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POORLY CONVEX FUNCTIONS AND THEIR
APPLICATION TO AN OPTIMIZATION PROBLEM

Abstract. The paper introduces a new class of functions, called poorly
convex, defined on convex subsets of Rn. The class is bigger than the class of
classical convex functions, and is a subset of the class of quasi-convex ones.
The theory of poorly convex functions is developed, and its application to
an optimization problem is shown.

1. Introduction. Convex functions play an important role in domains
as diverse as optimization, economics and engineering. However, for many
problems the classical notion of convexity no longer suffices, and differ-
ent types of “generalized convexity” like pseudo-convexity, quasi-convexity,
etc. are necessary. We mention here the early work by de Finetti (1949),
Fenchel (1953), Arrow and Enthoven (1961), Mangasarian (1965), Karamar-
dian (1967), and Hanson (1981). Some further results and a review of the
latest developments in this area can be found in Guerraggio and Molho
(2004), Islam and Craven (2005), Matkowski (2008) and Mishra, Wang and
Lai (2009).

In the recent paper of Radzik (2014), a new class of functions, called
poorly convex, considered on intervals of the real line, is introduced, and the
theory of such functions is studied. The notion of poor convexity naturally
generalizes classical convexity, while being stronger than quasi-convexity.

In this paper we generalize poor convexity from R to any euclidean
space Rn, considering poorly convex functions defined on convex subsets
of Rn. Relying on some results obtained in Radzik (2014), we develop a
theory of poorly convex functions on Rn, showing many properties of such
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functions and their families. We also present an application of the results
obtained to some general optimization problem.

The organization of the paper is as follows. Section 2 is devoted to basic
definitions and some background results. In Section 3, a review of results
on poorly convex functions defined on intervals in R is given. Some of them
come from Radzik (2014).

In Section 4, a complete characterization of poorly convex functions and
pairwise poorly convex families of functions defined on convex subsets of Rn
is given. In Section 5, we present the main theorem of this paper, which
describes a surprising property of those families. Four examples of pairwise
poorly convex families are given in Section 6. In Section 7, we present an
application of the theory of poorly convex functions to an optimization prob-
lem.

2. Preliminary notions and definitions. Let n ≥ 1 be a natural
number. Throughout, U denotes a convex subset of Rn. All the functions
considered are real-valued.

We will use the classical lexicographic ordering in Rn: for s = (s1, . . . , sn),
t = (t1, . . . , tn) ∈ Rn, we write s ≺ t if si < ti for the smallest index i with
si 6= ti. As usual, s � t if s ≺ t or s = t.

To begin, we recall the classical definitions of quasi-convex and lower
semicontinuous functions.

Definition 1. A function f on U is called quasi-convex if for any c ∈ R
the set {u ∈ U : f(u) ≤ c} is convex. If this holds for the reverse inequality,
f is called quasi-concave.

Definition 2. A function f on U is called lower semicontinuous if for
any c ∈ R the set {u ∈ U : f(u) ≤ c} is closed. In case of the reverse
inequality, f is called upper semicontinuous.

Now we recall several classical properties of quasi-convex and lower and
upper semicontinuous functions.

Proposition 1.

(a) A function f on U is quasi-convex [lower semicontinuous] if and only if
−f is quasi-concave [upper semicontinuous]. If f is linear then it is both
quasi-convex and quasi-concave. If f is continuous then it is both lower
and upper semicontinuous.

(b) If f1, . . . , fk are lower [upper] semicontinuous functions on U and x1, . . . ,

xk ≥ 0, then the function
∑k

i=1 xifi is also lower [upper] semicontinuous
on U.
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(c) A function f is lower [upper] semicontinuous on U if and only if for each
u0 ∈ U,

lim inf
u→u0

f(u) ≥ f(u0) [lim sup
u→u0

f(u) ≤ f(u0)].

(d) Any lower [upper] semicontinuous function f defined on a compact set U
achieves its minimal [maximal ] value at some point of U.

(e) For any family {fα} of lower [upper] semicontinuous functions fα on U,
the function F defined by F (u) = supα fα(u) [F (u) = infα fα(u)] is
lower [upper] semicontinuous on U.

The next two definitions are basic for our paper. They describe some
generalization of convex and concave functions. Before giving them, we need
some additional notation. Set

(1) PU := {(u1, u2, λ) ∈ U2×(0, 1) : u1, u2 ∈ U, u1 ≺ u2, and 0 < λ < 1},
(2) QU := {ū ∈U3 : u1 ≺ u3 and u2 = λu1 +(1−λ)u3 for some 0< λ< 1},

where ū := (u1, u2, u3). Note that

(3) ū ∈ QU =⇒ u1 ≺ u2 ≺ u3,

which in case of U = [a, b] ⊂ R can be modified to

(4) ū ∈ Q[a,b] ⇐⇒ [a ≤ u1 < u2 < u3 ≤ b].

Definition 3. A function f on U is called poorly convex [poorly concave]
if there is a function p : PU → (0, 1) such that for all (u1, u2, λ) ∈ PU,

(5) f(λu1 + (1− λ)u2) ≤ [≥] p(u1, u2, λ)f(u1) + [1− p(u1, u2, λ)]f(u2).

Then f is called p-convex [p-concave].

Definition 4. Let T be a function defined on QU. A function f on U is
called T -convex [T -concave] if

(6) f(u2)− f(u1) ≤ [≥] T (ū)[f(u3)− f(u2)] for ū ∈ QU.

Now we give a simple characterization of poorly convex and poorly con-
cave functions on U. It gives an equivalence between poor convexity and
T -convexity. In the special case U = [a, b] ⊂ R, this theorem has been proved
in Radzik (2014) (see Proposition 1 there), and its proof is repeated with
small changes.

Theorem 1. A function f on U is poorly convex [poorly concave] if and
only if there is a positive function T defined on QU such that f is T -convex
[T -concave].
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Proof. (⇒) Let (u1, u3, λ) ∈ PU and let u2 = λu1 + (1− λ)u3. Then (5)
(with u2 replaced by u3) implies that

f(u2) ≤ [≥] p(u1, u3, λ)f(u1) + [1− p(u1, u3, λ)]f(u3).

This is clearly equivalent to (6) with

T (ū) =
1− p(u1, u3, λ)

p(u1, u3, λ)
.

This equality uniquely defines a positive function T on QU, because any
ū ∈ QU uniquely determines 0 < λ < 1 (by the equality u2 = λu1+(1−λ)u3)
and 0 < p < 1.

(⇐) Let ū ∈ QU. Then u2 = λu1 + (1− λ)u3 for a unique 0 < λ < 1. If
we put this value of u2 in (6), and replace u3 by u2, we get

f(λu1 + (1− λ)u2)− f(u1)

≤ [≥] T (u1, λu1 + (1− λ)u2, u2)[f(u2)− f(λu1 + (1− λ)u2)].

We can easily check that this inequality is equivalent to (5) with

(7) p(u1, u2, λ) =
1

1 + T (u1, λu1 + (1− λ)u2, u2)
.

This correctly describes a function p on PU as T > 0, completing the proof.

It turns out that poorly convex functions have four simple properties,
expressed in the next proposition. The first two of them are similar to prop-
erties of classical convex functions. The other two show that poor convexity
is an intermediate property between convexity and quasi-convexity.

Proposition 2. For any functions f and g on U, the following state-
ments hold:

(a) f is poorly convex if and only if −f is poorly concave.
(b) If f is poorly convex, then for every α ≥ 0 and β ∈ R the function αf+β

is also poorly convex.
(c) If f is convex, then it is poorly convex.
(d) If f is poorly convex, then it is quasi-convex.

Proof. Statements (a) and (b) follow immediately from Definition 3.
Statement (c) trivially follows from the fact that for convex functions in-
equality (5) holds for p(u1, u2, λ) ≡ λ.

Now, let c ∈ R and u1, u2 ∈ U with u1 ≺ u2. Assume that f(u1) ≤ c
and f(u2) ≤ c. By assumption, f satisfies (5) with “≤”. Therefore, for any
0 < λ < 1 we have

f(λu1 + (1− λ)u2) ≤ p(u1, u2, λ)c+ [1− p(u1, u2, λ)]c = c.

