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Abstract. Many years ago, André Joyal outlined a method of describing the Zariski spectrum
Spec(R) of a commutative ring R in a manner that makes no reference to prime ideals of R.
In Joyal’s approach, the spectrum is not a topological space, but a distributive lattice that
satisfies a certain universal property. Recently, this approach has been shown to be very fruitful
in understanding other spectra, such as the spectrum of a tensor triangulated category. In this
paper, we take a similar method to describe as universal objects several other ‘spectrum like
spaces’ that arise in commutative algebra and noncommutative algebraic geometry.

1. Introduction. The Zariski spectrum Spec(R) of a commutative ring R is a very
familiar object in commutative algebra and algebraic geometry. In a brief 1975 paper,
André Joyal [Jo] gave a very different view of Spec(R), by describing it in a manner that
makes no reference to prime ideals of the ring. In Joyal’s approach, the spectrum is not
a topological space but a distributive lattice, or more precisely, a ‘frame’ (see [J, §II]).
The spectrum Spec(R), along with the association f 7→

√
(f) for each f ∈ R (here

√
(f)

denotes the radical of the principal ideal (f) ⊆ R) becomes a universal object; it is initial
in the category of supports on R. A support (F, δ) on R consists of a frame F and a map

δ : R −→ F

satisfying the conditions:

(1) d(1) = 1, d(0) = 0,
(2) d(ff ′) = d(f) ∧ d(f ′),
(3) d(f + f ′) ≤ d(f) ∨ d(f ′) for any f , f ′ ∈ R.
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Therefore, the spectrum Spec(R) is identified with the lattice of radical ideals in the
ring R. This description goes well with the larger idea of “point-free topology,” where
topological spaces are studied by replacing them with the frame of their open sets. For a
full view of this subject, we refer the reader to the book of Johnstone [J].

More recently, Kock and Pitsch [KP] showed that a similar frame-theoretic approach
may be used to describe the spectrum Spec(T) of a tensor triangulated category (T,⊗, 1)
constructed by Balmer [Bal]. The spectrum Spec(T) constructed by Paul Balmer in [Bal]
brings together a dazzling variety of support theories from various branches of mathe-
matics: from the work of Devinatz, Hopkins and Smith [DHS] in homotopy theory to
Thomason’s classification of thick subcategories in [T] and to the study of support vari-
eties in modular representation theory by Benson, Carlson and Rickard [BCR].

In this paper, we take the frame-theoretic approach to describe as universal objects
several other ‘spectrum like spaces’ that arise in commutative algebra and noncommu-
tative algebraic geometry. We also build on the lessons learned from our previous work
in [Ban1], [Ban2], [Ban3], [Ban4], [Ban5], both from the study of thick tensor ideals in
tensor triangulated categories and from the study of spectral spaces. More precisely, we
do the following:

(a) The space SMod(M) of submodules of a given module M over a commutative
ring R has recently been developed by Finocchiaro, Fontana and Spirito [FFS] in course
of their work on a topological version of Hilbert’s Nullstellensatz. In fact, the authors
in [FFS] show that SMod(M) is a ‘spectral space’ in the sense of Hochster [Ho]. We
construct support data for submodules of M : such a support datum Ψ = (F, δ) consists
of a frame F and a map δ : M −→ F satisfying certain conditions. We recover the space
SMod(M) constructed in [FFS] as the universal object in the category of support data
for submodules of M .

(b) We extend Joyal’s notion [Jo] of support to the case of a commutative graded
ring R in order to describe the space Proj(R). Indeed, we show that the frame of open
subsets of Proj(R) can be obtained as a universal support datum for the graded ring R
as well as the frame of homogeneous radical ideals in R.

Thereafter, we consider more generally, the collection of ‘homogeneous Ψ-closed ideals’
(see Definition 3.7) in place of ‘homogeneous radical ideals,’ where Ψ = (F, δ) is a support
datum on R. Under certain conditions, we show that the homogeneous Ψ-closed ideals
form a frame hRadΨ(R), which is further isomorphic to a frame obtained from a certain
universal factorization of a morphism of supports. When equipped with the ‘lower interval
topology’ (see, for instance, [J, §II.1.8]), the frame hRadΨ(R) gives a spectral space. In
the particular case of the initial support Proj(R), this yields a projective version of the
topological Nullstellensatz developed by Finocchiaro, Fontana and Spirito [FFS].

(c) For an abelian category A, its spectrum Spec(A) was developed by A. Rosenberg
in [R1], [R2], [R3] with a view towards building noncommutative algebraic geometry.
When applied to the category of modules over a (not necessarily commutative) ring,
this gives a highly versatile theory of ‘noncommutative local algebra’ (see [R1]). Since
this noncommutative local algebra is based on the category of modules instead of the
ring itself, there is Morita invariance built into the theory. The spectrum construction of
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Rosenberg also allows us to recover a scheme from its category of quasi-coherent sheaves,
suggesting that this is a possible way of studying ‘noncommutative schemes.’

We take a support datum Ψ on a locally noetherian Grothendieck category A to
consist of a frame F and a certain kind of map

φ : Afg −→ F

where Afg ⊆ A is the full subcategory of finitely generated objects of A. Since A is
locally noetherian, Afg is in fact an abelian category. Finally, we show that the spectrum
Spec(A) as constructed by Rosenberg is weakly initial in the category of support data
on A.

2. Frames of submodules. We recall (see, for instance, [J, Chapter I]) that a lattice is
a partially ordered set (L,≤) such that every finite subset S ⊆ L has a least upper bound
(known as the join

∨
s∈S s) and a greatest lower bound (known as the meet

∧
s∈S s). In

particular, any lattice L has a least element that we denote by 0 and a top element that
we will denote by 1. A frame F is a complete lattice such that finite meets distribute over
arbitrary joins, i.e.,

a ∧
(∨
s∈S

s
)

=
(∨
s∈S

(a ∧ s)
)

for any a ∈ F and any (not necessarily finite) subset S ⊆ F . A morphism of frames is a
function that preserves finite meets and arbitrary joins. If X is any topological space, the
lattice ΩX of its open sets always forms a frame. For more on the study of topological
spaces by means of frames, we refer the reader to [J].

