \in J : 0 < \nu_{j,l}(x).$$

DEFINITION 3.2. For $k \in \mathbb{N}_{0,\infty}$ and a (directed) family $\mathcal{V}^k := (\nu_{j,l})_{j \in J, l \in \langle k \rangle}$ of weights on a locally compact Hausdorff space Ω if k = 0 or an open set $\Omega \subset \mathbb{R}^d$ if $k \in \mathbb{N}_\infty$ we define the space of weighted continuous, resp. k-times continuously partially differentiable, functions with values in an lcHs E as

$$\mathcal{CV}^{k}(\Omega, E) := \{ f \in \mathcal{C}^{k}(\Omega, E) \mid \forall j \in J, \ l \in \langle k \rangle, \ \alpha \in \mathfrak{A} : |f|_{j,l,\alpha} < \infty \}$$

where

$$|f|_{j,l,\alpha} := \sup_{\substack{x \in \Omega\\ \beta \in \mathbb{N}_0^d, |\beta| \le l}} p_\alpha \left((\partial^\beta)^E f(x) \right) \nu_{j,l}(x).$$

We define the topological subspace of $\mathcal{CV}^k(\Omega, E)$ consisting of the functions that vanish with all their derivatives when weighted at infinity by

$$\mathcal{CV}_{0}^{k}(\Omega, E) := \{ f \in \mathcal{CV}^{k}(\Omega, E) \mid \forall \ j \in J, \ l \in \langle k \rangle, \ \alpha \in \mathfrak{A}, \ \varepsilon > 0 \\ \exists \ K \subset \Omega \ \text{compact} : |f|_{\Omega \setminus K, j, l, \alpha} < \varepsilon \}$$

where

$$|f|_{\Omega\setminus K,j,l,\alpha} := \sup_{\substack{x\in\Omega\setminus K\\\beta\in\mathbb{N}_{0}^{d},|\beta|\leq l}} p_{\alpha}((\partial^{\beta})^{E}f(x))\nu_{j,l}(x).$$

It is easily seen that these spaces are locally convex Hausdorff spaces with a directed system of seminorms due to our assumptions on the family \mathcal{V}^k of weights.

REMARK 3.3. Suppose that in the definition of the space $\mathcal{CV}^k(\Omega, E)$ the weights also depend on $\beta \in \mathbb{N}_0^d$, i.e. the seminorms used to define $\mathcal{CV}^k(\Omega, E)$ are of the form

$$|f|_{j,l,\alpha}^{\sim} := \sup_{\substack{x \in \Omega\\\beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} p_{\alpha} \left((\partial^{\beta})^{E} f(x) \right) \nu_{j,l,\beta}(x).$$

Without loss of generality we may always use weights which are independent of β . Namely, by setting $\nu_{j,l} := \max_{\beta \in \mathbb{N}_0^d, |\beta| \le l} \nu_{j,l,\beta}$ for $j \in J$ and $l \in \langle k \rangle$, we can switch to the usual system of seminorms $(|f|_{j,l,\alpha})$ induced by the weights $(\nu_{j,l})$ which is equivalent to $(|f|_{i,l,\alpha})$.

The standard structure of a directed family \mathcal{V}^k of weights on a locally compact Hausdorff space Ω is given by the following. Let $(\Omega_j)_{j \in J}$ be a family of sets such that $\Omega_j \subset \Omega_{j+1}$ for all $j \in J$ with $\Omega = \bigcup_{j \in J} \Omega_j$. Let $\tilde{\nu}_{j,l} \colon \Omega \to (0,\infty)$ be continuous for all $j \in J$ and $l \in \langle k \rangle$, increasing in $j \in J$, i.e. $\tilde{\nu}_{j,l} \leq \tilde{\nu}_{j+1,l}$, and in $l \in \langle k \rangle$, i.e. $\tilde{\nu}_{j,l} \leq \tilde{\nu}_{j,l+1}$ if $l+1 \in \langle k \rangle$, such that

$$\nu_{j,l}(x) = \chi_{\Omega_j}(x)\widetilde{\nu}_{j,l}(x), \quad x \in \Omega,$$

for every $j \in J$ and $l \in \langle k \rangle$ where χ_{Ω_j} is the indicator function of Ω_j . Further, we remark that the spaces $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ might coincide which is already mentioned in [2, 1.3 Bemerkung, p. 189] for k = 0.

REMARK 3.4. If for every $j \in J$ and $l \in \langle k \rangle$ there are $i \in J$ and $m \in \langle k \rangle$ such that for all $\varepsilon > 0$ there is a compact set $K \subset \Omega$ with $\nu_{j,l}(x) \leq \varepsilon \nu_{i,m}(x)$ for all $x \in \Omega \setminus K$, then $\mathcal{CV}^k(\Omega, E) = \mathcal{CV}_0^k(\Omega, E).$

Examples of spaces where this happens are $\mathcal{C}^k(\Omega, E)$ with the topology of uniform convergence of all partial derivatives up to order k on compact subsets of Ω and the Schwartz space $\mathcal{S}(\mathbb{R}^d, E)$.

EXAMPLE 3.5. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$ and $\Omega \subset \mathbb{R}^d$ open. Then

- a) $\mathcal{C}^{k}(\Omega, E) = \mathcal{CW}^{k}(\Omega, E) = \mathcal{CW}_{0}^{k}(\Omega, E)$ with $\mathcal{W}^{k} := \{\nu_{j,l} := \chi_{\Omega_{j}} \mid j \in \mathbb{N}, l \in \langle k \rangle \}$ where $(\Omega_{j})_{j \in \mathbb{N}}$ is a compact exhaustion of Ω ,
- b) $\mathcal{S}(\mathbb{R}^d, E) = \mathcal{CV}^{\infty}(\mathbb{R}^d, E) = \mathcal{CV}_0^{\infty}(\mathbb{R}^d, E)$ with $\mathcal{V}^{\infty} := \{\nu_{j,l} \mid j \in \mathbb{N}, l \in \mathbb{N}_0\}$ where $\nu_{j,l}(x) := (1 + |x|^2)^{l/2}$ for $x \in \mathbb{R}^d$.

Proof.

a) $(\Omega_j)_{j\in\mathbb{N}}$ being a compact exhaustion of Ω means that $\Omega = \bigcup_{j\in\mathbb{N}} \Omega_j$, Ω_j is compact and $\Omega_j \subset \mathring{\Omega}_{j+1}$ for all $j \in \mathbb{N}$ where $\mathring{\Omega}_{j+1}$ is the set of inner points of Ω_{j+1} . For compact $\Omega_j \subset \Omega$ and $l \in \langle k \rangle$ our claim follows from Remark 3.4 with the choice i := j, m := l and $K := \Omega_j$.

b) We recall that the Schwartz space is defined by

$$\mathcal{S}(\mathbb{R}^d, E) := \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}^d, E) \, | \, \forall \, l \in \mathbb{N}_0, \, \alpha \in \mathfrak{A} : \|f\|_{l,\alpha} < \infty \right\}$$

where

$$\|f\|_{l,\alpha} := \sup_{\substack{x \in \mathbb{R}^d \\ \beta \in \mathbb{N}^d, |\beta| \le l}} p_{\alpha} \big((\partial^{\beta})^E f(x) \big) (1+|x|^2)^{l/2}.$$

Thus $\mathcal{S}(\mathbb{R}^d, E) = \mathcal{CV}^{\infty}(\mathbb{R}^d, E)$. We note that for every $j \in \mathbb{N}$, $l \in \mathbb{N}_0$ and $\varepsilon > 0$ there is r > 0 such that

$$\frac{\nu_{j,l}(x)}{\nu_{j,2(l+1)}(x)} = \frac{(1+|x|^2)^{l/2}}{(1+|x|^2)^{l+1}} = (1+|x|^2)^{-(l/2)-1} < \varepsilon$$

for all $x \notin \overline{\mathbb{B}_r(0)} =: K$ yielding $\mathcal{S}(\mathbb{R}^d, E) = \mathcal{CV}_0^{\infty}(\mathbb{R}^d, E)$ by Remark 3.4.

The question of finite dimensional approximation from the introduction is closely connected to the property of a family of weights being locally bounded away from zero.

DEFINITION 3.6 (locally bounded away from zero). Let Ω be a locally compact Hausdorff space and $k \in \mathbb{N}_{0,\infty}$. A family of weights \mathcal{V}^k is called *locally bounded away from zero* on Ω if

$$\forall K \subset \Omega \text{ compact}, \ l \in \langle k \rangle \exists j \in J : \inf_{x \in K} \nu_{j,l}(x) > 0.$$

For k = 0 (and locally compact Hausdorff Ω) this coincides with condition (ii) of Theorem 1.1. It even guarantees that the spaces $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ are complete for complete E.

PROPOSITION 3.7. Let E be a complete lcHs, $k \in \mathbb{N}_{0,\infty}$ and \mathcal{V}^k be a family of weights which is locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0)or an open set $\Omega \subset \mathbb{R}^d$ (k > 0). Then $\mathcal{CV}^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, E)$ are complete locally convex Hausdorff spaces. In particular, they are Fréchet spaces if E is a Fréchet space and J countable.

Proof. Let $(f_{\tau})_{\tau \in \mathcal{T}}$ be a Cauchy net in $\mathcal{CV}^k(\Omega, E)$. The space $\mathcal{C}^k(\Omega, E)$ equipped with the usual system of seminorms $(q_{K,l,\alpha})$ given in (1) is complete by [23, Proposition 44.1, p. 446]. Let $K \subset \Omega$ compact, $l \in \langle k \rangle$ and $\alpha \in \mathfrak{A}$. Since \mathcal{V}^k is locally bounded away from zero, there is $j \in J$ such that

$$q_{K,l,\alpha}(f) \le \sup_{x \in K} \nu_{j,l}(x)^{-1} |f|_{j,l,\alpha} = \left(\inf_{x \in K} \nu_{j,l}(x)\right)^{-1} |f|_{j,l,\alpha}, \quad f \in \mathcal{CV}^k(\Omega, E),$$

implying that the inclusion $\mathcal{CV}^k(\Omega, E) \hookrightarrow \mathcal{C}^k(\Omega, E)$ is continuous. Thus (f_{τ}) is a Cauchy net in $\mathcal{C}^k(\Omega, E)$ as well and has a limit f in this space due to the completeness. Let $j \in J$, $l \in \langle k \rangle$, $\alpha \in \mathfrak{A}$ and $\varepsilon > 0$. As this convergence implies pointwise convergence, we have that for all $x \in \Omega$ and $\beta \in \mathbb{N}_0^d$, $|\beta| \leq l$, there exists $\tau_{j,l,\beta,x} \in \mathcal{T}$ such that for all $\tau \geq \tau_{j,l,\beta,x}$

$$p_{\alpha}\left((\partial^{\beta})^{E} f_{\tau}(x) - (\partial^{\beta})^{E} f(x)\right) < \frac{\varepsilon}{2\nu_{j,l}(x)}$$

$$\tag{3}$$

if $\nu_{j,l}(x) > 0$. Furthermore, there exists $\tau_0 \in \mathcal{T}$ such that for all $\tau, \mu \geq \tau_0$

$$|f_{\tau} - f_{\mu}|_{j,l,\alpha} < \frac{\varepsilon}{2} \tag{4}$$

by assumption. Hence we get for all $\tau \geq \tau_0$ by choosing $\mu \geq \tau_{j,l,\beta,x}, \tau_0$

$$p_{\alpha}((\partial^{\beta})^{E}f(x))\nu_{j,l}(x) - p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(x))\nu_{j,l}(x)$$

$$\leq p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(x) - (\partial^{\beta})^{E}f(x))\nu_{j,l}(x)$$

$$\leq p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(x) - (\partial^{\beta})^{E}f_{\mu}(x))\nu_{j,l}(x) + p_{\alpha}((\partial^{\beta})^{E}f_{\mu}(x) - (\partial^{\beta})^{E}f(x))\nu_{j,l}(x)$$

$$< \sup_{\substack{(3) z \in \Omega}} p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(z) - (\partial^{\beta})^{E}f_{\mu}(z))\nu_{j,l}(z) + \frac{\varepsilon}{2}$$