Hence the set {u ∈ U : f(u) ≤ c} is convex, so f is quasi-convex. This
proves (d).
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Remark 1. Obviously, the function T corresponding to a poorly convex
function f described in Theorem 1 is not unique. For example, consider the
convex function f(u) = u2 with domain [a, b] (0 ≤ a < b). One can easily see
that for any function T of the form T (ū) = k · u2−u1u3−u2 for ū ∈ Q[a,b] (see (4))
with k ≥ 1, inequality (6) with “≤” holds for all ū ∈ Q[a,b]. Hence, by (7) it
follows that the function p in Definition 3 is not unique either.

Remark 2. Obviously, not every poorly convex function f is convex.
Moreover, there are strictly concave functions which are poorly convex. To
see this, consider an interval [a, b] ⊂ R with a < b, and let f be the strictly
concave function f(u) = −(u − a)2 on U = [a, b]. Using (4), we easily see
that the function F (ū) = f(u2)−f(u1)

f(u3)−f(u2) on Q[a,b] is positive and it trivially
satisfies (6)≤. Therefore, by Theorem 1, f is poorly convex.

On the other hand, not every quasi-convex function is poorly convex. To
see this, consider the following continuous quasi-convex function on [0, 2]:

f(u) =

{
u for u ∈ [0, 1),

1 for u ∈ [1, 2],

and suppose that it is poorly convex. This implies that (6)≤ is satisfied for
all ū ∈ Q[0,2]. But putting ū = (0, 1, 2) in (6), we get 1−0 ≤ T (0, 1, 2)·[1−1],
which is impossible. A full characterization of poorly functions is given in
Theorem 5 in the next section.

Now we give another definition:

Definition 5. A family F of functions on U is called pairwise poorly
convex [concave] if for any two functions in F there is a positive function
p : PU → (0, 1) such that both functions are p-convex [p-concave] on U.

The above definition and the proof of Theorem 1 immediately lead to
another characterization of pairwise poorly convex [concave] families of func-
tions.

Theorem 2. A family F of poorly convex [concave] functions on U is
pairwise poorly convex [concave] if and only if for any two functions in F
there is a positive function T defined on QU such that both functions are
T -convex [T -concave] on U.

Theorem 2 allows us to easily construct various pairwise poorly convex
families of functions, as described in the following proposition.

Proposition 3. The following families of functions are pairwise poorly
convex on U:
(a) any family of convex functions on U;
(b) any family of the form F = {f̃αβ = α + β · f : α ∈ R, β ≥ 0}, where f

is a fixed poorly convex function on U;
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(c) any family of the form G = {g̃αβγ = α + β · gγ : α ∈ R, β ≥ 0, γ ∈ A}
for a fixed function gγ on U, and a set A such that the family {gγ}γ∈A
is pairwise poorly convex on U.

Proof. Statement (a) is a consequence of the fact that all convex func-
tions are p-convex with the same function p of the form p(u1, u2, λ) ≡ λ for
(u1, u2, λ) ∈ PU. Statements (b) and (c) can be easily justified by using (6)≤.
The details are omitted.

Remark 3. One can easily see that not every family of poorly convex
functions is pairwise poorly convex. To see this, consider the family {g, h}
consisting of the two functions on [−1, 1] defined by g(u) = −2u2 + 4u + 1
and h(u) = −2u2 − 4u + 1. Let Tg and Th be functions on Q[−1,1] defined
by

Tg(ū) =
g(u2)− g(u1)

g(u3)− g(u2)
and Th(ū) =

h(u2)− h(u1)

h(u3)− h(u2)

for ū = (u1, u2, u3) ∈ Q[−1,1]. Since g is strictly increasing and h is strictly
decreasing on [−1, 1], we have Tg(ū) > 0 and Th(ū) > 0 for ū ∈ Q[−1,1].
Moreover, inequality (6)≤ trivially holds for both f = g and f = h with
T = Tg and T = Th, respectively. Hence, by Theorem 1, the functions g and
h are poorly convex. Suppose now that they are pairwise poorly convex with
respect to a function T on Q[−1,1]. Then putting u1 = −1, u2 = 0 and u3 = 1
in (6)≤ taken for f = g and for f = h, we get

1− (−5) ≤ T (ū)(3− 1) and 1− 3 ≤ T (ū)(−5− 1).

Hence, T (ū) ≥ 3 and T (ū) ≤ 1/3, which is impossible. Therefore, the family
{g, h} is not pairwise poorly convex.

In the next two sections, necessary and sufficient conditions for two poorly
convex functions to be also pairwise poorly convex are discussed. They can
be used to construct various examples of pairwise poorly convex families con-
sisting of nonconvex functions described by standard formulas (see Examples
3 and 4 in Radzik (2014) and Examples 2–4 in Section 6).

3. Poorly convex functions on intervals in R. In this section we
give a review of auxiliary results concerning poorly convex functions on an
interval [a, b] in R. Some of them are proved in Radzik (2014). These results
will be used in the next section, where properties of poorly convex functions
on a convex set U ⊂ Rn are discussed.

We begin with a result (Proposition 4 in Radzik (2014)) showing that
poor convexity on an interval in R is a very slight strengthening of quasi-
convexity.



Poorly convex functions 7

Theorem 3. Any continuous quasi-convex function on [a, b] can be ap-
proximated by a sequence of poorly convex continuous functions in the topol-
ogy of uniform convergence.

The next simple result gives a special formula for the function T on Q[a,b]

in (6) corresponding to a poorly convex function f on [a, b].
Let us define a function Tf on Q[a,b] by

(8) Tf (ū) :=

{
f(u2)−f(u1)
f(u3)−f(u2) if [f(u2)− f(u1)][f(u3)− f(u2)] > 0,

1 otherwise.

Theorem 4. A function f on [a, b] is poorly convex if and only if it is
Tf -convex.

Proof. (⇒) Obviously, Tf (ū) > 0 for ū ∈ Q[a,b]. By Theorem 1, there is a
positive function T on Q[a,b] such that (6)≤ holds for all ū ∈ Q[a,b]. But this
implies that the system of inequalities [f(u2)−f(u1) > 0, f(u3)−f(u2) < 0]
does not hold (because T > 0). Now, one can directly check that the function
T = Tf given by (8) satisfies (6)≤ in all the remaining cases, and so f is
Tf -convex on [a, b].

(⇐) This is an immediate consequence of Theorem 1.

The next theorem brings another simple characterization of an arbitrary
poorly convex function on an interval in R, given in terms of monotonic-
ity properties. This theorem generalizes Proposition 3 from Radzik (2014),
where this characterization is given for continuous poorly convex functions
only.

For a function f on [a, b] we define

τf := sup{x ∈ [a, b] : f is strictly decreasing on [a, x]},(9)

τ f := inf{x ∈ [a, b] : f is strictly increasing on [x, b]}.(10)

Obviously, τf ≤ τ f . Moreover, since every decreasing sequence in R is con-
vergent (possibly to −∞), one can easily see that the limits f(τf−) and
f(τ f+) exist if a < τf and τ f < b, respectively. Both the quantities τf and
τ f are basic for our subsequent considerations.

Theorem 5. A function f on [a, b] ⊂ R is poorly convex if and only if

(i) in case τf < τ f : f is strictly decreasing on [a, τf ], strictly increasing on
[τ f , b], and constant on (τf , τ

f ) with value ≤ min{f(τf ), f(τ f )};
(ii) in case τf = τ f (:= τ): f is strictly decreasing on [a, τ) and strictly

increasing on (τ, b] with f(τ) ≤ max{f(τ−), f(τ+)}. (Here we define
f(a−) = f(a) and f(b+) = f(b).)

For the proof of the theorem we need the following lemma.
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Lemma 1. Let f be a poorly convex function on [a, b], and let a ≤ u1 <
u2 ≤ b.
(i) If f(u1) > f(u2), then f is strictly decreasing on [a, u1].
(ii) If f(u1) < f(u2), then f is strictly increasing on [u2, b].

Proof. Assume first that f(u1) > f(u2). By Theorem 1, f is T -convex for
some positive function T defined on Q[a,b]. Let a ≤ u′ < u′′ < u1 < u2 ≤ b
and denote T1 := T (u′, u′′, u1) and T2 := T (u′′, u1, u2). Then (6) implies that

f(u′′)− f(u′) ≤ T1[f(u1)− f(u′′)] ≤ T1T2[f(u2)− f(u1)],

whence f(u′) > f(u′′) and f(u′′) > f(u1) because f(u1) > f(u2) and
T1, T2 > 0. This proves (i).