Throughout this section, we let R be a commutative ring and let M be an R-module.
Let SMod(M) be the set of all submodules of M . In [FFS], it was shown that SMod(M)
is actually a spectral space in the sense of Hochster [Ho], with a subbasis of open sets
given by the collection

D(m) := {N ∈ SMod(M) |m /∈ N}, m ∈M.

For any finite subset S ⊆ M , we set D(S) :=
⋂
m∈S D(m). For the sake of convenience,

we also set V (S) := SMod(M) \D(S) for any finite subset S ⊆M .

Lemma 2.1. For any finite subset S = {m1, . . . ,mk} ⊆ M , the open set D(S) ⊆
SMod(M) is quasi-compact.

Proof. We consider a covering D(S) ⊆
⋃
i∈I D(ni) of D(S) by means of subbasic open

sets {D(ni)}i∈I with each ni ∈M . Taking complements, we now obtain

V (S) = V (m1) ∪ . . . ∪ V (mk) ⊇
⋂
i∈I

V (ni).

Let N be the submodule generated by the collection {ni}i∈I . Clearly, {N} ∈ V (ni) for
each i ∈ I. For the sake of definiteness, suppose that {N} ∈ V (m1), i.e., m1 ∈ N . Then,
there exists a finite subset J ⊆ I such thatm1 lies in the submodule generated by {nj}j∈J .
It follows that D(m1) ⊆

⋃
j∈J D(nj). In particular, this gives D(S) = D(m1) ∩ . . . ∩

D(mk) ⊆ D(m1) ⊆
⋃
j∈J D(nj). By the Alexander subbase theorem (see, for instance,

[S, Tag 08ZP]), it follows that D(S) is quasi-compact.
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We consider the frame ΩSMod(M) of open sets of SMod(M). Every element m ∈M
is associated to an open set D(m) ∈ ΩSMod(M). More generally, we now introduce the
notion of a support datum for submodules of M .

Definition 2.2. Let R be a commutative ring and let M be an R-module. A support
datum Ψ = (F, δ) for submodules of M consists of a frame F and a map

δ : M −→ F

satisfying the following conditions:

(1) δ(0) = 0F , where 0F denotes the least element of the frame F ,
(2) for any m1, m2 ∈M , we have δ(m1 +m2) ≤ δ(m1) ∨ δ(m2),
(3) for any a ∈ R and m ∈M , we have δ(am) ≤ δ(m).

A morphism f : Ψ −→ Ψ′ of support data from Ψ = (F, δ) to Ψ′ = (F ′, δ′) consists of a
morphism f : F −→ F ′ of frames such that f ◦ δ = δ′.

We notice that if N ⊆ M is a submodule generated by a set {ni}i∈I , conditions (2)
and (3) in Definition 2.2 together imply that

δ(n) ≤
∨
i∈I

δ(ni) (2.1)

for any element n ∈ N .
It is evident that the pair Ψ0 = (ΩSMod(M), D) is a support datum for sub-

modules of M . Given an arbitrary support datum Ψ = (F, δ), we proceed to define
fΨ : ΩSMod(M) −→ F by setting

fΨ(D({m1, . . . ,mk})) = δ(m1) ∧ . . . ∧ δ(mk) (2.2)

for each finite subset S = {m1, . . . ,mk} ⊆ M . As S varies over all finite subsets of M ,
the D(S) form a basis for the topology on SMod(M). As such, if U ∈ ΩSMod(M) is an
open set with U =

⋃
i∈I D(Si), we set

fΨ(U) :=
∨
i∈I

fΨ(D(Si)). (2.3)

Lemma 2.3. The association fΨ : ΩSMod(M) −→ F is well-defined.

Proof. Let S = {m1, . . . ,mk} ⊆M be a finite set and let {Si}i∈I be a collection of finite
subsets of M such that D(S) ⊆

⋃
i∈I D(Si). It suffices to check that

δ(m1) ∧ . . . ∧ δ(mk) ≤
∨
i∈I

( ∧
nij∈Si

δ(nij)
)
.

From Lemma 2.1, we know that D(S) is quasi-compact and so we can choose a finite
subset I ′ ⊆ I such that D(S) ⊆

⋃
i∈I′ D(Si). Taking complements, we obtain:

V (S) = V (m1) ∪ . . . ∪ V (mk) ⊇
⋂
i∈I′

( ⋃
nij∈Si

V (nij)
)

=
⋃

T⊆
∐

i∈I′ Si

|T∩Si|=1 ∀i∈I′

(⋂
n∈T

V (n)
)
. (2.4)

For each T ⊆
∐
i∈I′ Si such that T ∩Si is a singleton for all i ∈ I ′, we let NT ⊆M be the

submodule generated by elements n ∈ T . Then, we can choose some integer 1 ≤ kT ≤ k
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such that mkT
∈ NT . From (2.1), it follows that δ(mkT

) ≤
∨
n∈T δ(n). We now obtain

δ(m1) ∧ . . . ∧ δ(mk) ≤
∧

T⊆
∐

i∈I′ Si

|T∩Si|=1 ∀i∈I′

δ(mkT
)

≤
∧

T⊆
∐

i∈I′ Si

|T∩Si|=1 ∀i∈I′

(∨
n∈T

δ(n)
)

=
∨
i∈I′

( ∧
nij∈Si

δ(nij)
)
≤
∨
i∈I

( ∧
nij∈Si

δ(nij)
)
.

This proves the result.

Theorem 2.4. Let M be a module over a commutative ring R. Then, the datum Ψ0 =
(ΩSMod(M), D) is an initial object in the category of support data for submodules of M .

Proof. Given a support datum Ψ = (F, δ) for submodules of M , we will show that fΨ as
defined in (2.2) and (2.3) gives a morphism of support data fΨ : Ψ0 −→ Ψ. From Lemma
2.3, we know that fΨ : ΩSMod(M) −→ F is well-defined at the level of sets.

