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Abstract. We give some sufficient conditions for the injectivity of actions of compact quantum
groups on C∗-algebras. As an application, we prove that any faithful smooth action by a compact
quantum group on a compact smooth (not necessarily connected) manifold is injective. A similar
result is proved for actions on C∗-algebras obtained by Rieffel deformations of compact, smooth
manifolds.

1. Introduction. Quantum groups are natural generalization of groups and they are
used as ‘generalized symmetry objects’ in mathematics and physics. The pioneering work
by Drinfeld and Jimbo ([6], [5], [13], [12]) and others gave the formulation of quantum
groups in the algebraic setting as Hopf algebras typically obtained by deforming the
universal enveloping algebras of semisimple Lie algebras. This led to a deep and success-
ful theory having connections with physics, knot theory, number theory, representation
theory etc. On the other hand, S. L. Woronowicz (see, e.g. [22]) approached it from a
point of view of harmonic analysis on locally compact groups and came up with a set
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of axioms for defining compact quantum groups (CQG for short) as a generalization of
compact topological groups. In this note, we will restrict ourselves to the framework of
compact quantum groups only. It is natural to define quantum analogue of group action
on spaces. This can be done in different ways: for the purely algebraic approach, this
is defined as a co-action of Hopf algebra. In the analytic theory, there are C∗ and von
Neumann algebraic notions of action. We shall consider here actions of compact quantum
groups on C∗-algebras in the sense of Podleś ([17]). A subtle point about this definition
is that it does not assume the injectivity of the action. We mention here that some au-
thors (e.g. [1]) indeed prefer to include injectivity in the definition of CQG actions on
C∗-algebras but this is not a universal practice. In fact, Sołtan discussed in [19] several
examples of non-injective actions in the sense of Podleś. On the other hand, group actions
on spaces are always injective. Injectivity also follows in the algebraic setting for Hopf
algebra co-actions as well as for von Neumann algebraic notion of actions of (von Neu-
mann algebraic) quantum groups. Thus, it is an interesting and important problem to
give sufficient conditions for injectivity of action of compact quantum groups in the sense
of Podleś. This is the aim of this short note. We shall consider CQG actions on C(M) and
their Rieffel deformations where M is a compact smooth manifold. Under a smoothness
condition on the action on C(M) (in the sense of [10]) we can prove injectivity. For the
Rieffel deformation of classical manifolds, we prove injectivity under a natural analogue
of smoothness and compatibility of the action with the canonical toral action.

2. Preliminaries. In this paper all Hilbert spaces are over C unless mentioned other-
wise. For a vector space V , V ′ denotes its algebraic dual. ⊕ and ⊗alg will denote the
algebraic direct sum and algebraic tensor product respectively. On the other hand, the
minimal C∗-algebra tensor product and tensor product of Hilbert spaces as well as Hilbert
modules will be denoted by⊗. In particular, we consider Hilbert modules of the formH⊗C
where C is a C∗-algebra. For a Hilbert A-module E we denote by L(E) the C∗-algebra of
adjointable right A-linear maps on E. We denote the C∗-algebra of bounded operators
on a Hilbert space H by B(H) and the C∗-algebra of compact operators on H by B0(H).
Sp, Sp stand for the linear span and the closed linear span of elements of a vector space
respectively, whereas Im(A) denotes the image of a linear map A. Given a group action γ
on a locally convex space Z we denote the fixed point subspace by Zγ .

We call a locally convex space Fréchet if the family of seminorms is countable (hence
the space is metrizable) and the space is complete with respect to the metric given by the
family of seminorms. There are many ways to equip the algebraic tensor product of two
locally convex spaces with a locally convex topology. Let E1, E2 be two locally convex
spaces with the corresponding families of seminorms {‖.‖1,i} and {‖.‖2,j} respectively.
Then one wants a family {‖.‖i,j} of seminorms for E1 ⊗alg E2 such that ‖e1 ⊗ e2‖i,j =
‖e1‖1,i‖e2‖2,j . The problem is that such a choice is far from unique and there is a maximal
and a minimal choice giving the projective and injective tensor product respectively. Let
us denote the projective tensor product by E1 ⊗̂E2. A Fréchet locally convex space is
called nuclear if its projective and injective tensor products with any other Fréchet space
coincide as a locally convex space. It is known that closed subspaces and quotients by
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closed subspaces of a nuclear Fréchet space are again nuclear. We do not go into further
details of this topic here but refer the reader to [20] for a comprehensive discussion.
Furthermore, if the space is a ∗-algebra then we demand that its ∗-algebraic structure is
compatible with its locally convex topology, i.e. the involution ∗ is continuous and the
multiplication is jointly continuous with respect to the topology. Projective and injective
tensor products of two such topological ∗-algebras are again topological ∗-algebras. We
shall mostly use unital ∗-algebras. Henceforth all the topological ∗-algebras will be unital
unless otherwise mentioned. Consider a locally convex algebra A for which each of the
defining seminorms, say ‖ · ‖i, satisfies