$$\leq \sup_{\substack{z \in \Omega \\ \gamma \in \mathbb{N}_{0}^{d}, |\gamma| \leq l}} p_{\alpha}((\partial^{\gamma})^{E}f_{\tau}(z) - (\partial^{\gamma})^{E}f_{\mu}(z))\nu_{j,l}(z) + \frac{\varepsilon}{2} = |f_{\tau} - f_{\mu}|_{j,l,\alpha} + \frac{\varepsilon}{2}_{(4)} \varepsilon$$

if $\nu_{j,l}(x) > 0$. We deduce that for all $\tau \geq \tau_0$

$$p_{\alpha}((\partial^{\beta})^{E}f(x))\nu_{j,l}(x) - p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(x))\nu_{j,l}(x)$$

$$\leq p_{\alpha}((\partial^{\beta})^{E}f_{\tau}(x) - (\partial^{\beta})^{E}f(x))\nu_{j,l}(x) < \varepsilon$$

if $\nu_{j,l}(x) > 0$. If $\nu_{j,l}(x) = 0$, then this estimate is also fulfilled and so $|f_{\tau} - f|_{j,l,\alpha} \leq \varepsilon$ as well as $|f|_{j,l,\alpha} \leq \varepsilon + |f_{\tau}|_{j,l,\alpha}$ for all $\tau \geq \tau_0$. This means that $f \in \mathcal{CV}^k(\Omega, E)$ and that (f_{τ}) converges to f in $\mathcal{CV}^k(\Omega, E)$. Therefore $\mathcal{CV}^k(\Omega, E)$ is complete and $\mathcal{CV}^k_0(\Omega, E)$ as well because it is a closed subspace of the complete space $\mathcal{CV}^k(\Omega, E)$. For $k \in \mathbb{N}_{0,\infty}$ and locally compact Hausdorff Ω (k = 0) or open $\Omega \subset \mathbb{R}^d$ (k > 0) we define $\mathcal{CV}_c^k(\Omega, E)$ to be the subspace of $\mathcal{CV}^k(\Omega, E)$ of functions with compact support. Obviously we have $\mathcal{CV}_c^k(\Omega, E) \subset \mathcal{CV}_0^k(\Omega, E)$ and $\mathcal{CV}_c^k(\Omega, E) \subset \mathcal{C}_c^k(\Omega, E)$. On the other hand, the space $\mathcal{C}_c^k(\Omega, E)$ is a linear subspace of $\mathcal{CV}_c^k(\Omega, E)$ if the family of weights \mathcal{V}^k fulfils the definition of local boundedness.

DEFINITION 3.8 (locally bounded). Let Ω be a locally compact Hausdorff space and $k \in \mathbb{N}_{0,\infty}$. A family of weights \mathcal{V}^k is called *locally bounded* on Ω if

 $\forall K \subset \Omega \text{ compact}, \ j \in J, \ l \in \langle k \rangle : \sup_{x \in K} \nu_{j,l}(x) < \infty.$

Indeed, if $f \in \mathcal{C}_c^k(\Omega, E)$, then we have for $K := \operatorname{supp} f$

$$|f|_{j,l,\alpha} = \sup_{\substack{x \in K\\\beta \in \mathbb{N}_0^d, |\beta| \le l}} p_\alpha \left((\partial^\beta)^E f(x) \right) \nu_{j,l}(x) \le \left(\sup_{\substack{z \in K\\\beta \in \mathbb{N}_0^d, |\beta| \le l}} p_\alpha \left((\partial^\beta)^E f(z) \right) \right) \sup_{x \in K} \nu_{j,l}(x)$$

for all $j \in J$, $l \in \langle k \rangle$ and $\alpha \in \mathfrak{A}$. Hence we have:

REMARK 3.9. Let E be an lcHs and $k \in \mathbb{N}_{0,\infty}$. If \mathcal{V}^k is a family of locally bounded weights, then $\mathcal{C}_c^k(\Omega, E) = \mathcal{CV}_c^k(\Omega, E)$ algebraically.

Next, we phrase a sufficient criterion for the density of $\mathcal{C}_c^k(\Omega, E)$ in $\mathcal{CV}_0^k(\Omega, E)$ for $k \in \mathbb{N}_{0,\infty}, \Omega \subset \mathbb{R}^d$ open and locally bounded \mathcal{V}^k .

DEFINITION 3.10 (cut-off criterion). Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$, $\Omega \subset \mathbb{R}^d$ open and \mathcal{V}^k be a family of weights on Ω . We say that $\mathcal{CV}_0^k(\Omega, E)$ satisfies the cut-off criterion if

$$\forall f \in \mathcal{CV}_0^k(\Omega, E), \ j \in J, \ l \in \langle k \rangle, \ \alpha \in \mathfrak{A} \ \exists \ \delta > 0 \ \forall \ \varepsilon > 0 \ \exists \ K \subset \Omega \ \text{compact} : \\ \left(K + \overline{\mathbb{B}_{\delta}(0)} \right) \subset \Omega \quad \text{and} \quad |f|_{\Omega \setminus K, j, l, \alpha} < \varepsilon.$$

REMARK 3.11. If $\Omega = \mathbb{R}^d$, then the cut-off criterion is satisfied for any $\delta > 0$.

EXAMPLE 3.12. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$ and $\Omega \subset \mathbb{R}^d$ open. The space $\mathcal{C}^k(\Omega, E)$ with the usual topology of uniform convergence of all partial derivatives up to order k on compact subsets of Ω and the Schwartz space $\mathcal{S}(\mathbb{R}^d, E)$ fulfil the cut-off criterion.

Proof. For the Schwartz space this follows directly from Example 3.5 b) and Remark 3.11. By Example 3.5 a) we have $\mathcal{C}^k(\Omega, E) = \mathcal{CW}_0^k(\Omega, E)$ with $\mathcal{W}^k := \{\nu_{j,l} := \chi_{\Omega_j} \mid j \in \mathbb{N}, l \in \langle k \rangle \}$ where $(\Omega_j)_{j \in \mathbb{N}}$ is a compact exhaustion of Ω . Choosing $K := \Omega_j$ and $\delta := \inf\{|z - x| \mid z \in \partial\Omega_j, x \in \partial\Omega_{j+1}\} > 0$ for $j \in \mathbb{N}$, we note that the cut-off criterion is fulfilled.

The proof of the density given below uses cut-off functions and the additional $\delta > 0$ independent of $\varepsilon > 0$ allows us to choose a suitable cut-off function whose derivatives can be estimated independently of ε . But first we recall the following definitions since we need the product rule. Let $\gamma, \beta \in \mathbb{N}_0^d$. We write $\gamma \leq \beta$ if $\gamma_n \leq \beta_n$ for all $1 \leq n \leq d$, and define

$$\binom{\beta}{\gamma} := \prod_{n=1}^d \binom{\beta_n}{\gamma_n}$$

if $\gamma \leq \beta$ where the right-hand side is defined by ordinary binomial coefficients. Now, we can phrase the product rule whose proof follows by induction (just adapt the proof for scalar-valued functions).

PROPOSITION 3.13 (product rule). Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$, $\Omega \subset \mathbb{R}^d$ open, $f \in \mathcal{C}^k(\Omega, E)$ and $g \in \mathcal{C}^k(\Omega)$. Then $gf \in \mathcal{C}^k(\Omega, E)$ and

$$(\partial^{\beta})^{E}(gf)(x) = \sum_{\gamma \leq \beta} \binom{\beta}{\gamma} (\partial^{\beta-\gamma})^{\mathbb{K}} g(x) (\partial^{\gamma})^{E} f(x), \quad x \in \Omega, \ \beta \in \mathbb{N}_{0}^{d}, \ |\beta| \leq k$$

LEMMA 3.14. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$ and \mathcal{V}^k be a family of locally bounded weights on an open set $\Omega \subset \mathbb{R}^d$. If $\mathcal{CV}_0^k(\Omega, E)$ satisfies the cut-off criterion, then the space $\mathcal{C}_c^k(\Omega, E)$ is dense in $\mathcal{CV}_0^k(\Omega, E)$.

Proof. The local boundedness of \mathcal{V}^k yields that $\mathcal{C}^k_c(\Omega, E)$ is a linear subspace of $\mathcal{CV}^k_0(\Omega, E)$ by Remark 3.9 which we equip with the induced topology. Let $f \in \mathcal{CV}^k_0(\Omega, E)$, $j \in J$, $l \in \langle k \rangle$ and $\alpha \in \mathfrak{A}$. Due to the cut-off criterion there is $\delta > 0$ such that for $\varepsilon > 0$ there is $K \subset \Omega$ compact with $(K + \overline{\mathbb{B}_{\delta}(0)}) \subset \Omega$ and $|f|_{\Omega \setminus K, j, l, \alpha} < \varepsilon$. We choose a cut-off function $\psi \in \mathcal{C}^\infty_c(\Omega)$ with $0 \leq \psi \leq 1$ so that $\psi = 1$ in a neighbourhood of K and

$$\left| (\partial^{\beta})^{\mathbb{K}} \psi \right| \le C_{\beta} \delta^{-|\beta|}$$

on Ω for all $\beta \in \mathbb{N}_0^d$ where $C_\beta > 0$ only depends on β (see [12, Theorem 1.4.1, p. 25]). We set $K_0 := \operatorname{supp} \psi$, note that $\psi f \in \mathcal{C}_c^k(\Omega, E)$ by the product rule and

$$\begin{split} &|f - \psi f|_{j,l,\alpha} = \sup_{\substack{x \in \Omega \setminus K \\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} p_{\alpha} \left((\partial^{\beta})^{E} (f - \psi f)(x) \right) \nu_{j,l}(x) \\ &\leq \sup_{\substack{x \in \Omega \setminus K \\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} p_{\alpha} \left((\partial^{\beta})^{E} f(x) \right) \nu_{j,l}(x) + \sup_{\substack{x \in \Omega \setminus K \\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} p_{\alpha} \left((\partial^{\beta})^{E} (\psi f)(x) \right) \nu_{j,l}(x) \\ &= |f|_{\Omega \setminus K, j,l,\alpha} + \sup_{\substack{x \in (\Omega \setminus K) \cap K_{0} \\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} p_{\alpha} \left(\sum_{\gamma \leq \beta} \binom{\beta}{\gamma} (\partial^{\beta - \gamma})^{\mathbb{K}} \psi(x) (\partial^{\gamma})^{E} f(x) \right) \nu_{j,l}(x) \\ &\leq |f|_{\Omega \setminus K, j,l,\alpha} + \sup_{\substack{z \in K_{0} \\ \beta \in \mathbb{N}_{0}^{d}, |\beta| \leq l}} \sum_{\gamma \leq \beta} \binom{\beta}{\gamma} |(\partial^{\beta - \gamma})^{\mathbb{K}} \psi(z)| \left(\sup_{\substack{x \in \Omega \setminus K \\ \tau \in \mathbb{N}_{0}^{d}, |\tau| \leq l}} p_{\alpha} \left((\partial^{\tau})^{E} f(x) \right) \nu_{j,l}(x) \right) \\ &\leq |f|_{\Omega \setminus K, j,l,\alpha} + \underbrace{\sup_{\substack{x \in [N_{0}^{d}, |\beta| \leq l}} \sum_{\gamma \leq \beta} \binom{\beta}{\gamma} C_{\beta - \gamma} \delta^{-|\beta - \gamma|}}_{=:C_{l,\delta} < \infty} |f|_{\Omega \setminus K, j,l,\alpha} \leq (1 + C_{l,\delta}) \varepsilon. \end{split}$$

The independence of $C_{l,\delta}$ from ε implies the statement.

We complete this section by pointing out the link between our question on finite dimensional approximation and the tensor product. If \mathcal{V}^k is locally bounded away from zero, there is a nice relation between our spaces of vector-valued functions and the ε -product which uses that the point-evaluation functionals $\delta_x \colon f \mapsto f(x)$ are continuous on $\mathcal{CV}^k(\Omega)$ by our definition of a weight. PROPOSITION 3.15. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$, \mathcal{V}^k be a family of weights which is locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an open set $\Omega \subset \mathbb{R}^d$ (k > 0).

a) In addition, let $\mathcal{CV}_0^k(\Omega)$ be barrelled if k > 0. Then

$$S_{\mathcal{CV}^k_0(\Omega)} \colon \mathcal{CV}^k_0(\Omega) \varepsilon E \to \mathcal{CV}^k_0(\Omega, E), \ u \longmapsto [x \mapsto u(\delta_x)],$$

is an isomorphism into, i.e. an isomorphism to its range.

b) In addition, let $\mathcal{CV}^k(\Omega)$ be barrelled if k > 0. Then

$$S_{\mathcal{CV}^k(\Omega)} \colon \mathcal{CV}^k(\Omega)\varepsilon E \to \mathcal{CV}^k(\Omega, E), \ u \longmapsto [x \mapsto u(\delta_x)],$$

is an isomorphism into.