Further, we know from (2.3) that if any open U ∈ ΩSMod(M) can be expressed as a
union U =

⋃
i∈I D(Si) of some collection of basis elements, we have

fΨ(U) :=
∨
i∈I

fΨ(D(Si)).

From this, it is clear that fΨ(
⋃
k∈K Uk) =

∨
k∈K fΨ(Uk) for any collection {Uk}k∈K of

elements from ΩSMod(M), i.e., fΨ preserves arbitrary joins. We now consider elements
U, V ∈ ΩSMod(M) and their intersection U ∩ V , i.e., their meet in SMod(M). If we
write U =

⋃
i∈I D(Si) and V =

⋃
j∈J D(Tj) as unions of basis elements, we get:

fΨ(U ∩ V ) = fΨ

((⋃
i∈I

D(Si)
)
∩
(⋃
j∈J

D(Tj)
))

= fΨ

( ⋃
(i,j)∈I×J

D(Si) ∩D(Tj)
)

= fΨ

( ⋃
(i,j)∈I×J

D(Si ∪ Tj)
)

=
∨

(i,j)∈I×J

fΨ(D(Si ∪ Tj))

=
∨

(i,j)∈I×J

(
fΨ(D(Si)) ∧ fΨ(D(Tj))

)
=
(∨
i∈I

fΨ(D(Si))
)
∧
(∨
j∈J

fΨ(D(Tj))
)

= fΨ(U) ∧ fΨ(V ).

It remains to show that fΨ : Ψ0 −→ Ψ = (F, δ) is unique. We know from (2.2) and (2.3)
that fΨ is defined by setting fΨ(D(m)) = δ(m) for each m ∈M and extending by means
of finite meets and arbitrary joins. This proves the result.

3. Support data and Proj of a graded ring. Throughout this section, we let R =⊕
i≥0Ri be a commutative graded ring. We recall that an ideal I ⊆ R is said to be

homogeneous if it is generated by homogeneous elements. In other words, if f ∈ I can
be expressed as a sum f = f0 + . . . + fn with each fi ∈ Ri, we have fi ∈ I for every
0 ≤ i ≤ n. Suppose that a homogeneous ideal p ⊆ R is such that given ab ∈ p with
a, b homogeneous, we have either a ∈ p or b ∈ p. Then, p is prime (see, for instance,
[S, Tag 00JM]).
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By definition, Proj(R) consists of all homogeneous prime ideals p of R such that
R+ :=

⊕
i>0Ri 6⊆ p. Since Proj(R) ⊆ Spec(R), there is an induced subspace topology

on Proj(R). We let Rh+ denote the collection of all homogeneous elements in R of degree
> 0. We know that a basis for Proj(R) is given by the collection (see [S, Tag 00JP])

D+(f) := {p ∈ Proj(R) | f /∈ p}

as f varies over all the elements of Rh+. It is also clear from the definition that D+(ff ′) =
D+(f) ∩D+(f ′) for any f , f ′ ∈ Rh+.

We now extend Joyal’s notion (see [Jo]) of a support of a commutative ring to the
graded case. We note that the following notion is somewhat implicit in the work of
Coquand, Lombardi and Schuster [CLS1], [CLS2]. However, the authors in [CLS1] and
[CLS2] stick to the case of a graded ring R =

⊕
i≥0Ri generated as an R0-algebra by

finitely many homogeneous elements in degree 1.

Definition 3.1. Let R =
⊕

i≥0Ri be a commutative graded ring and let Rh+ be the
collection of its homogeneous elements of degree > 0. A support datum Ψ = (F, δ) for R
consists of a frame F and a map

δ : Rh+ ∪ {0} −→ F

satisfying the following conditions:

(1) δ(0) = 0F , where 0F is the bottom element of the frame F ;
(2) δ(ff ′) = δ(f) ∧ δ(f ′) for any f , f ′ ∈ Rh+ ∪ {0};
(3) if f , f ′ ∈ Rh+ ∪ {0} are such that f + f ′ ∈ Rh+ ∪ {0}, then δ(f + f ′) ≤ δ(f) ∨ δ(f ′);
(4) if 1F is the top element of the frame F , then

∨
f∈Rh

+
δ(f) = 1F .

A morphism f : Ψ = (F, δ) −→ (F ′, δ′) of support data consists of a morphism f :F −→ F ′

of frames such that f ◦ δ = δ′.

The collection ΩProj(R) of open sets of Proj(R) forms a frame. As such, it is evident
that the association

δ0 : Rh+ −→ ΩProj(R) f 7→ D+(f)

gives a support datum for R which we denote by Ψ0 = (ΩProj(R), δ0). For the sake of
convenience, we set δ0(0) = D+(0) to be the empty set considered as an open subset
of Proj(R), i.e., an element of the frame ΩProj(R). We also notice that if f ∈ Rh+ is
nilpotent, then condition (2) gives δ(f) = 0F .

Lemma 3.2. Let I be a homogeneous ideal and let {fj}j∈J be a set of homogeneous
elements generating I. Suppose that Ψ = (F, δ) is a support datum for R. Then, any
homogeneous f ∈ I satisfies

δ(f) ≤
∨
j∈J

δ(fj).

Proof. Suppose that deg(f) = k. Since f lies in the ideal generated by {fj}j∈J , we can
find a finite subcollection f1, . . . , fn of elements from {fj}j∈J and some a1, . . . , an ∈ R
such that

f = a1f1 + . . .+ anfn.



SPECTRA AS UNIVERSAL OBJECTS 59

For each 1 ≤ l ≤ n, let dl := deg(fl) and a(k−dl)
l be the component of al in degree (k−dl).

Since f is homogeneous of degree k, we obtain

f =
n∑
l=1

a
(k−dl)
l fl.

From conditions (2) and (3) in Definition 3.1, we now get

δ(f) ≤
n∨
l=1

(
δ(a(k−dl)

l ) ∧ δ(fl)
)
≤

n∨
l=1

δ(fl) ≤
∨
j∈J

δ(fj).

This proves the result.

We also recall here the following well known facts on graded rings.

Lemma 3.3.

(a) Let p ⊆ R be a prime ideal and ph be the ideal generated by the homogeneous elements
of p. Then, ph is a homogeneous prime ideal of R.