‖xy‖i ≤ Ci‖x‖i‖y‖i (1)

for some constant Ci and all x, y ∈ A. Then it is easy to see from the definition of the
projective tensor product that the algebra multiplication map (saym) lifts to a continuous
map from A⊗̂A to A, to be denoted by m again.

We mainly need a particular class of nuclear locally convex ∗-algebra, which is C∞(M),
where M is any compact smooth manifold. The natural Fréchet topology on C∞(M) is
given by the seminorms of the form pU,K,α,

pU,K,α(f) = supx∈K |∂α(f)(x)|,

where K is a compact subset contained in the domain of some coordinate chart
(U, (x1, . . . , xn)), α = (i1, . . . , ik) a multi-index and ∂α = ∂

∂xi1
. . . ∂

∂xik
, ij ∈ {1, . . . , n}.

We can similarly define a Fréchet topology on C∞(M,E), the space of smooth E-valued
functions on M for any Fréchet space E. We refer the reader to [10] for more details.
One can verify condition (1) for the family of seminorms defining the Fréchet algebra
C∞(M,A) where A is a Banach algebra, by Leibniz rule.

2.1. Compact quantum groups and their actions on C∗-algebras

Definition 2.1. A compact quantum group (CQG for short) is a unital C∗-algebra Q
with a coassociative coproduct ∆ (see [16], [22]) from Q to Q⊗Q such that each of the
linear spans of ∆(Q)(Q⊗ 1) and that of ∆(Q)(1⊗Q) is norm-dense in Q⊗Q.

A unitary representation of a CQG Q on a Hilbert space H is a unitary U ∈ L(H⊗Q)
such that the C-linear map V from H to the Hilbert module H ⊗ Q given by V (ξ) =
U(ξ⊗1) satisfies (V ⊗ id)◦V = (id⊗∆)◦V . Here, the map (V ⊗ id) denotes the extension
of V ⊗ id to the completed tensor product H⊗Q which exists as V is an isometry.

It is known that every unitary irreducible representation of a CQG is finite dimen-
sional. Let Π denote the set of inequivalent irreducible representations of the CQG Q.
For π ∈ Π, let Uπ = ((tπij)) be the corresponding unitary element of Mdπ (Q) where dπ is
the dimension of π. We call tπij ’s the matrix coefficients of π.

Every CQG Q contains a canonical dense unital ∗-subalgebra Q0 of Q on which linear
maps κ and ε (called the antipode and the counit respectively) are defined making the
above subalgebra a Hopf ∗-algebra. In fact, this is the algebra generated by the ‘matrix
coefficients’ of the (finite dimensional) irreducible unitary representations (see [16]) of
the CQG. The antipode is an anti-homomorphism and also satisfies κ(a∗) = (κ−1(a))∗
for a ∈ Q0.
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It is known that there is a unique state h on a CQG Q (called the Haar state) which
is bi-invariant in the sense that (id ⊗ h) ◦∆(a) = (h ⊗ id) ◦∆(a) = h(a)1 for all a. The
Haar state need not be faithful in general, though it is always faithful on Q0 at least.
The reduced CQG Qr corresponding to Q is the image of Q in the GNS representation
of h, i.e. Qr = πr(Q), where πr : Q → B(L2(h)) is the GNS representation.

Given two CQG’s (Q1,∆1) and (Q2,∆2), a ∗-homomorphism π : Q1 → Q2 is said to
be a CQG morphism if (π ⊗ π) ◦∆1 = ∆2 ◦ π on Q1. In case π is surjective, Q2 is said
to be a quantum subgroup of Q1 and we write Q2 ≤ Q1.