Proof. Let $u \in CV_0^k(\Omega) \varepsilon E$, resp. $CV^k(\Omega) \varepsilon E$, and as a simplification we omit the index of *S*. The continuity of S(u) is a consequence of [17, 4.1 Proposition, p. 18] and [17, 4.2 Lemma (i), p. 19] since \mathcal{V}^k is locally bounded away from zero. If k > 0, then the continuous partial differentiability of S(u) up to order *k* follows from [17, 4.12 Proposition, p. 22] as $C\mathcal{V}_0^k(\Omega)$, resp. $C\mathcal{V}^k(\Omega)$, is barrelled and \mathcal{V}^k locally bounded away from zero. If $u \in C\mathcal{V}_0^k(\Omega)\varepsilon E$, then S(u) vanishes together with all its derivatives when weighted at infinity by [17, 4.13 Proposition, p. 23]. Thanks to these observations [17, 3.9 Theorem, p. 9] proves our statement. ■

In particular, if J is countable and \mathcal{V}^k locally bounded away from zero, then the Fréchet spaces $\mathcal{CV}^k(\Omega)$ and $\mathcal{CV}_0^k(\Omega)$ are barrelled. This result allows us to identify the injective tensor product of $\mathcal{CV}^k(\Omega)$, resp. $\mathcal{CV}_0^k(\Omega)$, and E with a subspace of $\mathcal{CV}^k(\Omega, E)$, resp. $\mathcal{CV}_0^k(\Omega, E)$. Let us use the symbol \mathcal{F} for \mathcal{CV}^k or \mathcal{CV}_0^k . We consider $\mathcal{F}(\Omega) \otimes E$ as an algebraic subspace of $\mathcal{F}(\Omega)\varepsilon E$ by means of the linear injection

$$\Theta_{\mathcal{F}(\Omega)} \colon \mathcal{F}(\Omega) \otimes E \to \mathcal{F}(\Omega) \varepsilon E, \quad \sum_{n=1}^{m} f_n \otimes e_n \longmapsto \left[y \mapsto \sum_{n=1}^{m} y(f_n) e_n \right]$$

Via $\Theta_{\mathcal{F}(\Omega)}$ the topology of $\mathcal{F}(\Omega) \varepsilon E$ induces a locally convex topology on $\mathcal{F}(\Omega) \otimes E$ and $\mathcal{F}(\Omega) \otimes_{\varepsilon} E$ denotes $\mathcal{F}(\Omega) \otimes E$ equipped with this topology. From the preceding proposition and the composition $S_{\mathcal{F}(\Omega)} \circ \Theta_{\mathcal{F}(\Omega)}$ we obtain:

COROLLARY 3.16. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$, \mathcal{V}^k be a family of weights which is locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an open set $\Omega \subset \mathbb{R}^d$ (k > 0). Fix the notation $\mathcal{F} = \mathcal{CV}^k$ or \mathcal{CV}_0^k and let $\mathcal{F}(\Omega)$ be barrelled if k > 0.

a) We get by identification of isomorphic subspaces

$$\mathcal{F}(\Omega) \otimes_{\varepsilon} E \subset \mathcal{F}(\Omega) \varepsilon E \subset \mathcal{F}(\Omega, E)$$

and the embedding $\mathcal{F}(\Omega) \otimes E \hookrightarrow \mathcal{F}(\Omega, E)$ is given by $f \otimes e \mapsto [x \mapsto f(x)e]$. b) Let $\mathcal{F}(\Omega)$ and E be complete. If $\mathcal{F}(\Omega) \otimes E$ is dense in $\mathcal{F}(\Omega, E)$, then

$$\mathcal{F}(\Omega, E) \cong \mathcal{F}(\Omega) \varepsilon E \cong \mathcal{F}(\Omega) \widehat{\otimes}_{\varepsilon} E.$$

In particular, $\mathcal{F}(\Omega)$ has the approximation property if $\mathcal{F}(\Omega) \otimes E$ is dense in $\mathcal{F}(\Omega, E)$ for every complete E.

Proof.

a) The inclusions hold by Proposition 3.15 and $\mathcal{F}(\Omega)\varepsilon E$ and $\mathcal{F}(\Omega, E)$ induce the same topology on $\mathcal{F}(\Omega) \otimes E$. Further, we have

$$f \otimes e \stackrel{\Theta_{\mathcal{F}(\Omega)}}{\longmapsto} [y \mapsto y(f)e] \stackrel{S_{\mathcal{F}(\Omega)}}{\longmapsto} [x \longmapsto [y \mapsto y(f)e](\delta_x)] = [x \mapsto f(x)e]$$

b) If $\mathcal{F}(\Omega)$ and E are complete, then we obtain that $\mathcal{F}(\Omega)\varepsilon E$ is complete by [15, Satz 10.3, p. 234]. In addition, we get the completion of $\mathcal{F}(\Omega) \otimes_{\varepsilon} E$ as its closure in $\mathcal{F}(\Omega)\varepsilon E$ which coincides with the closure in $\mathcal{F}(\Omega, E)$. The rest follows directly from a).

Looking at part a), we derive

$$(S_{\mathcal{F}(\Omega)} \circ \Theta_{\mathcal{F}(\Omega)}) \left(\sum_{n=1}^{m} f_n \otimes e_n \right) = \sum_{n=1}^{m} f_n e_n$$

for $m \in \mathbb{N}$, $f_n \in \mathcal{F}(\Omega)$ and $e_n \in E$, $1 \leq n \leq m$. Hence we see that the answer to our question is affirmative if $\mathcal{F}(\Omega) \otimes E$ is dense in $\mathcal{F}(\Omega, E)$. For the sake of completeness we remark the following.

PROPOSITION 3.17. Let E be an lcHs, $k \in \mathbb{N}_{0,\infty}$, \mathcal{V}^k be a family of weights which is locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an open set $\Omega \subset \mathbb{R}^d$ (k > 0).

a) In addition, let $\mathcal{CV}_0^k(\Omega)$ be barrelled if k > 0. If E is quasi-complete and \mathcal{V}^k locally bounded on Ω , then

$$\mathcal{CV}_0^k(\Omega)\varepsilon E \cong \mathcal{CV}_0^k(\Omega, E)$$
 via $S_{\mathcal{CV}_0^k(\Omega)}$.

b) In addition, let $\mathcal{CV}^k(\Omega)$ be barrelled if k > 0. If E is a semi-Montel space, then

$$\mathcal{CV}^k(\Omega)\varepsilon E \cong \mathcal{CV}^k(\Omega, E) \quad via \ S_{\mathcal{CV}^k(\Omega)}.$$

Proof. For k > 0 this is [17, 5.10 Example a), p. 28], resp. [17, 3.21 Example a), p. 14]. Statement a) for k = 0 is a consequence of [17, 3.20 Corollary, p. 13] in combination with [17, 4.1 Proposition, p. 18], [17, 4.2 Lemma (i), p. 19] and [17, 4.13 Proposition, p. 23]. For k = 0 statement b) follows from [17, 3.19 Corollary, p. 13] in combination with [17, 4.1 Proposition, p. 18] and [17, 4.2 Lemma (i), p. 19]. ■

The corresponding results for k = 0 and a Nachbin-family \mathcal{V}^0 of weights are given in [3, 2.4 Theorem, p. 138–139] and [3, 2.12 Satz, p. 141]. In combination with our preceding observation, we deduce that every element of $\mathcal{CV}_0^k(\Omega, E)$ can be approximated in $\mathcal{CV}_0^k(\Omega, E)$ by functions with values in a finite dimensional subspace if E is a quasicomplete space with approximation property and the assumptions of the proposition above are fulfilled. The same is true for $\mathcal{CV}^k(\Omega, E)$ if E is a semi-Montel space with approximation property. Due to the strong conditions on E this is not really satisfying but actually the best we get for general $\mathcal{CV}^k(\Omega, E)$. For $\mathcal{CV}_0^k(\Omega, E)$ there is a better result available, whose proof we prepare on the next pages.

4. Convolution via the Pettis-integral. In this section we review the notion of the Pettis-integral. Trèves uses the Riemann-integral to define the convolution f * g of a function $f \in \mathcal{C}_c^k(\Omega, E)$ and a function $g \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$ in the proof of Theorem 1.2 and states

(without a proof) that the convolution defined in this way is a function in $C_c^{\infty}(\mathbb{R}^d, \widehat{E})$ and has all the properties known from the convolution of two scalar-valued functions. We use the Pettis-integral instead to define the convolution. The reason is that we can use the dominated convergence theorem for the Pettis-integral [19, Theorem 2, p. 162–163] to get the Leibniz' rule for differentiation under the integral sign which enables us to prove that the convolution has some of the key properties known from the scalar-valued case.

Let us fix some notation first. For a measure space (X, Σ, μ) let

$$\mathfrak{L}^{1}(X,\mu) := \left\{ f \colon X \to \mathbb{K} \text{ measurable } | \, q_{1}(f) := \int_{X} |f(x)| \, \mathrm{d}\mu(x) < \infty \right\}$$

and define the quotient space of integrable functions with respect to the measure μ by $\mathcal{L}^1(X,\mu) := \mathfrak{L}^1(X,\mu)/\{f \in \mathfrak{L}^1(X,\mu) \mid q_1(f) = 0\}$. From now on we do not distinguish between equivalence classes and their representatives anymore. We say that $f: X \to \mathbb{K}$ is integrable on $\Lambda \in \Sigma$ and write $f \in \mathcal{L}^1(\Lambda,\mu)$ if $\chi_{\Lambda}f \in \mathcal{L}^1(X,\mu)$ where χ_{Λ} is the characteristic function of Λ . Then we set

$$\int_{\Lambda} f(x) \,\mathrm{d}\mu(x) := \int_{X} \chi_{\Lambda}(x) f(x) \,\mathrm{d}\mu(x)$$

DEFINITION 4.1 (Pettis-integral). Let (X, Σ, μ) be a measure space and E an lcHs. A function $f: X \to E$ is called *weakly* (scalarly) measurable if the function $e' \circ f: X \to \mathbb{K}$, $(e' \circ f)(x) := \langle e', f(x) \rangle := e'(f(x))$, is measurable for all $e' \in E'$. A weakly measurable function is said to be *weakly* (scalarly) integrable if $e' \circ f \in \mathcal{L}^1(X, \mu)$. A function $f: X \to E$ is called *Pettis-integrable* on $\Lambda \in \Sigma$ if it is weakly integrable on Λ and

$$\exists e_{\Lambda} \in E \ \forall \ e' \in E' : \langle e', e_{\Lambda} \rangle = \int_{\Lambda} \langle e', f(x) \rangle \, \mathrm{d}\mu(x).$$

In this case e_{Λ} is unique due to E being Hausdorff and we set

$$\int_{\Lambda} f(x) \,\mathrm{d}\mu(x) := e_{\Lambda}.$$

A function f is called Pettis-integrable on Σ if it is Pettis-integrable on all $\Lambda \in \Sigma$.

We write \mathcal{N}_{μ} for the set of μ -null sets of a measure space (X, Σ, μ) and for $\Lambda \in \Sigma$ we use the notion $(\Lambda, \Sigma_{|\Lambda}, \mu_{|\Lambda})$ for the restricted measure space given by $\Sigma_{|\Lambda} := \{\omega \in \Sigma \mid \omega \subset \Lambda\}$ and $\mu_{|\Lambda} := \mu_{|\Sigma_{|\Lambda}}$. If we consider the measure space $(\mathbb{R}^d, \mathscr{L}(\mathbb{R}^d), \lambda)$ of Lebesgue measurable sets, we just write $dx := d\lambda(x)$.