The proof of (ii) is analogous: starting from f(u1) < f(u2), we repeat the
previous reasoning, replacing u′, u′′, u1, u2 by u1, u2, u

′, u′′, respectively.

Proof of Theorem 5. (⇒) First assume that τf < τ f . By (9) and (10),
f is strictly decreasing on [a, τf ) and strictly increasing on (τ f , b]. Suppose
that f(τf−) < f(τf ). Then there is an u′′ with a ≤ u′′ < τf such that
f(u′′) < f(τf ). Hence Lemma 1 implies that f is strictly increasing on [τf , b],
which is impossible. Therefore f(τf−) ≥ f(τf ), and consequently f is strictly
decreasing on [a, τf ]. In an analogous way we show that f is strictly increasing
on [τ f , b].

Choose u1, u2 with τf < u1 < u2 < τ f . If f(u1) > f(u2) or f(u1) < f(u2)
then, by Lemma 1, f is strictly decreasing on [a, u1] or strictly increasing
on [u2, b], respectively. But this would contradict the definition of τf or τ f .
Therefore f(u1) = f(u2), and so f ≡ C on (τf , τ

f ) for some constant C.
Now let τf < u′ < τ f , whence f(u′) = C. If f(τf ) < f(u′) or f(τ f ) <

f(u′), then Lemma 1 implies that f is strictly increasing on [u′, b] or strictly
decreasing on [a, u′], respectively. But this, in view of τf < u′ < τ f , would
contradict the definition of τf or τ f , respectively. Therefore f(τf ) ≥ f(u′)
and f(τ f ) ≥ f(u′), completing the proof for τf < τ f , whence C ≤ min{f(τf ),
f(τ f )}.

For (ii), in view of (9) and (10), it suffices to show that f(τ)≤max{f(τ−),
f(τ+)}. Suppose on the contrary that f(τ) > max{f(τ−), f(τ+)}. Then
there are u′ < τ < u′′ such that f(τ)− f(u′) > 0 and f(u′′)− f(τ) < 0. But
this contradicts the inequality f(τ) − f(u′) ≤ T1[f(u′′) − f(τ)] with some
T1 > 0, following from Theorem 1. This ends the proof of (⇒).

(⇐) We can directly verify (in both cases (i) and (ii)) that f is Tf -convex
for the function Tf defined in (8). This, by Theorem 4, completes the proof
of Theorem 5.

As mentioned earlier, the version of Theorem 5 for f continuous is given
in Radzik (2014). The next theorem presents the same result for lower semi-
continuous functions. It is very surprising that the formulation of both char-
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acterization theorems is identical and exceptionally simple. The lower semi-
continuity of functions will be assumed in all the remaining sections of the
paper.

Theorem 6. Let f be a lower semicontinuous function on [a, b]. Then f
is poorly convex if and only if there are c ≤ d in [a, b] such that f is strictly
decreasing on [a, c], strictly increasing on [d, b], and constant on [c, d].

Proof. This is an easy consequence of Theorem 5 and the property of
lower semicontinuous functions described by Proposition 1(c). The details
are omitted.

Remark 4. It follows from Theorem 6 that a poorly convex function
on an interval can be strictly concave (for example, f(u) = −u2 on [0, 1]).
Moreover, every convex function on an interval [a, b] ⊂ R is continuous on
(a, b) and satisfies f(a+) ≤ f(a) and f(b−) ≤ f(b), which implies its upper
semicontinuity on [a, b]. It is rather surprising that a poorly convex function
on [a, b] need not be either continuous on (a, b) or even bounded from below
on (a, b). To see this, consider the function f on [−1, 1] defined by

f(u) =

{
1/u for u ∈ [−1, 0),

−u2 + 2u for u ∈ [0, 1].

One can easily see that τf = τ f = 0. Hence, by Theorem 5, f is poorly
convex on [−1, 1] and is neither continuous nor bounded above on (−1, 1).

The next three results (Theorems 7–9) give necessary and sufficient con-
ditions for a pair of lower semicontinuous poorly convex functions on [a, b]
to be pairwise poorly convex. In Radzik (2014) these theorems have been
stated for continuous functions (see Propositions 5–7 there), but one can
check that the proofs work also for lower semicontinuous functions.

Theorem 7. Let f and g be lower semicontinuous and poorly convex
functions on [a, b] satisfying [τf , τ

f ] ∩ [τg, τ
g] 6= ∅. Then the family {f, g} is

pairwise poorly convex on [a, b].

The next theorem concerns the case [τf , τ
f ] ∩ [τg, τ

g] = ∅. To formulate
it, we set

Qfg := {ū : τ f ≤ u1 < u2 < u3 ≤ τg}.

Theorem 8. Let f and g be lower semicontinuous and poorly convex
functions on [a, b] with τ f < τg. Then the family {f, g} is pairwise poorly
convex on [a, b] if and only if

(11)
f(u2)− f(u1)

f(u3)− f(u2)
≤ g(u2)− g(u1)

g(u3)− g(u2)
for ū ∈ Qfg .
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The verification of (11) might be troublesome. It turns out that under
a somewhat stronger assumption, (11) can be replaced by a much simpler
condition.

Theorem 9. Let f and g be lower semicontinuous and poorly convex
functions on [a, b] that are continuous on [τ f , τg] with τ f < τg. Assume
that there are continuous derivatives f ′ and g′ on (τ f , τg), with g′ 6= 0.
Then {f, g} is pairwise poorly convex on [a, b] if and only if G = f ′/g′ is
nonincreasing on (τ f , τg).

A classical property of a pair of convex functions f1 and f2 is that any
linear combination αf1 + βf2 with α, β > 0 is also convex. Unfortunately,
this is no longer the case for poorly convex functions. However, the following
theorem holds:

Theorem 10. Let f1 and f2 be poorly convex functions on [a, b]. Then
f = αf1 + βf2 is poorly convex on [a, b] for every α, β > 0 if and only if the
family {f1, f2} is pairwise poorly convex.

Proof. (⇐) This implication is an easy consequence of Theorems 1 and 2
and Definition 5. Namely, we know that (6)≤ (with some function T on
[a, b]) holds for both f = f1 and f = f2. But this trivially implies that this
inequality also holds for any function f = αf1 + βf2 with α, β > 0, and so
such an f is poorly convex on [a, b].

(⇒) By Theorem 1, f1 is T1-convex and f2 is T2-convex on [a, b] for some
functions T1, T2 defined on Q[a,b]. Further, by Theorem 1, for any α, β > 0
there is a function Tαβ on Q[a,b] such that f = αf1 + βf2 is Tαβ-convex on
[a, b].

Fix ū ∈ Q[a,b] and denote

a1 := f1(u2)− f1(u1), b1 := f1(u3)− f1(u2),

a2 := f2(u2)− f2(u1), b2 := f2(u3)− f2(u2),

h1 := T1(ū), h2 := T2(ū), hαβ := Tαβ(ū).

Therefore, by Theorem 1,

(12) h1 > 0, a1 ≤ h1b1, h2 > 0, a2 ≤ h2b2,

and

(13) hαβ > 0, αa1 + βa2 ≤ hαβ(αb1 + βb2) for all α, β > 0.

To complete the proof it suffices to show that (12) and (13) imply the exis-
tence of some h > 0 such that

(14) a1 ≤ hb1 and a2 ≤ hb2.
(Then we can define T (ū) = h.)

We consider six cases.
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Case 1: b1 = 0 or b2 = 0. Then it follows from (12) that (14) is satisfied
for h = h2 or h = h1, respectively.

Case 2: b1 > 0 and h1 ≤ h2. Then (12) implies that (14) is satisfied for
h = h2.

Case 3: b1 > 0, h1 > h2 and b2 > 0. Then, similarly to Case 2, (14) is
satisfied for h = h1.

Case 4: b1 > 0, h1 > h2 and b2 < 0. If a1 ≤ 0 then a1 ≤ h2b1 because
h2 > 0, and consequently (14) holds for h = h2. Therefore we can assume
that a1 > 0.

On the other hand, a2 < 0 as a consequence of the inequalities a2 ≤
h2b2, h2 > 0 and b2 < 0. Hence, h′1 := a1/b1 > 0, h′2 := a2/b2 > 0, and
a1 = h′1b1 and a2 = h′2b2. But this implies that if h′1 ≤ h′2 then a1 ≤ h′2b1,
and consequently (14) is satisfied for h = h′2.