(b) Let I ⊆ R be a homogeneous ideal. Then, the radical
√
I of I equals the intersection

of all homogeneous prime ideals containing I.
(c) Let f ∈ Rh+. Then, D+(f) = φ if and only if f is nilpotent.

Proof. The result of (a) is given in [S, Tag 00JT]. For part (b), we notice that if I is a
homogeneous ideal and I ⊆ p for some prime ideal p, we have I ⊆ ph. From part (a), we
see that ph is a homogeneous prime ideal. This proves (b).

For (c), it is clear that if f ∈ Rh+ is nilpotent, then D+(f) = φ. Conversely, if f ∈ Rh+
is not nilpotent, there is a prime ideal p ⊆ R such that f /∈ p. Then, f /∈ ph ⊆ p. We
cannot have R+ ⊆ ph because f ∈ Rh+ ⊆ R+ and f /∈ ph. We conclude that ph ∈ Proj(R)
and hence ph ∈ D+(f), i.e., D+(f) 6= φ.

Proposition 3.4. Let Ψ = (F, δ) be a support datum for R =
⊕

i≥0Ri. Let f ∈ Rh+∪{0}
and let {fj}i∈J be a collection of elements from Rh+∪{0} such that D+(f) ⊆

⋃
j∈J D+(fj).

Then
δ(f) ≤

∨
j∈J

δ(fj).

Proof. If some fj equals 0, we know that D+(fj) = φ and hence we may exclude it
from the covering of D+(f). Therefore, we suppose that every fj ∈ Rh+. Let I be the
homogeneous ideal generated by the collection {fj}j∈J .

If f = 0, the result is obvious. Therefore, we assume that f ∈ Rh+. Let p be a
homogeneous prime ideal containing I. Since D+(f) ⊆

⋃
j∈J D+(fj), it follows that

p /∈ D+(f). Then, either f ∈ p or R+ ⊆ p. But if R+ ⊆ p, then f ∈ Rh+ ⊆ R+ ⊆ p and it
still follows that f ∈ p. From Lemma 3.3, we now see that f ∈

√
I, i.e., fn ∈ I for some

n ∈ N. Since f is homogeneous, so is fn. From Lemma 3.2, it now follows that

δ(fn) ≤
∨
j∈J

δ(fj).

Finally, from Definition 3.1, it is clear that δ(fn) = δ(f). This proves the result.
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Theorem 3.5. Let Ψ = (F, δ) be a support datum for a commutative graded ring R =⊕
i≥0Ri. Then, there exists a unique morphism fΨ : Ψ0 = (ΩProj(R), δ0) −→ Ψ =

(F, δ).

Proof. For any open set U ⊆ Proj(R), i.e., any U ∈ ΩProj(R), we set

fΨ(U) :=
∨

D+(f)⊆U

δ(f). (3.1)

Then, Proposition 3.4 shows that (3.1) gives a well-defined map fΨ : ΩProj(R) −→ F

that is compatible with arbitrary joins. Due to Proposition 3.4, it also follows that
fΨ(D+(f)) = δ(f) for any f ∈ Rh+. For f, f ′ ∈ Rh+ we now see that

fΨ(D+(f) ∩D+(f ′)) = fΨ(D+(ff ′)) = δ(ff ′)
= δ(f) ∧ δ(f ′) = fΨ(D+(f)) ∧ fΨ(D+(f ′)).

(3.2)

Since finite meets distribute over arbitrary joins in the frame F , it follows from (3.2) that
fΨ : ΩProj(R) −→ F preserves finite meets. The uniqueness of fΨ is clear.

For the remainder of this section, we suppose that the homogeneous elements of
degree zero in R form a field, i.e., R0 is a field. This implies in particular that every
proper homogeneous ideal I ⊆ R must be contained in R+. Indeed, if x ∈ I and x0 is
the component of x in degree 0, we must have x0 ∈ I (since I is homogeneous). But then
x0 ∈ R0 is a unit unless x0 = 0.

For any homogeneous ideal I ⊆ R, we now set

V+(I) := {p ∈ Proj(R) | I ⊆ p}. (3.3)

Further, we let hRad(R) denote the collection of all proper and homogeneous radical
ideals of R. Since R0 is a field, R+ is a radical ideal. We now make hRad(R) into a frame
as follows:

(1) For any I1, I2 ∈ hRad(R), their meet is given by the intersection I1 ∩ I2.
(2) For any family of ideals {Ik}k∈K in hRad(R), their join is given by taking the radical

of their sum, i.e., by taking the ideal
√∑

k∈K Ik. We notice that since each Ik ⊆ R+,
so is their join

√∑
k∈K Ik ⊆ R+.

Proposition 3.6. There is an isomorphism of frames between hRad(R) and ΩProj(R)
given by the association

I 7→ Proj(R) \ V+(I). (3.4)

Proof. From the definition in (3.3), it is clear that V+(I1 ∩ I2) = V+(I1)∪V+(I2) for any
I1, I2 ∈ hRad(R). Also, if {Ik}k∈K is a family of ideals in hRad(R), then

V+

(√∑
k∈K

Ik

)
= V+

(∑
k∈K

Ik

)
=
⋂
k∈K

V+(Ik).

This shows that the association in (3.4) is a morphism of frames. Additionally, we know
that every closed set in Proj(R) is of the form V+(I) for some homogeneous radical
ideal I ⊆ R (see [S, Tag 00JP]). For the case of I = R, we see from the definition of
Proj(R) that V+(R) = V+(R+) = φ. Since R+ ∈ hRad(R), we see that the collection
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of all {V+(I)} as I varies over all elements of hRad(R) exhausts all the closed sets in
Proj(R).

It remains to show that if V+(I1) = V+(I2) for any I1, I2 ∈ hRad(R), then I1 = I2.
Since the proper homogeneous ideals of R are all contained in R+, the only homogeneous
prime ideals containing some I ∈ hRad(R) are R+ and the prime ideals in V+(I). From
Lemma 3.3 it now follows that

I1 =
√
I1 = R+ ∩

( ⋂
p∈V+(I1)

p
)

= R+ ∩
( ⋂
p∈V+(I2)

p
)

=
√
I2 = I2.