REMARK 4.2. Let (X, Σ, μ) be a measure space, E an lcHs and f Pettis-integrable on $\Lambda \in \Sigma$. If $\omega \in \Sigma$ such that $\omega \subset \Lambda$ and $(\Lambda \setminus \omega) \subset \{x \in X \mid f(x) = 0\}$, then f is Pettis-integrable on ω and

$$\int_{\omega} f(x) \,\mathrm{d}\mu(x) = \int_{\Lambda} f(x) \,\mathrm{d}\mu(x).$$
(5)

This follows directly from

$$\left\langle e', \int_{\Lambda} f(x) \, \mathrm{d}\mu(x) \right\rangle = \int_{\Lambda} \langle e', f(x) \rangle \, \mathrm{d}\mu(x) = \int_{\omega} \langle e', f(x) \rangle \, \mathrm{d}\mu(x), \quad e' \in E'$$

LEMMA 4.3. Let E be a quasi-complete lcHs, (X, Σ, μ) a measure space, T a metric space and suppose that $f: X \times T \to E$ fulfils the following conditions.

- a) $f(\cdot, t)$ is Pettis-integrable on Σ for all $t \in T$,
- b) $f(x, \cdot): T \to E$ is continuous in a point $t_0 \in T$ for μ -almost all $x \in X$,
- c) there is a neighbourhood $U \subset T$ of t_0 and a Pettis-integrable function ψ on Σ such that

$$\forall t \in U, e' \in E' \exists N \in \mathcal{N}_{\mu} \forall x \in X \setminus N : |\langle e', f(x,t) \rangle| \le |\langle e', \psi(x) \rangle|$$

Then $g_{\Lambda}: T \to E$, $g_{\Lambda}(t) := \int_{\Lambda} f(x, t) d\mu(x)$, is well-defined and continuous in t_0 for every $\Lambda \in \Sigma$.

Proof. Let $\Lambda \in \Sigma$ and (t_n) be a sequence in U converging to t_0 . From the continuous dependency of a scalar integral on a parameter (see [7, 5.6 Satz, p. 147]) we derive

$$\lim_{n \to \infty} \int_{\Lambda} \langle e', \underbrace{f(x, t_n)}_{=:f_n(x)} \rangle \, \mathrm{d}\mu(x) = \int_{\Lambda} \langle e', \underbrace{f(x, t_0)}_{=:\widetilde{f}(x)} \rangle \, \mathrm{d}\mu(x). \tag{6}$$

For $n \in \mathbb{N}$ and $e' \in E'$ there is $N \in \mathcal{N}_{\mu}$ such that

$$\langle e', f_n(x) \rangle | = |\langle e', f(x, t_n) \rangle| \le |\langle e', \psi(x) \rangle|$$
(7)

for every $x \in X \setminus N$. Due to (6) for every $\Lambda \in \Sigma$ and $e' \in E'$, (7) and the quasicompleteness of E we can apply the dominated convergence theorem for the Pettisintegral [19, Theorem 2, p. 162–163] and deduce

$$\lim_{n \to \infty} g_{\Lambda}(t_n) = \lim_{n \to \infty} \int_{\Lambda} f_n(x) \, \mathrm{d}\mu(x) = \int_{\Lambda} \widetilde{f}(x) \, \mathrm{d}\mu(x) = g_{\Lambda}(t_0). \bullet$$

The next lemma is the Leibniz' rule for differentiation under the integral sign for the Pettis-integral.

LEMMA 4.4 (Leibniz' rule). Let E be a quasi-complete lcHs, (X, Σ, μ) a measure space, $T \subset \mathbb{R}^d$ open and suppose that $f: X \times T \to E$ fulfils the following conditions.

- a) $f(\cdot, t)$ is Pettis-integrable on Σ for all $t \in T$,
- b) there is a μ -null set $N_0 \in \mathcal{N}_{\mu}$ with $f(x, \cdot) \in \mathcal{C}^1(T, E)$ for all $x \in X \setminus N_0$,
- c) for every $j \in \mathbb{N}$, $1 \leq j \leq d$, there is a Pettis-integrable function ψ_j on Σ such that

$$\forall e' \in E' \exists N \in \mathcal{N}_{\mu} \forall x \in X \setminus (N \cup N_0) : \left| (\partial_{t_j})^{\mathbb{K}} \langle e', f(x, \cdot) \rangle \right| \le \left| \langle e', \psi_j(x) \rangle \right|$$

Then $g_{\Lambda}: T \to E$, $g_{\Lambda}(t) := \int_{\Lambda} f(x,t) d\mu(x)$, is well-defined for every $\Lambda \in \Sigma$, $g_{\Lambda} \in C^{1}(T, E)$ and

$$(\partial_{t_j})^E g_{\Lambda}(t) = \int_{\Lambda} (\partial_{t_j})^E f(x,t) \,\mathrm{d}\mu(x), \quad t \in T.$$

Proof. First, we consider the case $\mathbb{K} = \mathbb{R}$. Let $\Lambda \in \Sigma$, $j \in \mathbb{N}$, $1 \leq j \leq d$, $t \in T$ and (h_n) be a real sequence converging to 0 such that $h_n \neq 0$ and $t + h_n e_j \in T$ for all n where e_j is the j-th unit vector in \mathbb{R}^d . Then

$$\frac{g_{\Lambda}(t+h_n e_j) - g_{\Lambda}(t)}{h_n} = \int_{\Lambda} \underbrace{\frac{f(x,t+h_n e_j) - f(x,t)}{h_n}}_{=:f_n(x)} d\mu(x).$$

We define the function $\tilde{f}: X \to E$ given by $\tilde{f}(x) := (\partial_{t_j})^E f(x,t)$ for $x \in X \setminus N_0$ and $\tilde{f}(x) := 0$ for $x \in N_0$. We observe that

$$\lim_{n \to \infty} \int_{\Lambda} \langle e', f_n(x) \rangle \, \mathrm{d}\mu(x) = \int_{\Lambda} (\partial_{t_j})^{\mathbb{K}} \langle e', f(x,t) \rangle \, \mathrm{d}\mu(x)$$
$$= \int_{\Lambda} \langle e', \partial_{t_j}^E f(x,t) \rangle \, \mathrm{d}\mu(x) = \int_{\Lambda} \langle e', \widetilde{f}(x) \rangle \, \mathrm{d}\mu(x) \tag{8}$$

holds for every $e' \in E'$ where we used the scalar Leibniz' rule for differentiation under the integral sign for the first equation which can be applied due to our assumptions (see [7, 5.7 Satz, p. 147–148]). For $e' \in E'$ there is $N \in \mathcal{N}_{\mu}$ such that for every $x \in X \setminus (N \cup N_0)$ and $n \in \mathbb{N}$ there is $\theta \in [0, 1]$ with

$$\langle e', f_n(x) \rangle = \frac{\langle e', f(x, t + h_n e_j) \rangle - \langle e', f(x, t) \rangle}{h_n} = (\partial_{t_j})^{\mathbb{K}} \langle e', f(x, t + \theta h_n e_j) \rangle$$

by the mean value theorem $(\mathbb{K} = \mathbb{R})$ implying

$$|\langle e', f_n(x) \rangle| = |(\partial_{t_j})^{\mathbb{K}} \langle e', f(x, t + \theta h_n e_j) \rangle| \le |\langle e', \psi_j(x) \rangle|.$$
(9)

Due to (8) for every $\Lambda \in \Sigma$ and $e' \in E'$, (9) and the quasi-completeness of E we can apply the dominated convergence theorem for the Pettis-integral [19, Theorem 2, p. 162–163] again and obtain that \tilde{f} is Pettis-integrable on Σ plus

$$(\partial_{t_j})^E g_{\Lambda}(t) = \lim_{n \to \infty} \frac{g_{\Lambda}(t + h_n e_j) - g_{\Lambda}(t)}{h_n} = \lim_{n \to \infty} \int_{\Lambda} f_n(x) \, \mathrm{d}\mu(x)$$
$$= \int_{\Lambda} \tilde{f}(x) \, \mathrm{d}\mu(x) = \int_{\Lambda} (\partial_{t_j})^E f(x, t) \, \mathrm{d}\mu(x).$$

The continuity of $(\partial_{t_j})^E g_{\Lambda}$ follows from Lemma 4.3 by replacing f with $(\partial_{t_j})^E f$. For $\mathbb{K} = \mathbb{C}$ we just have to substitute $\langle e', \cdot \rangle$ by $\operatorname{Re}\langle e', \cdot \rangle$ (real part) and $\operatorname{Im}\langle e', \cdot \rangle$ (imaginary part) in the considerations above.

Now, we are able to define the convolution of a vector-valued and a scalar-valued continuous function via the Pettis-integral, if one of them has compact support, and to show some of its basic properties which are known from the convolution of scalar-valued functions (scalar convolution). For the properties of the scalar convolution see e.g. [23, Chap. 26, p. 278–283].

LEMMA 4.5. Let E be a quasi-complete lcHs, $k, n \in \mathbb{N}_{0,\infty}$, $f \in \mathcal{C}^k(\mathbb{R}^d, E)$ and $g \in \mathcal{C}^n(\mathbb{R}^d)$, either one having compact support. The convolution

$$f * g \colon \mathbb{R}^d \to E, \quad (f * g)(x) \coloneqq \int_{\mathbb{R}^d} f(y)g(x - y) \,\mathrm{d}y,$$

is well-defined, $\operatorname{supp}(f * g) \subset \operatorname{supp} f + \operatorname{supp} g$, f * g = g * f, where

$$g * f \colon \mathbb{R}^d \to E, \quad (g * f)(x) := \int_{\mathbb{R}^d} g(y) f(x - y) \, \mathrm{d}y,$$

and $f * g \in \mathcal{C}^n(\mathbb{R}^d, E)$ plus

$$(\partial^{\beta})^{E}(f * g) = f * ((\partial^{\beta})^{\mathbb{K}}g), \quad |\beta| \le n,$$
(10)

$$(\partial^{\beta})^{E}(f * g) = \left((\partial^{\beta})^{E} f \right) * g, \quad |\beta| \le \min(k, n).$$
(11)

Proof. Let $h: \mathbb{R}^d \times \mathbb{R}^d \to E$, h(y, x) := f(y)g(x - y). First, we show that $h(\cdot, x)$ is Pettis-integrable on $\mathscr{L}(\mathbb{R}^d)$ for every $x \in \mathbb{R}^d$ implying that f * g is well-defined. We note that $\langle e', h(\cdot, x) \rangle \in \mathcal{L}^1(\mathbb{R}^d, \lambda)$ for every $e' \in E'$ and $x \in \mathbb{R}^d$. Let $x \in \mathbb{R}^d$ and $\Lambda \in \mathscr{L}(\mathbb{R}^d)$. We define the linear map

$$I_{\Lambda,x} \colon E' \to \mathbb{K}, \ I_{\Lambda,x}(e') := \int_{\Lambda} \langle e', h(y,x) \rangle \, \mathrm{d}y.$$

Setting $K_f := \operatorname{supp} f$ and $K_g := \operatorname{supp} g$, we observe that

$$I_{\Lambda,x}(e') = \int_{\Lambda\cap K_f} \langle e', f(y)g(x-y)\rangle \,\mathrm{d}y = \int_{\Lambda\cap (x-K_g)} \langle e', f(y)g(x-y)\rangle \,\mathrm{d}y.$$

If $K_f = \operatorname{supp} f$ is compact, we get

$$|I_{\Lambda,x}(e')| \leq \lambda(K_f) \sup\left\{ |e'(z)| \mid z \in f(K_f)g(x-K_f) \right\}.$$

The set $f(K_f)g(x - K_f)$ is compact in E and thus the closure of its absolutely convex hull is compact in E as well by [24, 9-2-10 Example, p. 134] because E is quasi-complete. Hence it follows that $I_{\Lambda,x} \in (E'_{\kappa})' \cong E$ by the theorem of Mackey–Arens meaning that there is $e_{\Lambda}(x) \in E$ such that

$$\langle e', e_{\Lambda}(x) \rangle = I_{\Lambda,x}(e') = \int_{\Lambda} \langle e', h(y,x) \rangle \, \mathrm{d}y$$

for all $e' \in E'$. Thus $h(\cdot, x)$ is Pettis-integrable on $\mathscr{L}(\mathbb{R}^d)$ and

$$(f * g)(x) = e_{\mathbb{R}^d}(x) \underset{(5)}{=} e_{K_f}(x) = e_{x-K_g}(x)$$

for every $x \in \mathbb{R}^d$ if $K_f = \text{supp } f$ is compact. If $K_g = \text{supp } g$ is compact, then the estimate

$$|I_{\Lambda,x}(e')| \le \lambda(x - K_g) \sup\left\{|e'(z)| \mid z \in f(x - K_g)g(K_g)\right\}$$

yields to the Pettis-integrability in the same manner.