Now consider the second subcase, h′1 > h′2, that is, a1/b1 > a2/b2. Since
the last inequality implies that 0 < −a2/a1 < −b2/b1 (because a1 > 0,
a2 < 0, b1 > 0 and b2 < 0), we can find α0, β0 > 0 such that −a2/a1 <
α0/β0 < −b2/b1, or equivalently α0a1 + β0a2 > 0 > α0b1 + β0b2. But this
contradicts the inequality in (13) for α = α0 and β = β0. So the subcase
h′1 > h′2 is impossible. Therefore, also in Case 4 there is an h > 0 for which
(14) holds.

Case 5: b1 < 0 and b2 ≤ 0. Then it is easily seen that (14) holds for
h = min{h1, h2}.

Case 6: b1 < 0 and b2 > 0. Here we can consider two subcases, h2 ≤ h1

and h2 > h1, which can be analyzed in exactly the same way as in Cases 2
and 4, after changing parameters a1, b1, a2, b2, h1, h2 there to a2, b2, a1, b1,
h2, h1, respectively.

Thus the proof of Theorem 10 is complete.

Remark 5. In view of Theorem 10, it is natural to ask whether the
following general statement holds: Let f1, . . . , fn (n ≥ 3) be poorly convex
functions on [a, b]. Then f =

∑n
i=1 αifi is poorly convex on [a, b] for all

α1, . . . , αn > 0 if and only if {f1, . . . , fn} is a family of pairwise poorly
convex functions. Unfortunately, the author does not know the answer to
this question.

4. Poorly convex functions on subsets of Rn. In this section, relying
on the results of the previous section, we analyze the main properties of
poorly convex functions defined on convex subsets of Rn. Theorems 11–13
below are basic for the characterization of pairwise poorly convex families
of functions discussed in the next section. Here Q[0,1] is the subset of [0, 1]3
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defined by (4), and U denotes any fixed convex subset of Rn. We begin with
a definition and an auxiliary lemma.

Definition 6. Let f be a real function on U, and let v, w ∈ U. Then
the function fwv on [0, 1] defined by
(15) fwv (x) = f((1− x)v + xw), 0 ≤ x ≤ 1,

is called the cross function of f (at (v, w)).

Theorem 11. A function f on U is poorly convex if and only if for any
v, w ∈ U with v ≺ w the cross function fwv of f is poorly convex on [0, 1].

Proof. (⇒) Fix x̄ = (x1, x2, x3) ∈ Q[0,1] and v, w ∈ U with v ≺ w, and
let ū = (u1, u2, u3) be defined by
(16) ui = (1− xi)v + xiw for i = 1, 2, 3.

Then u2 = λu1 + (1− λ)u3 with λ = x3−x2
x3−x1 , whence 0 < λ < 1 and

(17) v � u1 ≺ u2 ≺ u3 � w,
since v ≺ w and 0 ≤ x1 < x2 < x3 ≤ 1. Therefore ū ∈ QU.

By Theorem 1, there is a function T : QU → R such that (6)≤ holds. By
(16) and (15), this leads to
(18) fwv (x2)− fwv (x1) ≤ T̃wv (x̄)[fwv (x3)− fwv (x2)],

where T̃wv (x̄) = T (ū) > 0. Hence, Theorem 1 with f = fwv and U = [0, 1]
implies that fwv is poorly convex on [0, 1].

(⇐) Assume that fwv is poorly convex on [0, 1] for any v, w ∈ U with
v ≺ w. Then, by Theorem 1 with f = fwv and U = [0, 1], there is a positive
function T̃wv : Q[0,1] → R such that (18) holds for all x̄ ∈ Q[0,1].

Fix ū = (u1, u2, u3) ∈ QU with u1 = v, u3 = w and u2 = λu1 + (1− λ)u3

for some 0 < λ < 1. Then x̄ = (x1, x2, x3) = (0, λ, 1) ∈ Q[0,1], and (16) and
(18) hold. Now taking into account (15) and (16) we can easily check that
(18) can be rewritten in the form (6) with T (ū) := T̃wv (x̄). Hence, in view of
T̃wv (x̄) > 0 for x̄ ∈ Q[0,1], we can apply Theorem 1 again to conclude that f
is poorly convex on U.

Theorem 12. The family {g, h} of two functions on U is pairwise poorly
convex on U if and only if for any v, w ∈ U with v ≺ w the pair {gwv , hwv } is
pairwise poorly convex on [0, 1].

Proof. (⇒) Fix v, w ∈ U with v ≺ w, and let x̄ = (x1, x2, x3) ∈ Q[0,1].
Define u1, u2, u3 by (16). Obviously (17) holds, because x̄ ∈ Q[0,1].

By Theorem 2, there is a function T : QU → R such that (6)≤ holds for
f = g and f = h. Together with (16) and (15) this leads to

gwv (x2)− gwv (x1) ≤ T̃wv (x̄)[gwv (x3)− gwv (x2)],(19)

hwv (x2)− hwv (x1) ≤ T̃wv (x̄)[hwv (x3)− hwv (x2)],(20)
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with T̃wv (x̄) = T (ū) > 0. Hence, Theorem 2 taken for U = [0, 1] and f = gwv
and f = hwv immediately implies that {gwv , hwv } is pairwise poorly convex on
[0, 1] for all v, w ∈ U.

(⇐) Assume that gwv , hwv are poorly convex on [0, 1] for any v, w ∈ U
with v ≺ w. Then, by Theorem 1 for f = gwv , f = hwv and U = [0, 1], there
is a positive function T̃wv : Q[0,1] → R such that (19) and (20) hold for all
x̄ ∈ Q[0,1].

Let ū = (u1, u2, u3) ∈ QU with u1 = v, u3 = w and with u2 = λu1 + (1−
λ)u3 for some 0 < λ < 1. Then x̄ = (x1, x2, x3) = (0, λ, 1) ∈ Q[0,1], and (19)
and (20) hold. But those two inequalities are equivalent (by (15) and (16))
to (6) taken for f = g and f = h, with the positive function T defined by
T (ū) := T̃wv (x̄) for ū ∈ QU. This proves that {g, h} is pairwise poorly convex
on U.

Remark 6. When U is a compact convex subset of Rn, Theorems 11
and 12 can be simplified by replacing “for any v, w ∈ U with v ≺ w” with
“for any v, w ∈ ∂U with v ≺ w” (here ∂U is the boundary of U). This is
an easy consequence of the fact that for all v, w ∈ U with v ≺ w there
are v′, w′ ∈ ∂U such that v′ � v ≺ w � w′ with v = (1 − x)v′ + xw′

and w = (1 − y)v′ + yw′ for some 0 ≤ x, y < 1. The easy details are
omitted.

Theorem 13. Let g and h be poorly convex functions on U. Then the
function f = αg + βh is poorly convex for all α, β > 0 on U if and only if
{g, h} is pairwise poorly convex on U.

Proof. (⇐) This follows immediately from Theorem 2. Namely, if (6)≤
holds for both f = g and f = h, then it obviously holds for any f = αg+βh
with α, β > 0.

(⇒) Assume that f = αg + βh is poorly convex for all α, β > 0 on U,
and fix v, w ∈ U with v ≺ w. Let gwv , hwv , fwv be the cross functions of
g, h, f , respectively. Obviously fwv (x) = αgwv (x) + βhwv (x) for all x ∈ [0, 1]
and α, β > 0. Therefore, by Theorem 11, fwv is poorly convex on [0, 1] for all
α, β > 0. Consequently, Theorem 10 implies that {gwv , hwv } is pairwise poorly
convex on [0, 1]. Hence, Theorem 12 yields the pairwise poor convexity of
{g, h} on U.

5. Main theorem on pairwise poorly convex families. In the pre-
vious sections the theory of lower semicontinuous and poorly convex func-
tions was developed. Theorem 14 in this section completes our considerations
about such functions; it will be applied to some optimization problems in
Section 7. Before stating it, we quote two classical results from the literature
(Eckhoff (1993), Sion (1958)).
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Proposition 4 (Helly’s intersection theorem). LetM be a family of at
least n+ 1 convex sets in Rn such thatM is finite or each member ofM is
compact. Then if any n+ 1 members ofM have a common point, there is a
point common to all members ofM.