Definition 2.2. We say that a CQG Q with the coproduct ∆ (co)-acts on a (unital)
C∗-algebra C if there is a unital ∗-homomorphism α : C → C ⊗Q such that (α⊗ id) ◦α =
(id⊗∆) ◦ α, and the linear span of α(C)(1⊗Q) is norm-dense in C ⊗ Q.

In Woronowicz theory, it is customary to drop ‘co’, and call the above co-action simply
‘action’ of the CQG on the C∗-algebra. Let us adopt this convention for the rest of the
note.

Given an action α of a CQG Q on a unital C∗-algebra C and an irreducible represen-
tation π ∈ Π, we recall the idempotent operators Eπ : C → C constructed in Theorem
1.5 of [17]. It is shown in [17] that α leaves the image Wπ (say) of Eπ invariant and
if Wπ 6= (0), the restriction of α to Wπ decomposes (as a vector space) into copies of
the irreducible representation equivalent to π. We call Wπ the spectral subspace for the
action α corresponding to the irreducible type π. Moreover, the (algebraic) direct sum
of {Wπ : π ∈ Π} is a norm-dense, unital ∗-subalgebra (denoted by C0 from now on) of C
on which α restricts to an algebraic co-action of Q0. We shall call C0 the Peter–Weyl
subalgebra for the action α.

An action α on C is called faithful if the ∗-subalgebra generated by {(ω ⊗ id)(α(b))},
where b ∈ C and ω varying over the set of bounded linear functionals on C, is dense in Q.
This is equivalent to the norm-density of the algebra generated by matrix coefficients of
the irreducible representations π for which Wπ is nonzero.

Given an action α, we define αr = (id⊗ πr) ◦ α and call it the reduced action. If the
Haar state is faithful on Q, we have α = αr. Moreover, it is clear that the injectivity
of αr implies that of α.

Remark 2.3. A word of caution: our definition of a reduced action differs from that of
many other authors, for example, [19], [15] and [4]. In fact, the term ‘reduced’ in our sense
refers to the action by the reduced version of the quantum group, whereas the articles
cited above considered a reduced version of the algebra, i.e. a suitable quotient of the
algebra, on which the CQG acts.

Definition 2.4. We call an action α of a CQG Q on a unital C∗-algebra C to be imple-
mented by a unitary representation U of Q in H, say, if there is a faithful representation
π : C → B(H) such that U(π(x)⊗ 1)U∗ = (π ⊗ id)(α(x)) for all x ∈ C.

It is clear that if an action is implemented by a unitary representation then it is
one-to-one. In fact, as Ur := (id ⊗ πr)(U) gives a unitary representation of Qr in H
and the ‘reduced action’ αr := (id ⊗ πr) ◦ α of Qr is also implemented by the unitary
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representation Ur, it follows that even αr is one-to-one. We see below that the injectivity
of αr actually equivalent to implementability by a unitary representation.

Lemma 2.5. Given an action α of Q on a unital separable C∗-algebra C, the following
are equivalent:

(a) There is a faithful positive functional φ on C which is invariant with respect to α, i.e.
(φ⊗ id)(α(x)) = φ(x)1Q for all x ∈ C.

(b) The action is implemented by some unitary representation.
(c) The reduced action αr of Qr is injective.

Proof. If (a) holds, we considerH to be the GNS space of the faithful positive functional φ.
The GNS representation π is faithful, and the linear map V defined by V (x) := α(x) from
C ⊂ H = L2(C, φ) toH⊗Q is an isometry by the invariance of φ. Thus V extends toH and
it is easy to check that it induces a unitary representation U , given by U(ξ⊗ q) = V (ξ)q,
which implements α.

We have already argued (b) ⇒ (c), and finally, if (c) holds, we choose any faithful
state τ (say) on the separable C∗-algebra C and take φ(x) = (τ ⊗ h)(αr(x)), which is
faithful as h is faithful on Qr and αr is injective. It can easily be verified that φ is
α-invariant on the dense subalgebra C0 mentioned before, and hence on the whole of C.

We shall also need the following facts about actions on commutative C∗-algebras.