Let $x \notin \operatorname{supp} f + \operatorname{supp} g$. If $y \notin \operatorname{supp} f$, then h(y, x) = 0. If $y \in \operatorname{supp} f$, then $x - y \notin \operatorname{supp} g$ and thus h(y, x) = 0. Hence we have $h(\cdot, x) = 0$ implying $\operatorname{supp}(f * g) \subset \operatorname{supp} f + \operatorname{supp} g$. From

$$\begin{aligned} \langle e', (f * g)(x) \rangle &= \int_{\mathbb{R}^d} \langle e', f(y)g(x - y) \rangle \, \mathrm{d}y = \int_{\mathbb{R}^d} \langle e', f(y) \rangle g(x - y) \, \mathrm{d}y \\ &= \big((e' \circ f) * g \big)(x) = \big(g * (e' \circ f) \big)(x) = \int_{\mathbb{R}^d} \langle e', g(y)f(x - y) \rangle \, \mathrm{d}y \end{aligned}$$

for every $x \in \mathbb{R}^d$ and $e' \in E'$, where we used the commutativity of scalar convolution for the fourth equation, it follows that

$$(f*g)(x) = e_{\mathbb{R}^d}(x) = (g*f)(x)$$

for every $x \in \mathbb{R}^d$.

Next, we show that $f * g \in C^n(\mathbb{R}^d, E)$ and (10) holds by applying Lemma 4.3 and 4.4. So we have to check that the conditions a)-c) of these lemmas are fulfilled. First, fix $x_0 \in \mathbb{R}^d$, let $\varepsilon > 0$ and $\beta \in \mathbb{N}_0^d$, $|\beta| \leq n$. If $K_f = \text{supp } f$ is compact, we set $h_{f,\beta} := (\partial_x^\beta)^E h_{|K_f \times \mathbb{B}_{\varepsilon}(x_0)}$ and observe that $h_{|K_f \times \mathbb{B}_{\varepsilon}(x_0)}(y, \cdot) \in C^n(\mathbb{B}_{\varepsilon}(x_0), E)$ for every $y \in K_f$ (condition b)). It follows from the theorem of Mackey-Arens and

$$\left| \int_{\omega} \langle e', h_{f,\beta}(y,x) \rangle \, \mathrm{d}Y \right| \le \lambda(K_f) \sup \left\{ |e'(z)| \, | \, z \in f(K_f)(\partial^{\beta})^{\mathbb{K}} g(\overline{\mathbb{B}_{\varepsilon}(x_0)} - K_f) \right\}$$

for every $e' \in E'$, $\omega \in \mathscr{L}(\mathbb{R}^d)_{|K_f}$ and $x \in \mathbb{B}_{\varepsilon}(x_0)$ that $h_{f,\beta}(\cdot, x)$ is Pettis-integrable on $\mathscr{L}(\mathbb{R}^d)_{|K_f}$ for every $x \in \mathbb{B}_{\varepsilon}(x_0)$ (condition a)). Now, we check that condition c) is satisfied. We observe that the estimate

$$\left| \int_{\omega} \langle e', f(y) \rangle \, \mathrm{d}y \right| \le \lambda(K_f) \sup \{ |e'(z)| \, | \, z \in f(K_f) \}$$

for every $e' \in E'$ and $\omega \in \mathscr{L}(\mathbb{R}^d)_{|K_f}$ implies that $f_{|K_f}$ is Pettis-integrable on $\mathscr{L}(\mathbb{R}^d)_{|K_f}$ due to the theorem of Mackey–Arens again. The inequality

$$\begin{aligned} |\langle e', h_{f,\beta}(y,x)\rangle| &= \left|\langle e', f(y)(\partial_x^\beta)^{\mathbb{K}}[x \mapsto g(x-y)]\rangle\right| \\ &\leq |\langle e', f(y)\rangle| \sup\{|(\partial^\beta)^{\mathbb{K}}g(z)| \mid z \in \overline{\mathbb{B}_{\varepsilon}(x_0)} - K_f\} \\ &\leq \left|\langle e', q_{\overline{\mathbb{B}_{\varepsilon}(x_0)} - K_f, n}(g) \cdot f(y)\rangle\right| \end{aligned}$$

for every $e' \in E'$ and $(y, x) \in K_f \times \mathbb{B}_{\varepsilon}(x_0)$ with the seminorm $q_{\overline{\mathbb{B}_{\varepsilon}(x_0)}-K_f, n}$ from (1) yields to condition c) being satisfied. Hence $f * g \in \mathcal{C}^n(\mathbb{B}_{\varepsilon}(x_0), E)$ by Lemma 4.3 if n = 0 and by Lemma 4.4 if n = 1 as well as

$$\partial_{x_j}^E (f * g)(x) = \partial_{x_j}^E \left[x \mapsto \int_{\mathbb{R}^d} f(y)g(x - y) \, \mathrm{d}y \right] \underset{(5)}{=} \partial_{x_j}^E \left[x \mapsto \int_{K_f} f(y)g(x - y) \, \mathrm{d}y \right]$$
$$= \int_{K_f} f(y)(\partial_{x_j})^{\mathbb{K}} [x \mapsto g(x - y)] \, \mathrm{d}y \underset{(5)}{=} \int_{\mathbb{R}^d} f(y)(\partial^{e_j})^{\mathbb{K}} g(x - y) \, \mathrm{d}y$$
$$= \left(f * \left((\partial^{e_j})^{\mathbb{K}} g \right) \right)(x)$$

for every $x \in \mathbb{B}_{\varepsilon}(x_0)$. Letting $\varepsilon \to \infty$, we obtain the result for n = 0 and n = 1if $K_f = \operatorname{supp} f$ is compact. For $n \geq 2$ it follows from induction on the order $|\beta|$. If $K_g = \operatorname{supp} g$ is compact, the same approach with $h_{g,\beta} := (\partial_x^{\beta})^E h_{|K_g \times \mathbb{B}_{\varepsilon}(x_0)}$ instead of $h_{f,\beta}$ proves the statement. Furthermore, for $|\beta| \leq \min(k, n)$ we get

$$\begin{aligned} \langle e', (\partial^{\beta})^{E}(f * g)(x) \rangle \\ &= \int_{\mathbb{R}^{d}} \langle e', f(y)(\partial^{\beta})^{\mathbb{K}}g(x - y) \rangle \, \mathrm{d}y = \int_{\mathbb{R}^{d}} (e' \circ f)(y)(\partial^{\beta})^{\mathbb{K}}g(x - y) \, \mathrm{d}y \\ &= \left((e' \circ f) * \left((\partial^{\beta})^{\mathbb{K}}g \right) \right)(x) = \left((\partial^{\beta})^{\mathbb{K}}(e' \circ f) * g \right)(x) \\ &= \left((e' \circ (\partial^{\beta})^{E}f) * g \right)(x) = \int_{\mathbb{R}^{d}} \langle e', (\partial^{\beta})^{E}f(y)g(x - y) \rangle \, \mathrm{d}y \end{aligned}$$

for every $e' \in E'$ and $x \in \mathbb{R}^d$, where we used the corresponding result for the scalar convolution for the fourth equation, implying $(\partial^\beta)^E(f*g) = ((\partial^\beta)^E f)*g$.

Looking at the lemma above, we see that it differs a bit from the properties known from the convolution of two scalar-valued functions. It is an open problem whether we actually have $f * g \in C^{\max(k,n)}(\mathbb{R}^d, E)$ and (11) for $|\beta| \leq k$ under the assumptions of the lemma. But since we only apply the lemma above in the case $n = \infty$, this does not affect us. We recall the construction of a mollifier from [23, p. 155–156]. Let

$$\rho \colon \mathbb{R}^d \to \mathbb{R}, \quad \rho(x) := \begin{cases} C \exp(-1/(1-|x|^2)), & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}$$

where $C := \left(\int_{\mathbb{B}_1(0)} \exp\left(-\frac{1}{1-|x|^2}\right) \mathrm{d}x\right)^{-1}$. For $n \in \mathbb{N}$ we define the mollifier ρ_n given by $\rho_n(x) := n^d \rho(nx), x \in \mathbb{R}^d$. Then we have $\rho_n \in \mathcal{C}^{\infty}_c(\mathbb{R}^d), \rho_n \ge 0$, $\operatorname{supp} \rho_n = \overline{\mathbb{B}_{1/n}(0)}$ and $\int_{\mathbb{R}^d} \rho_n(x) \mathrm{d}x = 1$.

We can extend a function $f \in \mathcal{C}_c^k(\Omega, E)$, $k \in \mathbb{N}_{0,\infty}$ and $\Omega \subset \mathbb{R}^d$, to a function $f_{\text{ex}} \in \mathcal{C}_c^k(\mathbb{R}^d, E)$ by setting $f_{\text{ex}} := f$ on Ω and $f_{\text{ex}} := 0$ on $\mathbb{R}^d \setminus \Omega$. In this way the convolution $f * g := (f_{\text{ex}} * g)_{|\Omega}$ with a function $g \in \mathcal{C}(\mathbb{R}^d)$ is a well-defined function on Ω if E is quasi-complete, and we have the following approximation by regularisation in analogy to the scalar-valued case (see e.g. [23, Chap. 15, Corollary 1, p. 158]).

LEMMA 4.6. Let E be a quasi-complete lcHs, $k \in \mathbb{N}_{0,\infty}$, \mathcal{V}^k be a family of locally bounded weights on an open set $\Omega \subset \mathbb{R}^d$ and $f \in \mathcal{C}^k_c(\Omega, E)$. Then $(f * \rho_n)$ converges to f in $\mathcal{CV}^k_0(\Omega, E)$ as $n \to \infty$.

Proof. Due to Lemma 4.5 we obtain that $f_{ex} * \rho_n \in \mathcal{C}^{\infty}_c(\mathbb{R}^d, E)$ for every $n \in \mathbb{N}$. Since \mathcal{V}^k is locally bounded on Ω , we derive $f * \rho_n \in \mathcal{CV}^k_0(\Omega, E)$. Let $\varepsilon > 0, j \in J, l \in \langle k \rangle$ and $\alpha \in \mathfrak{A}$. For $\beta \in \mathbb{N}^d_0, |\beta| \leq l$, there is $\delta_\beta > 0$ such that for all $x \in \Omega$ and $y \in \mathbb{R}^d$ with $|y| = |(x - y) - x| \leq \delta_\beta$ we have

$$p_{\alpha}\left((\partial^{\beta})^{E} f_{\text{ex}}(x-y) - (\partial^{\beta})^{E} f(x)\right) < \varepsilon$$
(12)

because the function $(\partial^{\beta})^{E} f_{ex}$ is uniformly continuous on whole \mathbb{R}^{d} as it is continuous with compact support. Therefore we deduce for all $n > 1/\delta_{\beta}$ that $\operatorname{supp} \rho_{n} = \overline{\mathbb{B}_{1/n}(0)} \subset \overline{\mathbb{B}_{\delta_{\beta}}(0)}$ and hence

$$p_{\alpha}((\partial^{\beta})^{E}(f*\rho_{n}-f)(x))$$

$$= p_{\alpha}(((\partial^{\beta})^{E}f)*\rho_{n}(x) - (\partial^{\beta})^{E}f(x))$$

$$= p_{\alpha}(\rho_{n}*((\partial^{\beta})^{E}f)(x) - (\partial^{\beta})^{E}f(x))$$

$$= p_{\alpha}\left(\int_{\mathbb{R}^{d}}(\partial^{\beta})^{E}f_{ex}(x-y)\rho_{n}(y) \,\mathrm{d}y - (\partial^{\beta})^{E}f(x)\right)$$

$$= p_{\alpha}\left(\int_{\mathbb{R}^{d}}(\partial^{\beta})^{E}f_{ex}(x-y)\rho_{n}(y) - (\partial^{\beta})^{E}f(x)\rho_{n}(y) \,\mathrm{d}y\right)$$

$$= p_{\alpha}\left(\int_{\mathbb{B}^{1/n}(0)}(\partial^{\beta})^{E}f_{ex}(x-y)\rho_{n}(y) - (\partial^{\beta})^{E}f(x)\rho_{n}(y) \,\mathrm{d}y\right)$$

$$\leq \varepsilon \int_{\mathbb{R}^{d}}\rho_{n}(y) \,\mathrm{d}y = \varepsilon$$

by Lemma 4.5 for every $x \in \Omega$. As $0 \in \operatorname{supp} \rho_n$, we get

$$\operatorname{supp}(\partial^{\beta})^{E}(f * \rho_{n} - f) \subset (\operatorname{supp} f + \operatorname{supp} \rho_{n}) = \left(\operatorname{supp} f + \overline{\mathbb{B}}_{1/n}(0)\right)$$

for every $|\beta| \leq l$ and $n \in \mathbb{N}$ by virtue of Lemma 4.5. Since supp $f \subset \Omega$ is compact and Ω open, there is r > 0 such that $(\operatorname{supp} f + \overline{\mathbb{B}_r(0)}) \subset \Omega$ yielding

$$\operatorname{supp}(\partial^{\beta})^{E}(f * \rho_{n} - f) \subset \left(\operatorname{supp} f + \overline{\mathbb{B}_{r}(0)}\right) =: K$$

for all $n \ge 1/r$. Choosing $\delta := \min\{\delta_{\beta} | \beta \in \mathbb{N}_{0}^{d}, |\beta| \le l\} > 0$, we obtain for all $n > \max\{1/\delta, 1/r\}$ that

$$\left|f*\rho_n - f\right|_{j,l,\alpha} = \sup_{\substack{x \in K\\\beta \in \mathbb{N}_0^d, |\beta| \le l}} p_\alpha \left((\partial^\beta)^E (f*\rho_n - f)(x) \right) \nu_{j,l}(x) \le \varepsilon \sup_{x \in K} \nu_{j,l}(x)$$

which implies our statement since \mathcal{V}^k is locally bounded on Ω and $K \subset \Omega$ is compact.