Proposition 5 (Sion’s minimax theorem). Let X and Y be convex sub-
sets of linear topological spaces with X compact. Let f : X × Y → R be such
that f(·, y) is upper semicontinuous and quasi-concave for each y ∈ Y , and
f(x, ·) is lower semicontinuous and quasi-convex for each x ∈ X. Then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

Theorem 14. Let T = {fα} be a pairwise poorly convex family of
lower semicontinuous functions on a compact convex set U ⊂ Rn. Suppose
supα fα(u) > 0 for each u ∈ U. Then there are functions fα1 , . . . , fαn+1

in T and a vector (λ1, . . . , λn+1) with nonnegative components satisfying∑n+1
i=1 λi = 1 such that

(21)
n+1∑
i=1

λifαi(u) > 0 for all u ∈ U.

Remark 7. Since any family of convex functions is pairwise poorly con-
vex (see Proposition 3(a)), Theorem 14 is a generalization of the result of
Bohnenblust et al. (1950), where it is assumed that T consists of convex con-
tinuous functions on U. Another special case of Theorem 14 for n = 1 with
a pairwise poorly convex family of continuous functions was earlier proved
in Radzik (2014), where this result was used to get the existence of Nash
equilibria with a very simple structure in several two-person nonzero-sum
games on the unit square.

The proof of Theorem 14 is preceded by the following lemma.

Lemma 2. Let T = {f1, . . . , fm} be a pairwise poorly convex [concave]
family of functions defined on a convex compact subset Z of Rs, where m ≥ 2
and s ≥ 1. Then for any γ1, . . . , γm ≥ 0 the function K =

∑m
i=1 γifi is

quasi-convex [quasi-concave] on Z.

Proof. In view of Proposition 1(a), it suffices to consider the “convex”
case.

Fix any γ1, . . . , γm ≥ 0 and define QZ analogously to (2). Firstly we will
prove that there is a positive function T on QZ such that all the functions
f1, . . . , fm are T -convex on Z.

Fix ū = (u1, u2, u3) in QZ . Since each fi, 1 ≤ i ≤ m, is poorly convex,
Theorem 1 and (6) imply that it suffices to show that there is an h > 0 such
that

(22) fi(u2)− fi(u1) ≤ h[fi(u3)− fi(u2)], i = 1, . . . ,m.
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Now, let 1 ≤ k ≤ m. By poor convexity of fk, there is an hk > 0 such that

(23) fk(u2)− fk(u1) ≤ hk[fk(u3)− fk(u2)].

One can easily see that if (23) holds for two positive numbers hk = h′k and
hk = h′′k, then it also holds for every convex combination hk = αh′k+(1−α)h′′k,
0 ≤ α ≤ 1. Hence, all the sets

Ak = {hk : hk > 0 and (23) holds}, k = 1, . . . ,m,

are nonempty convex subsets of R. Now, from the pairwise poor convexity
of T , we easily conclude that any two of the sets Ai have a common point.
Hence, by Helly’s intersection theorem,

⋂m
i=1Ai 6= ∅. Therefore there is an

h > 0 such that (22) holds. Hence f1, . . . , fm are T -convex on Z for some
positive function T on QZ .

So inequality (6)≤ holds for f = f1, . . . , fm. Hence, we easily see that it
also holds for K =

∑m
i=1 γifi. Thus K is poorly convex on Z, and therefore

also quasi-convex on Z (see Proposition 2(d)).

Proof of Theorem 14. Since each fα in T is lower semicontinuous on U,
the set

Uα = {u ∈ U : fα(u) ≤ 0}
is closed, and hence compact. Moreover, Uα is also convex because fα is
quasi-convex (by Proposition 2(d) and Definition 1).

By the assumption,
⋂
α Uα = ∅. Hence, by Helly’s intersection theorem,

there is a subfamily T ′ = {fα1 , . . . , fαn+1} of T such that
⋂n+1
i=1 Uαi = ∅. But

this implies that

(24) sup
1≤i≤n+1

fαi(u) > 0 for each u ∈ U.

Let x := (x1, . . . , xn+1) and define a compact convex set X ⊂ Rn+1 by

X =
{
x ∈ Rn+1 :

n+1∑
i=1

xi = 1 and x1, . . . , xn+1 ≥ 0
}
.

Let F be the function on X × U defined by

F (x, u) =

n+1∑
i=1

xifαi(u).

Obviously F (·, u) is linear and so continuous for every u ∈ U. Hence, by
Proposition 1(a), for every u ∈ U the function F (·, u) is upper semicontinu-
ous, quasi-convex and quasi-concave.

On the other hand, Proposition 1(b) implies that F (x, ·) is lower semi-
continuous for every x ∈ X . Moreover, Lemma 2 implies that F (x, ·) is
quasi-convex for every x ∈ X .
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So, by Sion’s minimax theorem with X = X , Y = U and f = F , there is
a number v ∈ R such that
(25) sup

x∈X
inf
u∈U

F (x, u) = v = inf
u∈U

sup
x∈X

F (x, u).

Because both X and U are compact, we easily conclude the proof as fol-
lows: As stated before, the function F (x, u) is upper semicontinuous in x
and lower semicontinuous in u. Hence, by Proposition 1(e), the functions
F1(x) = infu∈U F (x, u) on X and F2(u) = supx∈X F (x, u) on U are upper
and lower semicontinuous, respectively. Therefore, by Proposition 1(d), (25)
is equivalent to
(26) max

x∈X
min
u∈U

F (x, u) = v = min
u∈U

max
x∈X

F (x, u).

The first equality in (26) implies that there is a vector (λ1, . . . , λn+1) ∈ X
such that

(27)
n+1∑
i=1

λifαi(u) ≥ v for all u ∈ U.

The second equality in (26) and Proposition 1(d) imply that there is a u0 ∈ U
such that

v = min
u∈U

max
x∈X

F (x, u) = max
x∈X

n+1∑
i=1

xifαi(u
0) > 0

because of (24). Comparing this with (27), we finally get (21).
Remark 8. One could ask whether Theorem 14 remains true with “pair-

wise” cancelled. We can easily show that it does not: On U = [−1, 1], define
f1(u) = −2u2 + 4u + 1 and f2(u) = −2u2 − 4u + 1. It is shown in Re-
mark 3 (Section 2) that these two functions are poorly convex but not pair-
wise poorly convex. Moreover, max{f1(u), f2(u)} > 0 for each u ∈ [−1, 1].
Now, let Fλ(u) = λf1(u) + (1 − λ)f2(u). One can directly calculate that
Fλ(−1) + Fλ(1) = −2 for every λ ∈ [0, 1], and so at least one of the values
Fλ(−1) or Fλ(1) is negative, so the conclusion of Theorem 14 does not hold.

6. Examples of pairwise poorly convex families. In this section we
give four examples of pairwise poorly convex families described by rather
standard formulas. Theorems 6, 9, 11 and 12 will be useful in analysing
such families. In this section, Rn+ denotes the set of all vectors in Rn with
nonnegative components. We also write x̄ = (x1, . . . , xn), and analogously
for ā, ᾱ etc.

Example 1. Let c̄ ∈ Rn+ and consider the function

fᾱ(x̄) =

n∑
i=1

ci(xi − αi)2
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on a convex subset U of Rn. Obviously, fᾱ is convex on U for any ᾱ ∈ Rn.
Therefore, by Proposition 3(a), F = {fᾱ : ᾱ ∈ Rn} is a pairwise poorly
convex family.

Example 2. Let A > 1, b̄ ∈ Rn+ and let U be a convex subset of Rn.
Consider the family G = {gβγ : β ∈ R, γ ∈ R+} of continuous functions gβγ
on U defined by

gβγ(x̄) = β − γ ·A−
∑n
i=1 bix

2
i .

We will show that G is a pairwise poorly convex family.
In view of Proposition 3(b), it suffices to show that f(x̄) = −A−

∑n
i=1 bix

2
i

is poorly convex on U. In general, f need not be convex. For example, when
U contains the interval connecting (0, . . . , 0) and (B, 0, . . . , 0) with B =√

1/(b1 lnA), then the function h(t) = −A−b1t2 is not convex on [0, B], and
so f is not convex on U.

Fix v, w ∈ U with v = (v1, . . . , vn), w = (w1, . . . , wn) and v ≺ w. Then
the cross function G(t) = gwv (t) (see (15)) is a continuous function given by

G(t) = −A−
∑n
i=1 bi[(1−t)vi+twi]2 , 0 ≤ t ≤ 1.