This proves the result.

The following definition is motivated by [Ban5, Definition 2.3] which referred to the
case of thick tensor ideals in tensor triangulated categories.

Definition 3.7. Let Ψ = (F, δ) be a support datum for R. We will say that a homoge-
neous ideal I ⊆ R is Ψ-closed if it satisfies:

δ(f) ≤
∨

f ′∈Rh
+∩I

δ(f ′) =⇒ f ∈ I

for any homogeneous element f ∈ Rh+ ∪ {0}. It is clear that any such homogeneous ideal
is also radical. As such, the collection of all homogeneous Ψ-closed ideals will be denoted
by hRadΨ(R).

Given a support datum Ψ = (F, δ), we know from Theorem 3.5 that we have an
induced morphism fΨ : ΩProj(R) −→ F . Combining with Proposition 3.6, we might as
well say that we have a morphism of frames fΨ : hRad(R) −→ F .

On the other hand, since the category of frames is ‘algebraic’ (see [J, §I.3]), we know
that any morphism of frames may be factored uniquely as a composition of a regular epi-
morphism followed by a monomorphism (see [J, §II.2.1]). As such, we factor the morphism
fΨ : hRad(R) −→ F as iΨ ◦ eΨ, where eΨ : hRad(R) −→ FΨ is a regular epimorphism
and iΨ : FΨ −→ F is a monomorphism.

Lemma 3.8. Let I ∈ hRad(R) and Ψ = (F, δ) be a support datum on R. Then, fΨ(I) ∈ F
may be expressed as

fΨ(I) =
∨

f∈Rh
+∩I

δ(f).

Proof. Since I ∈ hRad(R) is radical, it is clear that for any f ∈ Rh+ we have:

f ∈ I ⇐⇒ (Proj(R) \D+(f)) ⊇ V+(I) ⇐⇒ D+(f) ⊆ (Proj(R) \ V+(I)).

Combining (3.1) and (3.4), we obtain

fΨ(I) =
∨

D+(f)⊆(Proj(R)\V+(I))

δ(f) =
∨

f∈Rh
+∩I

δ(f).

Theorem 3.9. Let R =
⊕

i≥0Ri be a commutative graded ring such that R0 is a field.
Let Ψ = (F, δ) be a support datum on R. Then, the homogeneous Ψ-closed ideals of R
form a frame and this frame hRadΨ(R) is isomorphic to FΨ.
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Proof. We know that the support datum Ψ = (F, δ) induces a morphism of frames
fΨ : hRad(R) −→ F . Then, we may treat fΨ as a functor between the categories obtained
by considering the partially ordered sets underlying hRad(R) and F . In this sense, we
know that any morphism of frames admits a right adjoint (see [J, §II.1]) and we let
gΨ : F −→ hRad(R) denote the right adjoint of fΨ. We should remark here that the
adjoint gΨ is only a morphism of meet-semilattices and not necessarily a morphism of
frames.

We set jΨ := gΨ ◦ fΨ. Then, the composition jΨ : hRad(R) −→ hRad(R) gives a
‘nucleus’ on the frame hRad(R) (see [J, §II.2.2]). Further, from [J, §II.2.2–3], it follows
that the fixed points of jΨ in hRad(R) form a frame that is isomorphic to the frame FΨ.
In order to prove the result, it therefore suffices to show that the fixed points of jΨ are
the same as the homogeneous Ψ-closed ideals of R.

For this, we define g : F −→ hRad(R) as follows: for any x ∈ F we let g(x) be the
ideal in R generated by all the homogeneous elements f ∈ Rh+ ∪ {0} such that δ(f) ≤ x.
We claim that g = gΨ, i.e., g is right adjoint to fΨ. For this, we must verify that

fΨ(I) ≤ x ⇐⇒ I ⊆ g(x)

for any I ∈ hRad(R) and any x ∈ F .
First, we suppose that fΨ(I) ≤ x. From Lemma 3.8, it follows that each f ∈ Rh+ ∩ I

satisfies δ(f) ≤ x. From the definition of g(x), it is now clear that I ⊆ g(x).
Conversely, suppose that I ⊆ g(x). Then, from Lemma 3.2 and the definition of g(x),

it follows that any homogeneous element f ∈ g(x) satisfies δ(f) ≤ x. In particular, any
element f ∈ I ∩Rh+ satisfies δ(f) ≤ x. It is now clear from Lemma 3.8 that fΨ(I) ≤ x.

Thus, we know that g = gΨ. It follows that for any I ∈ hRad(R), the ideal jΨ(I) =
(gΨ ◦ fΨ)(I) is generated by all f ∈ Rh+ such that

δ(f) ≤ fΨ(I) =
∨

f ′∈Rh
+∩I

δ(f ′). (3.5)

Then, (3.5) shows that the fixed points of jΨ are exactly the homogeneous Ψ-closed ideals
of R. This proves the result.

If we consider the initial support (ΩProj(R), δ0) for the commutative graded ring R,
we notice that for each f ∈ Rh+ ∪ {0}, the open subset δ0(f) = D+(f) is quasi-compact
as a subspace of Proj(R). This motivates the next definition.

Definition 3.10. We will say that a support datum Ψ = (F, δ) for a commutative graded
ring R is of finite type if for each f ∈ Rh+∪{0}, the element δ(f) is a finite element of the
frame F . In other words, given any collection {xj}j∈J of elements of F and f ∈ Rh+∪{0}
with δ(f) ≤

∨
j∈J xj , there exists a finite subset J ′ ⊆ J such that δ(f) ≤

∨
j∈J′ xj .

Lemma 3.11. Let R =
⊕

i≥0Ri be a commutative graded ring such that R0 is a field.
Let Ψ = (F, δ) be a support datum of finite type on R. Then, every element of the frame
hRadΨ(R) of homogeneous Ψ-closed ideals is a join of finite elements.
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Proof. From Theorem 3.9, we have an isomorphism of frames from hRadΨ(R) to FΨ. By
definition, FΨ is the image of the morphism fΨ : hRad(R) −→ F . From Lemma 3.8, we
know that

fΨ(I) =
∨

f ′∈Rh
+∩I

δ(f ′) (3.6)

for any I ∈ hRad(R). By assumption, Ψ is a support datum of finite type, i.e., each δ(f ′)
appearing on the right hand side of (3.6) is finite. This proves the result.