5. Approximation property. Finally, we dedicate our last section to our main theorem. We start with the case k = 0.

PROPOSITION 5.1. Let E be an lcHs and \mathcal{V}^0 a family of locally bounded weights which is locally bounded away from zero on a locally compact Hausdorff space Ω . Then the following statements hold.

- a) $\mathcal{C}^0_c(\Omega) \otimes E$ is dense in $\mathcal{CV}^0_0(\Omega, E)$.
- b) For any $f \in \mathcal{C}^0_c(\Omega, E)$ and any open neighbourhood V of supp f, for every $\varepsilon > 0$, $j \in J$ and $\alpha \in \mathfrak{A}$, there is $g \in \mathcal{C}^0_c(\Omega) \otimes E$ such that supp $g \subset V$ and $|f g|_{j,0,\alpha} \leq \varepsilon$.
- c) If E is complete, then

$$\mathcal{CV}_0^0(\Omega, E) \cong \mathcal{CV}_0^0(\Omega) \varepsilon E \cong \mathcal{CV}_0^0(\Omega) \widehat{\otimes}_{\varepsilon} E.$$

d) $\mathcal{CV}_0^0(\Omega)$ has the approximation property.

Proof. First, we consider part a). Due to Corollary 3.16 a) and Remark 3.9 $C_c^0(\Omega) \otimes E$ can be identified with a subspace of $C\mathcal{V}_0^0(\Omega, E)$ equipped with the induced topology since \mathcal{V}^0 is locally bounded and locally bounded away from zero.

Let $f \in \mathcal{CV}_0^0(\Omega, E)$, $\varepsilon > 0$, $j \in J$ and $\alpha \in \mathfrak{A}$ and fix the notation $\nu_j := \nu_{j,0}$. Then there is a compact set $\widetilde{K} \subset \Omega$ such that

$$|f|_{\Omega\setminus\widetilde{K},j,0,\alpha} = \sup_{x\in\Omega\setminus\widetilde{K}} p_{\alpha}(f(x))\nu_{j}(x) < \varepsilon.$$

Let $K := \widetilde{K}$. Since Ω is locally compact, every $w \in K$ has an open, relatively compact neighbourhood $U_w \subset \Omega$. As K is compact and $K \subset \bigcup_{w \in K} U_w$, there are $m \in \mathbb{N}$ and $w_i \in K, 1 \leq i \leq m$, such that

$$K \subset \bigcup_{i=1}^m U_{w_i} =: W \subset \Omega.$$

The set W is open and relatively compact because it is a finite union of open, relatively compact sets. The local boundedness of \mathcal{V}^0 and relative compactness of W imply that

$$N := 1 + \sup_{x \in \overline{W}} \nu_j(x) < \infty.$$

For $x \in K$ we define $V_x := \{y \in \Omega \mid p_\alpha(f(y) - f(x)) < \frac{\varepsilon}{N}\}$. Then $V_x = f^{-1}(B_\alpha(f(x), \frac{\varepsilon}{N}))$, where $B_\alpha(f(x), \frac{\varepsilon}{N}) := \{e \in E \mid p_\alpha(e - f(x)) < \frac{\varepsilon}{N}\}$, implying that V_x is open in Ω since f is continuous. Hence we get $K \subset \bigcup_{x \in K} V_x$ and conclude that there are $n \in \mathbb{N}$ and $x_i \in K, 1 \le i \le n$, such that $K \subset \bigcup_{i=1}^n V_{x_i}$ from the compactness of K. We note that

$$K = (K \cap \overline{W}) \subset \bigcup_{i=1}^{n} (V_{x_i} \cap \overline{W}).$$
(13)

The sets $V_{x_i} \cap \overline{W}$ are open in the compact Hausdorff space \overline{W} with respect to the topology induced by Ω . Since the compact Hausdorff space \overline{W} is normal by [4, Chap. IX, §4.1, Proposition 1, p. 181] and K is closed in \overline{W} , there is a family of non-negative real-valued continuous functions (φ_i) with $\operatorname{supp} \varphi_i \subset (V_{x_i} \cap \overline{W})$ such that $\sum_{i=1}^n \varphi_i = 1$ on K and $\sum_{i=1}^n \varphi_i \leq 1$ on \overline{W} by [4, Chap. IX, §4.3, Corollary, p. 186]. By trivially extending φ_i on $\Omega \setminus \overline{W}$, we obtain $\varphi_i \in C_c^0(\Omega)$ because \overline{W} is compact. We define

$$g := \sum_{i=1}^{n} \varphi_i \otimes f(x_i) \in \mathcal{C}_c^0(\Omega) \otimes E$$

and observe $\operatorname{supp} g \subset \bigcup_{i=1}^{n} (V_{x_i} \cap \overline{W})$. If $x \in K$, then $\varphi_i(x) p_\alpha(f(x) - f(x_i)) = 0$ if $x \notin V_{x_i} \cap \overline{W}$, and

$$p_{\alpha}(f(x) - g(x)) = p_{\alpha} \left(\sum_{i=1}^{n} \varphi_i(x) (f(x) - f(x_i)) \right) \le \sum_{i=1}^{n} \varphi_i(x) p_{\alpha}(f(x) - f(x_i))$$
$$\le \sum_{i=1}^{n} \varphi_i(x) \frac{\varepsilon}{N} = \frac{\varepsilon}{N}$$

yielding to

$$\sup_{x \in K} p_{\alpha}((f-g)(x))\nu_{j}(x) \leq \sup_{x \in K} \frac{\varepsilon}{N} \nu_{j}(x) \leq \sup_{x \in \overline{W}} \frac{\varepsilon}{N} \nu_{j}(x) = \frac{\varepsilon}{N} \cdot (N-1) < \varepsilon.$$

If $x \notin K$, then $\varphi_i(x)f(x_i) = 0$ if $x \notin (V_{x_i} \cap \overline{W}) \setminus K$. If $x \in (V_{x_i} \cap \overline{W}) \setminus K$, then

$$p_{\alpha}(\varphi_{i}(x)f(x_{i})) \leq \varphi_{i}(x)\left(p_{\alpha}(f(x_{i}) - f(x)) + p_{\alpha}(f(x))\right) \leq \varphi_{i}(x)\left(\frac{\varepsilon}{N} + p_{\alpha}(f(x))\right)$$

yielding to

$$\begin{split} &|f - g|_{\Omega \setminus K, j, 0, \alpha} \\ &= \sup_{x \in \Omega \setminus K} p_{\alpha}((f - g)(x))\nu_{j}(x) \leq \sup_{x \in \Omega \setminus K} \left(p_{\alpha}(f(x)) + p_{\alpha}(g(x)) \right) \nu_{j}(x) \\ &\leq \varepsilon + \sup_{x \in \Omega \setminus K} \sum_{i=1}^{n} p_{\alpha}(\varphi_{i}(x)f(x_{i}))\nu_{j}(x) \leq \varepsilon + \sup_{x \in \Omega \setminus K} \sum_{i=1}^{n} \varphi_{i}(x) \left(\frac{\varepsilon}{N} + p_{\alpha}(f(x)) \right) \nu_{j}(x) \\ &\leq 2\varepsilon + \frac{\varepsilon}{N} \sup_{x \in \Omega \setminus K} \sum_{i=1}^{n} \varphi_{i}(x)\nu_{j}(x) \leq 2\varepsilon + \frac{\varepsilon}{N} \sup_{x \in \overline{W}} \sum_{i=1}^{n} \varphi_{i}(x)\nu_{j}(x) \\ &\leq 2\varepsilon + \frac{\varepsilon}{N} \cdot (N - 1) < 3\varepsilon \end{split}$$

implying

$$|f - g|_{j,0,\alpha} < 4\varepsilon$$

which proves part a).

Part c) follows from a) and Corollary 3.16 b) because $\mathcal{CV}_0^0(\Omega)$ is complete by Proposition 3.7. Part d) is implied by part c). Let us turn to part b). Let $f \in \mathcal{C}_c^0(\Omega, E)$ and V be an open neighbourhood of $\widetilde{K} := \operatorname{supp} f$. Then we can replace (13) by

$$K = (K \cap V \cap \overline{W}) \subset \bigcup_{i=1}^{n} (V_{x_i} \cap V \cap \overline{W})$$

and then the open sets V_{x_i} by the open sets $V_{x_i} \cap V$ in what follows (13). This gives

$$\operatorname{supp} g \subset \Bigl(\bigcup_{i=1}^n (V_{x_i} \cap V \cap \overline{W}) \Bigr) \subset V$$

proving b). \blacksquare

If Ω is an open subset of \mathbb{R}^d , we can choose a smooth partition of unity (see e.g. [12, Theorem 1.4.5, p. 28]) and even deduce that $\mathcal{C}^{\infty}_{c}(\Omega) \otimes E$ is dense in $\mathcal{CV}^{0}_{0}(\Omega, E)$ under the assumptions of the proposition above.

The proof of part a) is a modification of the proof of [2, 5.1 Satz, p. 204] by Bierstedt. Since Ω is locally compact and not just a completely regular Hausdorff space, we can use the partition of unity from [4, Chap. IX, §4.1, Proposition 1, p. 181]. Bierstedt has to use the partition of unity from [20, 23, Lemma 2, p. 71] and due to the assumptions of this lemma he cannot choose $K = \tilde{K}$ but has to use

$$K' := \{ x \in \Omega \mid p_{\alpha}(f(x))\nu_{j}(x) \ge \varepsilon \} \subset \widetilde{K}.$$

Bierstedt's assumption that ν_j is upper semi-continuous guarantees that K' is closed and thus compact as a closed subset of the compact set \tilde{K} . Choosing K := K', the proof above works as well where the existence of the open set $W \subset \Omega$ is a consequence of the upper semi-continuity of ν_j again. Comparing Theorem 1.1 and Proposition 5.1, we see that Theorem 1.1 is far more general concerning the spaces Ω involved but the condition of \mathcal{V}^0 being a locally bounded family in Proposition 5.1 is weaker than the condition of being a family of upper semi-continuous weights in Theorem 1.1. Let us phrase our main theorem.

THEOREM 5.2. Let E be an lcHs, $k \in \mathbb{N}_{\infty}$ and \mathcal{V}^k be a family of locally bounded weights which is locally bounded away from zero on an open set $\Omega \subset \mathbb{R}^d$. Let $\mathcal{CV}_0^k(\Omega)$ be barrelled and $\mathcal{C}_c^k(\Omega, E)$ dense in $\mathcal{CV}_0^k(\Omega, E)$. Then the following statements hold.