We have

G′(t) = −2 lnA ·G(t) ·
{
t

n∑
i=1

bi(wi − vi)2 +

n∑
i=1

bivi(wi − vi)
}
.

One can easily see that there is an a ∈ [0, 1] such that G′(t) < 0 for t ∈ [0, a)
and G′(t) > 0 for t ∈ (a, 1]. Consequently, G is strictly decreasing in [0, a]
and strictly increasing in [a, 1], which, by Theorems 6 and 11, proves that f
is poorly convex on U. Thus G is a pairwise poorly convex family.

Example 3. Let U = {x̄ ∈ Rn : π/2 ≤
∑n

i=1 xi ≤ 3π/2}. Consider the
family F = {fαβγ : α ∈ R, β > 0, |γ| ≤ π/2} of continuous functions fαβγ
on U given by

fαβγ(x̄) = α+ β · cos
{ n∑
i=1

xi − γ
}
.

We will show that F is a pairwise poorly convex family on U.
Let G = {gγ : |γ| ≤ π/2} be the subfamily of F consisting of the functions

gγ(x̄) = cos
{ n∑
i=1

xi − γ
}
.

By Proposition 3(c), we only need to show that G is a pairwise poorly convex
family on U.

It is easy to see that for 0 < |γ| ≤ π/2 the function g(t) := gγ(t, 0, . . . , 0)
= cos t is not convex on [π/2, 3π/2]. Consequently, the functions gγ (with
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γ ∈ [−π/2, 0)∪ (0, π/2]) are not convex on U, so Proposition 3(a) cannot be
applied here.

Let gγ ∈ G and fix v, w ∈ U with v = (v1, . . . , vn), w = (w1, . . . , wn) and
v ≺ w. Then

(28) π/2 ≤ (1− t)
n∑
i=1

vi + t
n∑
i=1

wi ≤ 3π/2 for t ∈ [0, 1],

and the cross function Gγ(t) = (gγ)wv (t) is the continuous function

Gγ(t) = cos
{

(1− t)
n∑
i=1

vi + t
n∑
i=1

wi − γ
}
, 0 ≤ t ≤ 1.

By Theorem 12, to show the pairwise poor convexity of G we need to show
the same for G∗ := {Gγ : −π/2 ≤ γ ≤ π/2}.

If
∑n

i=1 vi =
∑n

i=1wi, then every Gγ is a constant function, and then G∗
is obviously pairwise poorly convex.

Without loss of generality, we can now assume that

(29)
n∑
i=1

vi <
n∑
i=1

wi.

This is an easy consequence of the fact (following from Theorem 6) that Gγ
is poorly convex on [0, 1] if and only if the function f(t) = Gγ(1−t) is poorly
convex on [0, 1].

Let τγ and τγ denote the quantities τf and τ f (see (9) and (10)) for
f = Gγ , respectively. A simple analysis of the function Gγ (in the context
of inequalities (28), (29) and |γ| ≤ π/2) implies that τγ = τγ (=: τ(γ)) and

(30) τ(γ) =


0 if

∑n
i=1 vi ≥ π + γ,

1 if
∑n

i=1wi ≤ π + γ,
π+γ−

∑n
i=1 vi∑n

i=1(wi−vi) if
∑n

i=1 vi < π + γ <
∑n

i=1wi.

One can easily verify that τ(γ) ∈ [0, 1] for all γ ∈ [0, 1], τ(γ1) ≤ τ(γ2)
if γ1 < γ2, and Gγ is strictly decreasing and strictly increasing in [0, τ(γ)]
and [τ(γ), 1], respectively. Therefore, by Theorem 6, Gγ is poorly convex on
[0, 1].

Now fix −π/2 ≤ γ1 < γ2 ≤ π/2. Then τ(γ1) ≤ τ(γ2). When τ(γ1) =
τ(γ2), Theorem 7 implies that {Gγ1 , Gγ2} is pairwise poorly convex on [0, 1].
On the other hand, when τ(γ1) < τ(γ2), with the aid of (29) we get(

G′γ1(t)

G′γ2(t)

)′
=

[∑n
i=1(vi − wi)

]3
sin(γ2 − γ1)

[G′γ2(t)]2
< 0 for τ(γ1) < t < τ(γ2),

and so G′γ1(·)/G′γ2(·) is decreasing in (τ(γ1), τ(γ2)). Consequently, by Theo-
rem 9, {Gγ1 , Gγ2} is also pairwise poorly convex on [0, 1] in the second case.
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Thus the family G∗ is pairwise poorly convex on [0, 1]. This implies that G
and hence also F are pairwise poorly convex on U.

Example 4. Let U = {x̄ ∈ Rn :
∑n

i=1 x
2
i ≤ 1/2}. Consider the family

H = {hβ : 1/2 ≤ β ≤ 3/2} of continuous functions hβ on U defined by

hβ(x̄) = − exp
{
−

n∑
i=1

(xi − β)2
}
.

We will show that H is a pairwise poorly convex family on U.
It is easy to check that for 1/2<β<

√
2 the function f(t) :=hβ(t, 0, . . . , 0)

is strictly concave and strictly convex on [−
√

2/2,−
√

2/2+β] and [−
√

2/2+
β,
√

2/2], respectively, and f is strictly concave on [−
√

2/2,
√

2/2] for
√

2 ≤
β ≤ 3/2. Therefore the functions hβ (with 1/2 < β ≤ 3/2) are not convex
on U, and Proposition 3(a) cannot be applied to show the pairwise poor
convexity of H.

Let hβ ∈H and fix v, w∈∂U with v= (v1, . . . , vn), w= (w1, . . . , wn) and
v≺w. Then

(31)
n∑
i=1

v2
i = 1/2,

n∑
i=1

w2
i = 1/2,

and the cross function Hβ(t) = (hβ)wv (t) is the continuous function

Hβ(t) = − exp
{
−

n∑
i=1

[(1− t)vi + twi − β]2
}
, 0 ≤ t ≤ 1.

Obviously U is a compact convex subset of Rn. Therefore, in view of Theo-
rem 12 and Remark 6, the family H is pairwise poorly convex if {Hβ : 1/2 ≤
β ≤ 3/2} is pairwise poorly convex on [0, 1].

It can be easily checked that for t ∈ [0, 1],

H ′β(t) = −2

n∑
i=1

(wi − vi)2 ·Hβ(t) · (t− tβ),(32)

H ′′β(t) = −2
n∑
i=1

(wi − vi)2 ·Hβ(t)
[
1− 2

n∑
i=1

(wi − vi)2 · (t− tβ)2
]
,(33)

where

tβ = β ·
∑n

i=1(wi − vi)∑n
i=1(wi − vi)2

−
∑n

i=1 vi(wi − vi)∑n
i=1(wi − vi)2

.

By (31), the last equality can be simplified to

(34) tβ = β · T + 1/2 with T =

∑n
i=1(wi − vi)

1− 2
∑n

i=1wivi
.
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Let us define

τβ =


0 if tβ < 0,

tβ if 0 ≤ tβ ≤ 1,

1 if tβ > 1.

Since Hβ(t) < 0 for 0 ≤ t ≤ 1 and
∑n

i=1(wi − vi)2 > 0 (because v 6= w),
one can easily deduce from (32) that Hβ is strictly decreasing in [0, τβ] and
strictly increasing in [τβ, 1]. Hence, by Theorems 6 and 11, for 1/2 ≤ β ≤ 3/2,
Hβ is continuous and poorly convex on [0, 1], and obviously (see (9) and (10))
for all β we have

(35) τHβ = τHβ = τβ.

Now fix β1, β2 in [1/2, 3/2], β1 6= β2, and assume that tβ1 < tβ2 . We will
show that {Hβ1 , Hβ2} is pairwise poorly convex on [0, 1].

First notice that if

(36) tβ1 , tβ2 ≥ 1 or tβ1 , tβ2 ≤ 0,

then τβ1 = τβ2 = 1 or τβ1 = τβ2 = 0, respectively, and Theorem 7 implies
that {Hβ1 , Hβ2} is pairwise poorly convex on [0, 1]. Therefore we can assume
that (36) does not hold, which easily implies that

(37) tβ1 ≤ τβ1 < τβ2 ≤ tβ2 ,
because tβ1 < tβ2 .