Given a partially ordered set (A,≤), we recall that a ‘lower interval’ in A is a set of
the form

L(x) := {y ∈ A | y 6≥ x}

for some x ∈ A. The ‘lower interval topology’ on A is defined by taking {L(x)}x∈A to be
an open subbasis (see [J, §II.1.8]). The set A equipped with the lower interval topology
will be denoted by LI(A).

We also recall that a topological space is said to be ‘spectral’ if it is homeomorphic
to the Zariski spectrum of a commutative ring. A famous result of Hochster [Ho] shows
that a space is spectral if and only if it is quasi-compact, has a basis of quasi-compact
opens that is closed under intersection and every irreducible closed subset has a unique
generic point.

Proposition 3.12. Let A be a frame and let Aω be the collection of its finite elements.
Suppose that every element of A can be expressed as a join of elements in Aω. Then,
the space LI(A), i.e., the set A equipped with lower interval topology, forms a spectral
space. The collection {L(x) | x ∈ Aω} forms a subbasis of quasi-compact open subspaces
of LI(A).

Proof. The proof of this result is the same as that of [Ban5, Proposition 4.1]. Although we
have supposed in the statement of [Ban5, Proposition 4.1] that A is a coherent frame, the
only property of A that is used in the proof is that every element in A can be expressed
as a join of elements from Aω.

Lemma 3.13. Let R =
⊕

i≥0Ri be a commutative graded ring such that R0 is a field. Let
Ψ = (F, δ) be a support datum of finite type on R. Then:

(a) The lower interval topology on hRadΨ(R) is generated by taking the collection

U(f) = {J ∈ hRadΨ(R) | f /∈ J} ∀ f ∈ Rh+
to be a subbasis of open sets.

(b) The lower interval topology on FΨ is generated by taking the collection

W (f) = {y ∈ FΨ | y 6≥ δ(f)} ∀ f ∈ Rh+
to be a subbasis of open sets.

Proof. (a) By definition, the lower interval topology on hRadΨ(R) is generated by taking
sets of the form {J ∈ hRadΨ(R) | J 6⊇ I}, I ∈ hRadΨ(R) to be open sets. If we have
ideals J , I ∈ hRadΨ(R) such that J 6⊇ I, there must be some homogeneous element f ∈ I
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such that f /∈ J . It follows that

{J ∈ hRadΨ(R) | J 6⊇ I} =
⋃

f∈Rh
+∩I

{J ∈ hRadΨ(R) | f /∈ J} =
⋃

f∈Rh
+∩I

U(f). (3.7)

For any homogeneous element f ∈ Rh+, let cδ(f) be the homogeneous Ψ-closed ideal
generated by all homogeneous elements f ′ ∈ Rh+ satisfying δ(f ′) ≤ δ(f). Then, it is clear
that any ideal J ∈ hRadΨ(R) does not contain f if and only if it does not contain the
homogeneous Ψ-closed ideal cδ(f). This shows that U(f) = {J ∈ hRadΨ(R) | J 6⊇ cδ(f)}.
Combining with (3.7), we have the result.

(b) We know that FΨ is the image of the morphism fΨ : hRad(R) = ΩProj(R) −→ F .
Then, using (3.6), we notice that any subbasis element {y ∈ FΨ | y 6≥ fΨ(I)}, I ∈
hRad(R) for LI(FΨ) may be expressed as

{y ∈ FΨ | y 6≥ fΨ(I)} =
⋃

f∈Rh
+∩I

{y ∈ FΨ | y 6≥ δ(f)} =
⋃

f∈Rh
+∩I

W (f).

On the other hand, from (3.6) and Lemma 3.2, it is clear that

W (f) = {y ∈ FΨ | y 6≥ δ(f)} = {y ∈ FΨ | y 6≥ fΨ(cδ(f))}

where cδ(f) ∈ hRadΨ(R) ⊆ hRad(R) is as in part (a). This proves the result.

Theorem 3.14. Let R =
⊕

i≥0Ri be a commutative graded ring such that R0 is a field.
Let Ψ = (F, δ) be a support datum of finite type on R. Then, the following are spectral
spaces and there is a homeomorphism between them:

(1) The set hRadΨ(R) with topology generated by taking the collection

U(f) = {J ∈ hRadΨ(R) | f /∈ J} ∀ f ∈ Rh+

to be a subbasis of open sets.
(2) The set FΨ with topology generated by taking the collection

W (f) = {y ∈ FΨ | y 6≥ δ(f)} ∀ f ∈ Rh+

to be a subbasis of open sets.

Proof. From Theorem 3.9, we know that there is an isomorphism of frames between
hRadΨ(R) and FΨ. This gives a homeomorphism between LI(hRadΨ(R)) and LI(FΨ).
From the explicit description of the lower interval topologies LI(hRadΨ(R)) and LI(FΨ)
in Lemma 3.13, we know that there is a homeomorphism between the spaces described
in (1) and (2). Since Ψ = (F, δ) is a support datum of finite type on R, it follows from
Lemma 3.11 that every element in the frame hRadΨ(R) ∼= FΨ can be described as a
join of finite elements. Applying Proposition 3.12, it now follows that the lower interval
topologies LI(hRadΨ(R)) and LI(FΨ) give spectral spaces.

Applying Theorem 3.14 to the case of the initial support datum Ψ0 = (ΩProj(R), δ0),
we obtain as a consequence a projective version of the topological Nullstellensatz of
Finocchiaro, Fontana and Spirito [FFS, Theorem 4.1].
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Corollary 3.15. Let R =
⊕

i≥0Ri be a commutative graded ring such that R0 is a field.
Then, the following are spectral spaces and there is a homeomorphism between them:

(1) The set hRad(R) of homogeneous radical ideals equipped with topology generated by
taking the collection {J ∈ hRad(R) | f /∈ J}, ∀ f ∈ Rh+ to be a subbasis of open sets.