- a) $\mathcal{C}^{\infty}_{c}(\Omega) \otimes E$ is dense in $\mathcal{CV}^{k}_{0}(\Omega, E)$.
- b) If E is complete, then

 $\mathcal{CV}_0^k(\Omega, E) \cong \mathcal{CV}_0^k(\Omega) \varepsilon E \cong \mathcal{CV}_0^k(\Omega) \widehat{\otimes}_{\varepsilon} E.$

c) $\mathcal{CV}_0^k(\Omega)$ has the approximation property.

Proof. It suffices to prove part a) because part b) follows from a) and Corollary 3.16 b) since $\mathcal{CV}_0^k(\Omega)$ is complete by Proposition 3.7. Then part c) is a consequence of b). Let us turn to part a). Since $\mathcal{CV}_0^k(\Omega)$ is barrelled, \mathcal{V}^k locally bounded and locally bounded away from zero, the space $\mathcal{C}_c^{\infty}(\Omega) \otimes E$ can be considered as a topological subspace of $\mathcal{CV}_0^k(\Omega) \otimes_{\varepsilon} E$ by Corollary 3.16 a) and Remark 3.9 when equipped with the induced topology.

Let $f \in \mathcal{CV}_0^k(\Omega, E)$, $\varepsilon > 0$, $j \in J$, $l \in \langle k \rangle$ and $\alpha \in \widehat{\mathfrak{A}}$ where $(p_\alpha)_{\alpha \in \widehat{\mathfrak{A}}}$ is the system of seminorms describing the locally convex topology of the completion \widehat{E} of E. In the following we consider functions with values in E also as functions with values in \widehat{E} and note that $\mathcal{CV}_0^k(\Omega, \widehat{E})$ is the completion of $\mathcal{CV}_0^k(\Omega, E)$ by Proposition 3.7. Thus the topologies of $\mathcal{CV}_0^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, \widehat{E})$ coincide on $\mathcal{CV}_0^k(\Omega, E)$. The density of $\mathcal{C}_c^k(\Omega, E)$ in $\mathcal{CV}_0^k(\Omega, E)$ yields that there is $\widetilde{f} \in \mathcal{C}_c^k(\Omega, E)$ such that $|f - \widetilde{f}|_{j,l,\alpha} < \varepsilon/3$. Further, there is $N_0 \in \mathbb{N}$ with $|\tilde{f} - \tilde{f} * \rho_n|_{j,l,\alpha} < \varepsilon/3$ for all $n \ge N_0$ by Lemma 4.6 as \hat{E} is complete. Let $K_1 := \operatorname{supp} \tilde{f}$ and choose an open neighbourhood V of K_1 such that V is relatively compact in Ω which is possible since K_1 is compact and $\Omega \subset \mathbb{R}^d$ open. Since \mathcal{V}^k is locally bounded away from zero, there is $i \in J$ such that

$$C_1 := \sup_{x \in \overline{V}} \nu_{i,0}(x)^{-1} = \left(\inf_{x \in \overline{V}} \nu_{i,0}(x)\right)^{-1} < \infty.$$

From the relative compactness of V in Ω it follows that there is $N_1 \in \mathbb{N}$ such that

$$\overline{V} + \overline{\mathbb{B}_{1/n}(0)} \subset \Omega$$

for all $n \geq N_1$. Choosing $N_2 := \max\{N_0, N_1\}$ and defining the compact set $K_2 := \overline{V} + \overline{\mathbb{B}_{1/N_2}(0)} \subset \Omega$, we get that

$$C_2 := \sup_{x \in K_2} \nu_{j,l}(x) < \infty$$

because \mathcal{V}^k is locally bounded. Further, we estimate

$$C_3 := \sup_{\beta \in \mathbb{N}_0^d, |\beta| \le l} \int_{\mathbb{R}^d} \left| \partial^{\beta} \rho_{N_2}(y) \right| \mathrm{d}y \le (N_2)^l \sup_{\beta \in \mathbb{N}_0^d, |\beta| \le l} \int_{\mathbb{R}^d} \left| \partial^{\beta} \rho(y) \right| \mathrm{d}y < \infty.$$

By virtue of Proposition 5.1 b) there is $g = \sum_{m=1}^{q} g_m \otimes e_m \in \mathcal{C}^0_c(\Omega) \otimes E$ such that $\operatorname{supp} g \subset V$ and

$$|\widetilde{f} - g|_{i,0,\alpha} < \frac{\varepsilon}{3C_1C_2C_3}$$

By Lemma 4.5 we observe that $g * \rho_{N_2} \in \mathcal{C}^\infty_c(\Omega, E)$ with

$$\operatorname{supp}(g * \rho_{N_2}) \subset \overline{V} + \overline{\mathbb{B}_{1/N_2}(0)} = K_2 \subset \Omega$$

and

$$g * \rho_{N_2} = \sum_{m=1}^{q} (g_m * \rho_{N_2}) \otimes e_m \in \mathcal{C}^{\infty}_c(\Omega) \otimes E.$$

Thus we have by Lemma 4.5

$$\operatorname{supp}(\widetilde{f} * \rho_{N_2}) \subset \overline{V} + \overline{\mathbb{B}_{1/N_2}(0)} = K_2$$

yielding

$$\operatorname{supp}(\widetilde{f} * \rho_{N_2} - g * \rho_{N_2}) \subset \overline{V} + \overline{\mathbb{B}_{1/N_2}(0)} = K_2 \subset \Omega$$

and

$$\begin{split} &|\tilde{f}*\rho_{N_{2}}-g*\rho_{N_{2}}|_{j,l,\alpha} = \sup_{\substack{x\in K_{2}\\\beta\in\mathbb{N}_{0}^{d},|\beta|\leq l}} p_{\alpha}\big((\tilde{f}-g)*(\partial^{\beta}\rho_{N_{2}})(x)\big)\nu_{j,l}(x)\big) \\ &= \sup_{\substack{x\in K_{2}\\\beta\in\mathbb{N}_{0}^{d},|\beta|\leq l}} p_{\alpha}\Big(\int_{\mathbb{R}^{d}} (\partial^{\beta}\rho_{N_{2}})(x-y)\big(\tilde{f}_{\mathrm{ex}}(y)-g_{\mathrm{ex}}(y)\big)\,\mathrm{d}y\Big)\nu_{j,l}(x) \\ &\leq \sup_{\substack{x\in K_{2}\\\beta\in\mathbb{N}_{0}^{d},|\beta|\leq l}} \int_{\mathbb{R}^{d}} \left|(\partial^{\beta}\rho_{N_{2}})(x-y)\right|\,\mathrm{d}y\sup_{\substack{z\in\mathrm{supp}(\tilde{f})\\\cup\,\mathrm{supp}(g)}} p_{\alpha}(\tilde{f}(z)-g(z))\nu_{j,l}(x) \\ &= \sup_{\substack{x\in K_{2}\\\beta\in\mathbb{N}_{0}^{d},|\beta|\leq l}} \int_{\mathbb{R}^{d}} \left|(\partial^{\beta}\rho_{N_{2}})(y)\right|\,\mathrm{d}y\sup_{z\in\overline{V}} p_{\alpha}(\tilde{f}(z)-g(z))\nu_{j,l}(x) \end{split}$$

$$\leq C_3 \left(\sup_{x \in K_2} \nu_{j,l}(x)\right) \left(\sup_{z \in \overline{V}} p_\alpha(\widetilde{f}(z) - g(z))\right)$$
$$= C_3 C_2 \sup_{z \in \overline{V}} p_\alpha(\widetilde{f}(z) - g(z)) \nu_{i,0}(z) \nu_{i,0}(z)^{-1}$$
$$\leq C_3 C_2 C_1 |\widetilde{f} - g|_{i,0,\alpha} < \frac{\varepsilon}{3}.$$

Therefore we deduce

$$|f - g * \rho_{N_2}|_{j,l,\alpha} \le |f - \widetilde{f}|_{j,l,\alpha} + |\widetilde{f} - \widetilde{f} * \rho_{N_2}|_{j,l,\alpha} + |\widetilde{f} * \rho_{N_2} - g * \rho_{N_2}|_{j,l,\alpha} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

If we keep in mind that $f \in \mathcal{CV}_0^k(\Omega, E)$ and $g * \rho_{N_2} \in \mathcal{C}_c^{\infty}(\Omega) \otimes E$, it follows that $\mathcal{C}_c^{\infty}(\Omega) \otimes E$ is dense in $\mathcal{CV}_0^k(\Omega, E)$ with respect to the topology of $\mathcal{CV}_0^k(\Omega, \widehat{E})$. However, the latter space is just the completion of $\mathcal{CV}_0^k(\Omega, E)$ and thus the topologies of $\mathcal{CV}_0^k(\Omega, E)$ and $\mathcal{CV}_0^k(\Omega, \widehat{E})$ coincide on $\mathcal{CV}_0^k(\Omega, E)$. Hence $\mathcal{C}_c^{\infty}(\Omega) \otimes E$ is dense in $\mathcal{CV}_0^k(\Omega, E)$.

 $\mathcal{C}_{c}^{k}(\Omega, E)$ is dense in $\mathcal{CV}_{0}^{k}(\Omega, E)$ by Lemma 3.14 if the latter space fulfils the cut-off criterion and the family \mathcal{V}^{k} is locally bounded. $\mathcal{CV}_{0}^{k}(\Omega)$ is a Fréchet space and thus barrelled by Proposition 3.7 if the J in $\mathcal{V}^{k} = (\nu_{j,l})_{j \in J, l \in \langle k \rangle}$ is countable. Let us complement what we said about the standard structure of a family of weights (see the remarks below Definition 3.2) by our additional conditions on the weights collected so far. The standard structure of a (countable) locally bounded family \mathcal{V}^{k} which is bounded away from zero on a locally compact Hausdorff space Ω , resp. on an open set $\Omega \subset \mathbb{R}^{d}$, is given by the following. Let $J := \mathbb{N}$, $(\Omega_{j})_{j \in J}$, be a family of sets such that $\Omega_{j} \subset \Omega_{j+1}$ for all $j \in J$ with $\Omega = \bigcup_{i \in J} \Omega_{j}$ and

$$\forall K \subset \Omega \text{ compact } \exists j \in J : K \subset \Omega_j.$$

Let $\tilde{\nu}_{j,l} \colon \Omega \to (0,\infty)$ be continuous for all $j \in J$, $l \in \langle k \rangle$ and increasing in $j \in J$ and in $l \in \langle k \rangle$ such that

$$\nu_{j,l}(x) = \chi_{\Omega_j}(x)\widetilde{\nu}_{j,l}(x), \quad x \in \Omega,$$
(14)

for every $j \in J$ and $l \in \langle k \rangle$ where χ_{Ω_j} is the indicator function of Ω_j . If $\Omega \neq \mathbb{R}^d$, then the cut-off criterion may add some restrictions on the structure of the sequence (Ω_j) , e.g. a positive distance from the boundary $\partial \Omega_j$ of Ω_j to the boundary $\partial \Omega_{j+1}$ of Ω_{j+1} for all j.