Now suppose that tβ1 < 1 and tβ2 ≥ 1. Then, in view of (34), T < 1
2β1

and T ≥ 1
2β2

. Hence 0 < T < 1, because β1, β2 ≥ 1/2. Similarly we show
that if tβ1 ≤ 0 and tβ2 > 0, then −1 < T < 0, and if −1 < tβ1 , tβ2 < 1, then
0 < T < 1. Consequently, −1 < T < 1 when (36) does not hold, whence (34)
and the inequality tβ1 < tβ2 and |β2 − β1| ≤ 1 imply that

(38) 0 < tβ2 − tβ1 < 1.

Let J(t) = H ′β1(t)/H ′β2(t). With the aid of (32) and (33) we easily check
that for t ∈ [0, 1],

(39) J ′(t) = K(t) · (tβ1 − tβ2) ·
[
1 + 2

n∑
i=1

(wi − vi)2 · (t− tβ1) · (t− tβ2)
]
,

where K(t) > 0 for all t.
Note that for t ∈ (tβ1 , tβ2), inequality (38) implies

(t− tβ1) · (t− tβ2) ≥ −(tβ2 − tβ1)2/4 ≥ −1/4,

and further
n∑
i=1

(wi − vi)2 ≤ 2
n∑
i=1

(w2
i + v2

i ) = 2,
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because of (31). Hence, for t ∈ (tβ1 , tβ2) we get

1 + 2
n∑
i=1

(wi − vi)2 · (t− tβ1) · (t− tβ2) ≥ 1 + 2 · 2 · (−1/4) = 0.

Thus, in view of (39) and (37), J ′(t) ≤ 0 for t ∈ (τβ1 , τβ2), and so H ′β1/H
′
β2

is nonincreasing in (τβ1 , τβ2). Moreover, Hβ is continuous and poorly convex
on [0, 1] as shown before. Hence, in view of (35), Theorem 9 shows that
{Hβ1 , Hβ2} is pairwise poorly convex on [0, 1]. Now Theorem 12 yields the
pairwise poor convexity of H.

7. Application to an optimization problem. In this section, we ap-
ply the theory developed so far to prove three theorems related to a classical
optimization problem in game theory. Its solution can be interpreted as an
equilibrium in various economic game models.

Throughout this section, we assume that X and Y are nonempty convex
compact subsets of Rk and Rl, respectively, k, l ≥ 1. We denote by PX and
PY the classes of all probability distributions over X and Y . The probability
distribution with all mass concentrated at a point t will be denoted by δt; in
some contexts δt will be identified with t.

Let us consider the following general problem: For two functions K1 and
K2 defined on X ×Y , we look for the pair (x∗, y∗) ∈ X ×Y , called a (Nash)
equilibrium, satisfying

(40) max
x∈X

K1(x, y∗) = K1(x∗, y∗) and max
y∈Y

K2(x∗, y) = K2(x∗, y∗).

The interpretation of this equilibrium concept can be the following: There
are two agents I and II who choose (simultaneously and independently) el-
ements x ∈ X and y ∈ Y , respectively, as their strategies. By assumption,
agents I and II are interested in making the values of K1(x, y) and K2(x, y),
respectively, as large as possible. Therefore any equilibrium (x∗, y∗) satisfy-
ing (40) describes a pair of “stable” agents’ strategies, in the sense that if
they agree on them, nobody is interested in changing their strategy. It is
known (Glicksberg (1952)) that if K1 and K2 are continuous on X × Y and
if K1(·, y) and K2(x, ·) are quasi-concave for x ∈ X and y ∈ Y , respectively,
then at least one equilibrium exists. However, in general such an equilibrium
may not exist. Therefore, some extension of the above model can be consid-
ered. Namely, assume that agents I and II can choose their strategies x and
y at random from the sets X and Y , respectively. Consequently, their strate-
gies are probability distributions over X and Y , respectively. We describe
this extension in more detail.

Assume that the agents choose strategies µ ∈ PX and ν ∈ PY , respec-
tively. We can then extend the domains ofK1 andK2 from X×Y to PX×PY
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and replace their utilities by their expected values defined by

Ki(µ, ν) :=
�

X

�

Y

Ki(x, y) dν(y) dµ(x), i = 1, 2.

Now we are ready to define a natural generalization of the notion of equilib-
rium.

Definition 7. A pair (µ∗, ν∗) ∈ PX ×PY is called a generalized equilib-
rium if

(41) max
µ∈PX

K1(µ, ν∗) = K1(µ∗, ν∗) and max
ν∈PY

K2(µ∗, ν) = K2(µ∗, ν∗).

Remark 9. Glicksberg (1952) showed with the aid of Kakutani’s fixed
point theorem that a generalized equilibrium always exists if K1 and K2

are continuous on X × Y . However, when they are discontinuous, there are
no general methods for finding a generalized equilibrium (if it exists). Also,
an agent can be interested in looking for an equilibrium with the simplest
structure, which should be easier to find and implement. The three theorems
below discuss such a possibility, under very weak assumptions onK1 andK2.

Before formulating the main results of this section note that the “opti-
mality condition” (41) for (µ∗, ν∗) can be simplified to

(42) max
x∈X

K1(x, ν∗) = K1(µ∗, ν∗) and max
y∈Y

K2(µ∗, y) = K2(µ∗, ν∗).

Theorem 15. Assume that for any x ∈ X the function K2(x, · ) is upper
semicontinuous on Y , and {K1(·, y) : y ∈ Y } is a pairwise poorly concave
family of upper semicontinuous functions on X. If there exists a generalized
equilibrium (µ∗, ν∗) ∈ PX × PY , then for some y1, . . . , yk+1 ∈ Y and 0 ≤
β1, . . . , βk+1 ≤ 1 with

∑k+1
i=1 βi = 1 there also exists a generalized equilibrium

of the form (µ∗,
∑k+1

i=1 βiδyi) such that

(43) K2(µ∗, ν∗) = K2

(
µ∗,

k+1∑
i=1

βiδyi

)
.

Proof. By assumption, (µ∗, ν∗) satisfies (42). Let x0 ∈ X and suppose
that K1(µ∗, y) < K1(x0, y) for all y in supp(ν∗), the support of ν∗. This
implies (by integrating) that K1(µ∗, ν∗) < K1(x0, ν∗), contradicting the first
equality in (42).

Therefore, for any fixed ε > 0,

(44) sup
y∈supp(ν∗)

[K1(µ∗, y)−K1(x, y) + ε] > 0 for all x ∈ X.

Let T = {fα : α ∈ supp(ν∗)} where fα : X → R is defined by fα(x) =
K1(µ∗, α)−K1(x, α)+ε. Since, by assumption, the family {K1(·, α) : α ∈ Y }
consists of upper semicontinuous functions and is pairwise poorly concave,
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Propositions 1(a) and 3(d) easily imply that T is also a pairwise poorly
convex family of lower semicontinuous functions. Hence, by (44), T satisfies
the assumptions of Theorem 14 with U = X and with α = y running over
supp(ν∗). Consequently, there are 0 ≤ β1, . . . , βk+1 ≤ 1 and y1, . . . , yk+1 in
supp(ν∗) such that

∑k+1
i=1 βifyi(x) > 0 for all x ∈ X. Hence

k+1∑
i=1

βiK1(µ∗, yi) ≥
k+1∑
i=1

βiK1(x, yi) for all x ∈ X,

or equivalently

(45) K1

(
µ∗,

k+1∑
i=1

βiδyi

)
≥ K1(x,

k+1∑
i=1

βiδyi) for all x ∈ X.

Now we will show that

(46) K2(µ∗, ν∗) = K2(µ∗, yi) for i = 1, . . . , k + 1.

Firstly suppose that

(47) K2(µ∗, ν∗) > K2(µ∗, ym) for some m, 1 ≤ m ≤ n+ 1.

Since, by assumption, for any x ∈ X the function K2(x, · ) is upper semi-
continuous on Y , Fatou’s lemma (in the “limsup” version) easily implies that
also K2(µ∗, · ) is upper semicontinuous on Y . Hence, by Definition 2, the
set A := {y ∈ Y : K2(µ∗, y) < K2(µ∗, ν∗)} is (relatively) open in Y , and
ym ∈ A.