(2) The collection ΩProj(R) of open sets of Proj(R) with topology generated by taking
the collection {U ∈ ΩProj(R) |U 6⊇ D+(f)}, ∀ f ∈ Rh+ to be a subbasis of open sets.

4. Support data for a locally noetherian Grothendieck category. In this section,
A will be a Grothendieck abelian category. We begin by recalling the construction of the
spectrum Spec(A) of the abelian category A as defined by Rosenberg [R1], [R3].

We start with a relation on the objects of the category: X ≺ Y for objects X, Y ∈ A
if X is a subquotient of a finite direct sum of copies of Y . This gives rise to an equivalence
relation:X ≈ Y ifX ≺ Y and Y ≺ X. For each objectX, we consider the full subcategory
〈X〉 of A whose objects are given by

Ob(〈X〉) := Ob(A)− {Y ∈ Ob(A) |X ≺ Y }.

We notice that X ≺ Y if and only if 〈X〉 ⊆ 〈Y 〉. In particular, an object P in A is said to
be spectral if P 6= 0 and any nonzero subobject Q ⊆ P satisfies P ≺ Q. The collection of
spectral objects ofA is denoted by Spec(A). Remarkably, whenA = R−Mod, the module
category over a commutative ring R, every spectral object of R−Mod is equivalent to a
quotient R/p for some prime ideal p ⊆ R.

The spectrum Spec(A) is defined as follows:

Spec(A) := {〈P 〉 | P ∈ A is spectral}.

A basis of closed sets for Spec(A) is given by the collection (see [R3, §1.6]):

Supp(M) := {〈P 〉 | P ∈ Spec(A) and P ≺M} (4.1)

whereM varies over all the finitely generated objects of A. We observe that the collection
in (4.1) is closed under finite unions since Supp(M1) ∪ Supp(M2) = Supp(M1 ⊕M2) for
any finitely generated objects M1, M2. We recall here that an object M ∈ A is said to
be finitely generated if the canonical morphism

lim−→
λ∈Λ

Hom(M,Nλ) −→ Hom(M, lim−→
λ∈Λ

Nλ)

is an isomorphism for any filtered system {Nλ}λ∈Λ of objects inA connected by monomor-
phisms. Additionally, we suppose throughout that A is a ‘locally noetherian category,’ i.e.,
it has a small generating family of noetherian objects. In particular, the full subcategory
Afg ⊆ A consisting of finitely generated objects forms an abelian subcategory.

We know, for instance, that the category of modules over any left noetherian ring is
a locally noetherian Grothendieck category (see [V, (3.3)]). Another example is that of
the category of quasi-coherent sheaves on a separated noetherian scheme (see [Ha, §II.7]
and [S, Tag 077P]). For more on locally noetherian categories, we refer the reader, for
instance, to [AR], [St], [V].
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Definition 4.1. Let A be a locally noetherian Grothendieck category. A support datum
for A is a pair Ψ = (F, φ) consisting of a frame F and a mapping

φ : Afg −→ F

satisfying the following conditions:
(1) If 1F denotes the top element of the frame F , then φ(0) = 1F .
(2) Given any short exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0 of objects in Afg,

we have
φ(M) = φ(M ′) ∧ φ(M ′′).

A morphism f : (F, φ) −→ (F ′, φ′) of support data for A is a morphism f : F −→ F ′

that preserves finite meets and satisfies the condition f ◦ φ = φ′.
It is clear from Definition 4.1 that given a collection {Mi}1≤i≤n of objects in Afg, we

have

φ
( n⊕
i=1

Mi

)
=

n∧
i=1

φ(Mi). (4.2)

Lemma 4.2. Let Ψ = (F, φ) be a support datum for A and let M,N be two finitely
generated objects of A such thatM ≺ N . Then, φ(M) ≥ φ(N) as elements of the frame F .
Proof. Since M ≺ N , we can express M as a subquotient of a direct sum of finitely
many copies of N , say N⊕k. From (4.2), it is clear that φ(N⊕k) = φ(N). Since M is a
subquotient ofN⊕k, it follows from condition (2) in Definition 4.1 that φ(M) ≥ φ(N⊕k) =
φ(N).

We now consider the spaceSpec(A). The collection ΩSpec(A) of open sets ofSpec(A)
forms a frame. We also know (see [R1, §5.2.2]) that for any short exact sequence 0 −→
M ′ −→ M −→ M ′′ −→ 0 we have Supp(M) = Supp(M ′) ∪ Supp(M ′′). As such, it is
evident that the association

φ0 : Afg −→ ΩSpec(A) M 7→ Suppc(M) := Spec(A) \ Supp(M)
is a support datum for A in the sense of Definition 4.1. Our aim is to show that Ψ0 =
(ΩSpec(A), φ0) is a weakly initial object in the category of support data on A.
Lemma 4.3. As P varies over all the spectral objects of A, the collection Supp(P ) forms
a subbasis of closed sets for the topological space Spec(A).
Proof. Let 0 6= N ∈ Afg be finitely generated. Since A is locally noetherian, we know
(see [R3, §1.6.4.1]) that there is a finite filtration

N = Nk ⊇ Nk−1 ⊇ . . . ⊇ N0 = 0
such that each successive quotient Ni/Ni−1 ∈ Spec(A). It follows that Supp(N) =⋃k
i=1 Supp(Ni/Ni−1). As such, every element of the basis {Supp(N)}N∈Afg

of closed
sets for Spec(A) may be expressed as a finite union of elements in {Supp(P )}P∈Spec(A).
This proves the result.

It follows that the collection {Suppc(P ) = Spec(A) \ Supp(P )}P∈Spec(A) forms a
subbasis of open sets for Spec(A). For the sake of convenience, we denote this subbasis
by S. The collection of finite intersections of elements of S will be denoted by B. Since
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〈P 〉 ∈ Supp(P ) for any P ∈ Spec(A), we notice that the open set Spec(A) itself does not
lie in B. Then, B+ := B∪{Spec(A)} becomes a basis of open sets for the space Spec(A).