EXAMPLE 5.3. Let E be an lcHs, $k \in \mathbb{N}_{\infty}$ and $\Omega \subset \mathbb{R}^d$ open. Theorem 5.2 can be applied to the following spaces:

- a) $\mathcal{C}^k(\Omega, E)$ with the topology of uniform convergence of all partial derivatives up to order k on compact subsets of Ω ,
- b) the Schwartz space $\mathcal{S}(\mathbb{R}^d, E)$,
- c) the space $\mathcal{O}_M(\mathbb{R}^d, E)$ of multipliers of $\mathcal{S}(\mathbb{R}^d)$,

d) let
$$\Omega_j := \{x = (x_1, x_2) \in \mathbb{R}^2 \mid 1/(j+1) < |x_2| < j+1\}$$
 for all $j \in \mathbb{N}$ and

$$\mathcal{C}^k_{\exp}(\mathbb{R}^2 \setminus \mathbb{R}, E) := \left\{ f \in \mathcal{C}^k(\mathbb{R}^2 \setminus \mathbb{R}, E) \, | \, \forall \, j \in \mathbb{N}, \, l \in \langle k \rangle, \, \alpha \in \mathfrak{A} : |f|_{j,l,\alpha} < \infty \right\}$$

where

$$|f|_{j,l,\alpha} := \sup_{\substack{(x_1,x_2)\in\Omega_j\\\beta\in\mathbb{N}^2_\alpha, |\beta|\leq l}} p_\alpha\big((\partial^\beta)^E f(x_1,x_2)\big) e^{-|x_1|/(j+1)}$$

Proof. a) From Example 3.5 a) we obtain $\mathcal{C}^k(\Omega, E) = \mathcal{CW}_0^k(\Omega, E)$ with $\mathcal{W}^k := \{\nu_{j,l} := \chi_{\Omega_j} \mid j \in \mathbb{N}, l \in \langle k \rangle\}$ where $(\Omega_j)_{j \in \mathbb{N}}$ is a compact exhaustion of Ω . The family of weights \mathcal{W}^k is locally bounded and locally bounded away from zero. The Fréchet space $\mathcal{C}^k(\Omega)$ is barrelled and the cut-off criterion is fulfilled by Example 3.12.

b) Due to Example 3.5 b) we have $\mathcal{S}(\mathbb{R}^d, E) = \mathcal{CV}_0^{\infty}(\mathbb{R}^d, E)$ with $\mathcal{V}^{\infty} := \{\nu_{j,l} \mid j \in \mathbb{N}, l \in \mathbb{N}_0\}$ where $\nu_{j,l}(x) := (1+|x|^2)^{l/2}$ for $x \in \mathbb{R}^d$. The family of weights is locally bounded and bounded away from zero, the Fréchet space $\mathcal{S}(\mathbb{R}^d)$ is barrelled and $\mathcal{S}(\mathbb{R}^d, E)$ fulfils the cut-off criterion by Example 3.12.

c) The space of multipliers is defined by

$$\mathcal{O}_M(\mathbb{R}^d, E) := \{ f \in \mathcal{C}^{\infty}(\mathbb{R}^d, E) \mid \forall \ g \in \mathcal{S}(\mathbb{R}^d), \ l \in \mathbb{N}_0, \ \alpha \in \mathfrak{A} : \|f\|_{g,l,\alpha} < \infty \}$$

where

$$||f||_{g,l,\alpha} := \sup_{\substack{x \in \mathbb{R}^d \\ \beta \in \mathbb{N}^d_0, |\beta| \le l}} p_\alpha \left((\partial^\beta)^E f(x) \right) |g(x)|$$

(see [21, 3⁰), p. 97]). The space $\mathcal{O}_M(\mathbb{R}^d)$ is barrelled by [11, Chap. II, §4, n°4, Théorème 16, p. 131]. Let $J := \{j \subset \mathcal{S}(\mathbb{R}^d) \mid j \text{ finite}\}$ and define the family \mathcal{V}^{∞} of weights given by $\nu_{j,l}(x) := \max_{g \in j} |g(x)|, x \in \mathbb{R}^d$, for $j \in J$ and $l \in \mathbb{N}_0$. It is easily seen that the system of seminorms generated by

$$|f|_{j,l,\alpha} := \sup_{\substack{x \in \mathbb{R}^d \\ \beta \in \mathbb{N}^d_0, |\beta| \le l}} p_{\alpha} \left((\partial^{\beta})^E f(x) \right) \nu_{j,l}(x), \quad f \in \mathcal{O}_M(\mathbb{R}^d, E),$$

for $j \in J$, $l \in \mathbb{N}_0$ and $\alpha \in \mathfrak{A}$ induces the same topology on $\mathcal{O}_M(\mathbb{R}^d, E)$. However, the family \mathcal{V}^{∞} is directed, locally bounded and bounded away from zero. Further, for every $\varepsilon > 0$ there is r > 0 such that $(1 + |x|^2)^{-1} < \varepsilon$ for all $x \notin \overline{\mathbb{B}_r(0)} =: K$ which implies for $j \in J$ and $l \in \mathbb{N}_0$ that

$$\nu_{j,l}(x) \le \varepsilon \max_{g \in j} |g(x)(1+|x|^2)| = \varepsilon \nu_{i,l}(x), \quad x \notin K,$$

where $i := \{g \cdot (1 + |\cdot|^2) | g \in j\}$ is a finite subset of $\mathcal{S}(\mathbb{R}^d)$. From Remark 3.4 we conclude that $\mathcal{O}_M(\mathbb{R}^d, E) = \mathcal{CV}^{\infty}(\mathbb{R}^d, E) = \mathcal{CV}^{\infty}_0(\mathbb{R}^d, E)$. Due to Remark 3.11 we note that $\mathcal{O}_M(\mathbb{R}^d, E)$ satisfies the cut-off criterion.

d) The family \mathcal{V}^k given by $\nu_{j,l}(x_1, x_2) := \chi_{\Omega_j}(x_1, x_2)e^{-|x_1|/(j+1)}, (x_1, x_2) \in \mathbb{R}^2 \setminus \mathbb{R}$, for $j \in \mathbb{N}$ and $l \in \langle k \rangle$ is locally bounded and bounded away from zero. For $j \in \mathbb{N}$ and $l \in \mathbb{N}_0$ we set $i := 2j+1, m := l, \delta := 1/(2j+2)$ and for $0 < \varepsilon < 1$ we choose $K := \{x = (x_1, x_2) \in \overline{\Omega_j} \mid |x_1| \leq -(\ln \varepsilon)(2j+2)\}$. This yields $\mathcal{C}^k_{\exp}(\mathbb{R}^2 \setminus \mathbb{R}, E) = \mathcal{CV}^k(\mathbb{R}^2 \setminus \mathbb{R}, E) = \mathcal{CV}^k_0(\mathbb{R}^2 \setminus \mathbb{R}, E)$ by Remark 3.4 and that the cut-off criterion is fulfilled. In addition, the Fréchet space $\mathcal{C}^k_{\exp}(\mathbb{R}^2 \setminus \mathbb{R})$ is barrelled.

Together with Proposition 5.1 we get from example a) one of our starting points, namely Theorem 1.2, back. Example b) and c) are covered by [21, Proposition 9, p. 108] and [21, Théorème 1, p. 111]. The results b) and c) for the Schwartz space in example b) can also be found in [11, Chap. II, §3, n°3, Exemples, p. 80–81] with a different proof using the nuclearity of $\mathcal{S}(\mathbb{R}^d)$. We complete this paper with a comparison of our conditions in Theorem 5.2 with the ones stated by Schwartz in [21] to get the same result for the spaces in example a)–c) but only for $\Omega = \mathbb{R}^d$. REMARK 5.4. Schwartz treats the case k > 0 and $\Omega = \mathbb{R}^d$ in [21]. He assumes similar conditions H_1-H_4 for the space $\mathcal{H}^k(\mathbb{R}^d) := \mathcal{H}^k(\mathbb{R}^d, \mathbb{K})$ as we do (see [21, p. 97–98]). In H_1 the members of his family of weights Γ are continuous and for every compact set $K \subset \mathbb{R}^d$ there is a weight in Γ which is non-zero on K. $\mathcal{H}^k(\mathbb{R}^d)$ is the space of functions $f \in \mathcal{C}^k(\mathbb{R}^d)$ such that $\gamma \partial^\beta f$ is bounded on \mathbb{R}^d for every $\gamma \in \Gamma$ and $|\beta| \leq k$. This yields to $\mathcal{C}^k_c(\mathbb{R}^d) \subset \mathcal{H}^k(\mathbb{R}^d) \subset \mathcal{C}^k(\mathbb{R}^d)$ algebraically. In H_2 he demands that $\mathcal{H}^k(\mathbb{R}^d)$ is a locally convex Hausdorff space and that the inclusions $\mathcal{C}^k_c(\mathbb{R}^d) \hookrightarrow \mathcal{H}^k(\mathbb{R}^d) \hookrightarrow \mathcal{C}^k(\mathbb{R}^d)$ are continuous where $\mathcal{C}^k(\mathbb{R}^d)$ has its usual topology and $\mathcal{C}^k_c(\mathbb{R}^d)$ its inductive limit topology. In H_3 he supposes that a subset $B \subset \mathcal{H}^k(\mathbb{R}^d)$ is bounded if and only if for every $\gamma \in \Gamma$ and $|\beta| \leq k$ the set $\{\gamma(x)\partial^\beta f(x) \mid x \in \mathbb{R}^d, f \in B\}$ is bounded in \mathbb{K} . In H_4 he assumes that on every bounded subset of $\mathcal{H}^k(\mathbb{R}^d)$ the topology of $\mathcal{H}^k(\mathbb{R}^d)$ and the induced topology of $\mathcal{C}^k(\mathbb{R}^d)$ coincide.

He defines the *E*-valued version $\mathcal{H}^k(\mathbb{R}^d, E)$ which corresponds to the space $\mathcal{H}^k(\mathbb{R}^d)$ for $\mathcal{H}^k = \mathcal{C}^k_c$, \mathcal{C}^k , \mathcal{S} and \mathcal{O}_M and shows that the statements of Theorem 5.2 hold for all of them but $\mathcal{H}^k = \mathcal{C}^k_c$ (see [21, p. 94–97], [21, Proposition 9, p. 108] and [21, Théorème 1, p. 111]).

In comparison, our conditions of local boundedness of \mathcal{V}^k and being locally bounded away from zero on $\Omega = \mathbb{R}^d$ imply H_1 and H_2 if the members of \mathcal{V}^k are continuous. The assumption that the members of \mathcal{V}^k are continuous is not a big difference if the members of the family \mathcal{V}^k have a structure like in (14). Then one may replace the indicator functions χ_{Ω_j} by a smoothed version, e.g. by convolution of the indicator function with a suitable mollifier, and then one gets a family of continuous weights which generates the same topology. The condition H_3 is clearly fulfilled for the spaces $\mathcal{CV}^k(\mathbb{R}^d)$ and the topology on them is called 'topologie naturelle' by Schwartz (see [21, p. 98]). The condition H_4 implies that $\mathcal{C}_c^k(\mathbb{R}^d, E)$ is dense in $\mathcal{H}^k(\mathbb{R}^d, E)$ for $\mathcal{H}^k = \mathcal{C}^k$, \mathcal{S} and \mathcal{O}_M and quasi-complete E (see [21, p. 106] and [21, Théorème 1, p. 111]). The same follows in our case from local boundedness and the cut-off criterion.

References

- K.-D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt, Ph.D. thesis, Johannes-Gutenberg Universität Mainz, Mainz, 1971.
- [2] K.-D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186–210.
- [3] K.-D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. II, J. Reine Angew. Math. 260 (1973), 133–146.
- [4] N. Bourbaki, General Topology, Part 2, Elements of Mathematics, Addison-Wesley, Reading, 1966.
- [5] H. Buchwalter, Topologies et compactologies, Publ. Dép. Math. (Lyon) 6 (1969), no. 2, 1–74.
- [6] A. Defant, K. Floret, *Tensor Norms and Operator Ideals*, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
- [7] J. Elstrodt, Maβ- und Integrationstheorie, 7th ed., Grundwissen Mathematik, Springer, Berlin, 2011.
- [8] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.

- [9] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books Math., Springer, New York, 2011.
- [10] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math. 56, Springer, Berlin, 1968.
- [11] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, 4th ed., Mem. Amer. Math. Soc. 16, Amer. Math. Soc., Providence, 1966.
- [12] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed., Classics Math., Springer, Berlin, 1990.
- [13] I. M. James, *Topologies and Uniformities*, Springer Undergrad. Math. Ser., Springer, London, 1999.
- [14] H. Jarchow, Locally Convex Spaces, Math. Leitfäden, Teubner, Stuttgart, 1981.
- [15] W. Kaballo, Aufbaukurs Funktionalanalysis und Operatortheorie, Springer, Berlin, 2014.
- [16] A. Kriegl, P. W. Michor, *The Convenient Setting of Global Analysis*, Math. Surveys Monogr. 53, AMS, Providence, 1997.
- [17] K. Kruse, Weighted vector-valued functions and the ε -product, arXiv:1712.01613v6.
- [18] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Grad. Texts Math. 2, Clarendon Press, Oxford, 1997.
- [19] K. Musiał, Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 159–166.
- [20] L. Nachbin, *Elements of Approximation Theory*, Notas de Matemática 33, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1965.
- [21] L. Schwartz, Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4 (1955), 88–148.
- [22] L. Schwartz, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier (Grenoble) 7 (1957), 1–142.
- [23] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Dover, Mineola, NY, 2006.
- [24] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.