Let B := supp(ν∗). Since B is a closed set, so is B \A, and we have

(48) K2(µ∗, y) ≥ K2(µ∗, ν∗) for all y ∈ B \A,

and B \A ( B because ym ∈ A and ym ∈ B.
The equality ν∗(B ∩ A) = 0 cannot hold, since then ν∗(B \ A) = 1,

which contradicts the definition of B (as a minimal closed set M satisfying
ν∗(M) = 1). Therefore ν∗(B ∩A) > 0.

Similarly, ν∗(B ∩ A) = 1 cannot hold either, because it would also lead
to a contradiction:

K2(µ∗, ν∗) =
�

B∩A
K2(µ∗, y) dν∗(y) <

�

B∩A
K2(µ∗, ν∗) dν∗(y) = K2(µ∗, ν∗).

Therefore 0 < ν∗(B ∩A) < 1.
Set γ := ν∗(B ∩ A). Then ν∗(B \ A) = 1 − γ and 0 < γ < 1. Further,

let s ∈ B \ A. By the definition of A and (48), K2(µ∗, s) > K2(µ∗ y) for all
y ∈ B∩A. Now define the probability distribution ν ′ in PY by ν ′ = ν∗+γδs
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on B \A and ν ′ = 0 elsewhere. Hence,

K2(µ∗, ν∗) =
�

B

K2(µ∗, y) dν∗(y)

=
�

B\A

K2(µ∗, y) dν∗(y) +
�

B∩A
K2(µ∗, y) dν∗(y)

<
�

B\A

K2(µ∗, y) dν∗(y) + γK2(µ∗, s)

=
�

B\A

K2(µ∗, y) d(ν∗(y) + γδs(y)) = K2(µ∗, ν ′),

so K2(µ∗, ν∗) < K2(µ∗, ν ′), contradicting the second equality in (41). Thus,
we have shown that (47) cannot hold. In view of the second equality in (42),
this implies (46), and hence (43).

Now, it suffices to combine (45), the second equality in (42) and (46)′ to
conclude that the pair (µ∗,

∑k+1
i=1 βiδyi) satisfies (42) (with ν

∗ =
∑k+1

i=1 βiδyi),
and so is a generalized equilibrium.

Remark 10. Theorem 15 simplifies the problem of looking for a gener-
alized equilibrium: it says that under the given assumptions we can restrict
our search for equilibria to those whose second component is a probability
distribution with support consisting of at most k + 1 points. Moreover, on
account of (43), this new equilibrium determines agent II’s strategy which
gives him the same “level of satisfaction”.

Theorem 16. Assume that {K1(·, y) : y ∈ Y } and {K2(x, · ) : y ∈ Y }
are pairwise poorly concave families of upper semicontinuous functions on
X and Y , respectively. If there exists a generalized equilibrium in PX × PY ,
then there also exists a generalized equilibrium (µ0, ν0) of the form

(µ0, ν0) =
( l+1∑
i=1

αiδxi ,

k+1∑
i=1

βiδyi

)
,

where x1, . . . , xl+1 ∈ X, y1, . . . , yk+1 ∈ Y and 0 ≤ α1, . . . , αl+1, β1, . . . , βk+1

≤ 1 with
∑l+1

i=1 αi = 1 and
∑k+1

i=1 βi = 1.

Proof. Let (µ∗, ν∗) be a generalized equilibrium in PX × PY . Since the
assumptions of Theorem 15 are satisfied, there is a generalized equilibrium
of the form (µ∗,

∑k+1
i=1 βiδyi). Now, starting with this new equilibrium and

applying Theorem 15 again (after changing the order of variables and func-
tions), we get the existence of a generalized equilibrium as described in the
theorem.

Remark 11. Theorem 16 simplifies the problem of looking for a gener-
alized equilibrium in the case when X,Y ⊂ R: we can restrict our search
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for equilibria to pairs of probability distributions with supports consisting
of at most two points. Then our optimization problem can be reduced to
a very simple one. Namely, taking into account (42) and the fact that X
and Y are intervals [a, b] and [c, d], respectively, the problem of finding a
generalized equilibrium can be reduced to the following: Find six numbers
α, β, x∗1, x

∗
2, y
∗
1, y
∗
2 with 0 ≤ α, β ≤ 1, a ≤ x∗1, x

∗
2 ≤ b and c ≤ y∗1, y

∗
2 ≤ d

satisfying

max
a≤x≤b

[βK1(x, y∗1) + (1− β)K1(x, y∗2)] = αβK1(x∗1, y
∗
1)

+ α(1− β)K1(x∗1, y
∗
2) + (1− α)βK1(x∗2, y

∗
1) + (1− α)(1− β)K1(x∗2, y

∗
2)

and

max
c≤y≤d

[αK2(x∗1, y) + (1− α)K2(x∗2, y)] = αβK2(x∗1, y
∗
1)

+ α(1− β)K2(x∗1, y
∗
2) + (1− α)βK2(x∗2, y

∗
1) + (1− α)(1− β)K2(x∗2, y

∗
2).

Then the pair [αδx∗1 + (1− α)δx∗2 , βδy∗1 + (1− β)δy∗2 ] is an equilibrium. Ob-
viously, this task is much easier than looking for a generalized equilibrium
(µ∗, ν∗) satisfying (41) over the spaces PX and PY of probability distribu-
tions.

We end this section with a theorem on a simplified optimization problem
often discussed in game theory, where a generalized equilibrium (µ∗, ν∗) ∈
PX × PY is searched when K2(x, y) = −K1(x, y) for all (x, y) ∈ X × Y .
Then, after takingK1 ≡ K, the optimality condition (42) can be equivalently
rewritten in the form

(49) max
x∈X

K(x, ν∗) = K(µ∗, ν∗) = min
y∈Y

K(µ∗, y),

where K is a fixed function on X × Y . It turns out that under this new
optimization condition we have the following stronger existence theorem.

Theorem 17. Assume that for any x ∈ X the function K(x, ·) is lower
semicontinuous on Y , and {K(·, y) : y ∈ Y } is a pairwise poorly concave
family of upper semicontinuous functions on X. Then there exists a general-
ized equilibrium of the form (µ∗, ν∗) = (x∗,

∑k+1
i=1 βiδy∗i ) satisfying (49) with

some x∗ ∈ X, y∗1, . . . , y
∗
k+1 ∈ Y and with coefficients 0 ≤ β1, . . . , βk+1 ≤ 1

satisfying
∑k+1

i=1 βi = 1.

Proof. Let us extend K to X × PY by

(50) K(x, ν) =
�

Y

K(x, y) dν(y) for (x, ν) ∈ X × PY .

Since for every x ∈ X, K(x, ·) is lower semicontinuous on the compact set Y ,
it is also lower semicontinuous on PY . Moreover, obviouslyK(x, ·) is a convex
function on PY .
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Therefore the assumptions of Proposition 5 are satisfied with Y ≡ PY
and f = K, and consequently

(51) sup
x∈X

inf
ν∈PY

K(x, ν) = inf
ν∈PY

sup
x∈X

K(x, ν).

Since both X and PY are compact, we easily conclude (using Proposition
1(d, e)) that (51) can be equivalently rewritten as

(52) max
x∈X

min
ν∈PY

K(x, ν) = min
ν∈PY

max
x∈X

K(x, ν).

Thus, there is a generalized equilibrium (x∗, ν∗) ∈ X × PY such that

(53) min
ν∈PY

K(x∗, ν) = K(x∗, ν∗) = max
x∈X

K(x, ν∗).

Inequalities (42) hold for K1 = K and K2 = −K, so we can apply
Theorem 15 with (µ∗, ν∗) = (x∗, ν∗) to get the existence of a generalized
equilibrium of the form (x∗,

∑k+1
i=1 βiδy∗i ).

8. Concluding remarks. In this paper we develop a theory of poor
convexity of real functions on compact convex subsets of Rn. This property
is intermediate between the classical convexity and quasi-convexity. A full
characterization of poorly convex functions and their properties are given.
This is then used to get the basic result of the paper, Theorem 14, which
is a generalization (from convex continuous to poorly convex lower semicon-
tinuous functions) of the well-known result due to Bohnenblust, Karlin and
Shapley, described in Remark 7 of Section 5. Finally, an application of the
theory of poorly convex functions to some optimization problems is given.

Theorem 3 says that every continuous quasi-convex function on an inter-
val [a, b] ⊂ R can be approximated by a sequence of poorly convex continuous
functions in the topology of uniform convergence. An open question is if this
can be generalized to functions on a convex compact subset U ⊂ Rn with
n > 1.
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