Let Ψ = (F, φ) be a support datum for A in the sense of Definition 4.1. For any
element B ∈ B, we set

fΨ(B) :=
m∧
i=1

φ(Pi) (4.3)

where the set B ∈ B can be expressed as an intersection B =
⋂m
i=1 Supp

c(Pi) of subbasis
elements.

Lemma 4.4. The association in (4.3) gives a well-defined function fΨ : B −→ F . Addi-
tionally, for any B1, B2 ∈ B, we have fΨ(B1 ∩B2) = fΨ(B1) ∧ fΨ(B2).

Proof. Suppose that some B ∈ B can be expressed as B =
⋂m
i=1 Supp

c(Pi) and also as
B =

⋂n
j=1 Supp

c(Qj) where each Pi, Qj ∈ Spec(A). Taking complements, we obtain
m⋃
i=1

Supp(Pi) =
n⋃
j=1

Supp(Qj).

We now pick some Pi. Since Pi is spectral, it is clear from (4.1) that 〈Pi〉 ∈ Supp(Pi).
Hence, there is some integer 1 ≤ q(i) ≤ n such that 〈Pi〉 ∈ Supp(Qq(i)). Thus, we can
choose some Q′ ∈ Spec(A) such that 〈Pi〉 = 〈Q′〉 and Q′ ≺ Qq(i). From Lemma 4.2, we
now have φ(Pi) = φ(Q′) ≥ φ(Qq(i)). It follows that

m∧
i=1

φ(Pi) ≥
m∧
i=1

φ(Qq(i)) ≥
n∧
j=1

φ(Qj).

Similarly, we can verify that
∧n
j=1 φ(Qj) ≥

∧m
i=1 φ(Pi) and it follows that fΨ : B −→ F

is well-defined. The last statement is immediate from the definition in (4.3).

Lemma 4.5. Let Ψ = (F, φ) be a support datum for A. We extend fΨ : B −→ F to B+

by setting fΨ(Spec(A)) := 1F . Then, the association

U 7→
∨

B∈B+,B⊆U

fΨ(B) (4.4)

gives a well-defined map fΨ : ΩSpec(A) −→ F .

Proof. We need to verify that if U ∈ B, then fΨ(U) as defined in (4.3) agrees with∨
B∈B+,B⊆U fΨ(B) =

∨
B∈B,B⊆U fΨ(B). Since U ∈ B, it is immediate that

fΨ(U) ≤
∨

B∈B,B⊆U

fΨ(B).

We now consider some B ∈ B with B ⊆ U . We suppose that U =
⋂m
i=1 Supp

c(Pi)
and B =

⋂n
j=1 Supp

c(Qj) where each Pi, Qj ∈ Spec(A). Since B ⊆ U , we obtain
m⋃
i=1

Supp(Pi) ⊆
n⋃
j=1

Supp(Qj).

Proceeding as in the proof of Lemma 4.4, we obtain fΨ(B) =
∧n
j=1 φ(Qj) ≤

∧m
i=1 φ(Pi) =

fΨ(U). It follows that
∨
B∈B,B⊆U fΨ(B) ≤ fΨ(U) and this proves the result.
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Theorem 4.6. Let A be a locally noetherian Grothendieck category and let Ψ = (F, φ)
be a support datum for A. Then, there exists a morphism fΨ : Ψ0 = (ΩSpec(A), φ0) −→
Ψ = (F, φ). In other words, Ψ0 = (ΩSpec(A), φ0) is a weakly initial object in the category
of support data on A.

Proof. From Lemma 4.5, we already know that fΨ : ΩSpec(A) −→ F is a well-defined
map. We need to show that fΨ preserves finite meets. In other words, we have to show
that for any two opens U1, U2 ⊆ Spec(A), we have fΨ(U1∩U2) = fΨ(U1)∧fΨ(U2). Since
U1 ∩ U2 ⊆ U1, U2, it is clear from (4.4) that fΨ(U1 ∩ U2) ≤ fΨ(U1), fΨ(U2) and hence
fΨ(U1 ∩ U2) ≤ fΨ(U1) ∧ fΨ(U2).

If either U1 or U2 = Spec(A), it is already clear that fΨ(U1 ∩U2) = fΨ(U1)∧ fΨ(U2).
We assume therefore that U1, U2 ( Spec(A). We now set

B1 = {B ∈ B |B ⊆ U1}, B2 = {B ∈ B |B ⊆ U2}.

By definition, we now have:

fΨ(U1) ∧ fΨ(U2) =
( ∨
B1∈B1

fΨ(B1)
)
∧
( ∨
B2∈B2

fΨ(B2)
)

=
∨

(B1,B2)∈B1×B2

(
fΨ(B1) ∧ fΨ(B2)

)
=

∨
(B1,B2)∈B1×B2

(
fΨ(B1 ∩B2)

)
where the last equality follows from Lemma 4.4. We notice that for any (B1, B2) ∈ B1×B2,
B1 ∩B2 is a basis element contained in U1 ∩ U2. It now follows that

fΨ(U1) ∧ fΨ(U2) =
∨

(B1,B2)∈B1×B2

(
fΨ(B1 ∩B2)

)
≤

∨
B∈B,B⊆U1∩U2

fΨ(B) = fΨ(U1 ∩ U2).

Finally, given some 0 6= N ∈ Afg, as in the proof of Lemma 4.3, we have a finite filtration

N = Nk ⊇ Nk−1 ⊇ . . . ⊇ N0 = 0

such that each successive quotient Ni/Ni−1 ∈ Spec(A). It is clear from condition (2)
of Definition 4.1 that φ(N) =

∧k
i=1 φ(Ni/Ni−1). On the other hand, we have φ0(N) =

Suppc(N) =
⋂k
i=1 Supp

c(Ni/Ni−1) and it follows from the definition in (4.3) that

fΨ(φ0(N)) =
k∧
i=1

φ(Ni/Ni−1) = φ(N).

Besides this, we already have fΨ(φ0(0)) = fΨ(Spec(A)) = 1F = φ(0). This proves the
result.
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