Proposition 2.6. If a CQG Q acts faithfully on C(X), where X is a compact metrizable
space, then Q is separable and it is also of Kac type, i.e. κ2 = id and the Haar state is
tracial. In this case, κ is norm-bounded on Qr.

Proof. Note that X is second countable and hence C(X) is separable. Choose a countable
dense set of points {xi : i = 1, 2, . . . } and a countable norm-dense subset {fn : n =
1, 2, . . . } of C(X). It follows from faithfulness of the action α (say) that Q is generated
as a C∗-algebra by the countable set {α(fn)(xi) : i, n = 1, 2, . . . }, hence it is separable.

For the proof of the Kac conditions, we refer to [11] as well as [7]. It is easy to see
that condition (1) of Theorem 3.17 of [11] (Theorem 3.23 in the arXiv version) is trivially
satisfied for commutative C∗-algebras. The norm-boundedness of κ can easily be argued
using the results of [23]. In fact, this has been done in [7] (see Proposition 2.1 and Lemma
2.2 of that paper).

3. Smooth actions are injective. LetM be a compact smooth manifold. Let us recall
the definition of smooth CQG action on it from [10].

Definition 3.1. We say that an action α of a CQG Q on C(M) is smooth if α maps
C∞(M) into C∞(M,Q) and Spα(C∞(M))(1⊗Q) is dense in C∞(M,Q) in the Fréchet
topology. In this case, we will also say that α is a smooth action of Q on M .

Theorem 3.2. If Q has a faithful smooth action α on C∞(M), where M is a compact
smooth manifold, then for every fixed x ∈M there is a well-defined, ∗-homomorphic map
εx from the unital ∗-subalgebra Q∞x := {αr(f)(x) : f ∈ C∞(M)} of Qr to C satisfying
εx(αr(f)(x)) = f(x) for all f ∈ C∞(M).
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Proof. Adapting the arguments of [17] and [1], we can get a Fréchet dense subalgebra
C0 of C∞(M) on which α restricts to an algebraic co-action of Q0. For example, C0 may
be chosen as the analogue of the Peter–Weyl subalgebra in the sense of [1]. Replacing
Q by Qr we can assume without loss of generality that the Haar state of Q is faithful
and α = αr. In this case Q will has a bounded antipode κ (by Proposition 2.6). Let
αx : C∞(M) → Q∞x be the map defined by αx(f) := α(f)(x). It is clearly continuous
with respect to the Fréchet topology of C∞(M) and hence the kernel Ix (say) is a closed
ideal, so that the quotient, which is isomorphic to Q∞x , is a nuclear space. Let us consider
Q∞x with this topology and then by nuclearity, the projective and injective tensor products
of Q∞x with Q (viewed as a Banach space, which is separable by Proposition 2.6) coincide.
The multiplication map m : Q∞x ⊗algQ → Q extends to a continuous map (to be denoted
by m again) on Q∞x ⊗̂Q. It follows from the relation (id ⊗ ∆) ◦ α = (α ⊗ id) ◦ α that
∆(αx(f)) = (αx ⊗ id)(α(f)), i.e. ∆ maps Q∞x to (αx ⊗ idQ)(C∞(M) ⊗̂Q) ⊆ Q∞x ⊗̂Q.
Thus, the composite map β := m ◦ (id ⊗ κ) ◦ ∆ : Q∞x → Q is continuous. Clearly, this
map coincides with ε(·)1Q on the Fréchet-dense subalgebra Q0

x (say) of Q∞x spanned by
elements of the form {α(f)(x) : f ∈ C0}. By the continuity of β, it follows that the
range of β is C1Q. Moreover, as β(α(f)(x)) = f(x)1Q for all f ∈ C0, and β and α are
Fréchet-continuous, we conclude that β(α(f)) = f(x)1Q for all f ∈ C∞(M). Hence we
can define εx by setting εx(·)1Q = β(·). Clearly, εx(f) = f(x) for all f ∈ C∞(M). This
completes the proof of the theorem.

Corollary 3.3. For any smooth action α on C∞(M), the reduced action αr is injective
on C(M).

Proof. Consider the C∗ algebra (Q1, say) generated by the matrix coefficients tπij ’s of the
irreducible representations π of Q for which the spectral subspaceWπ for α corresponding
to π is nonzero. It is easy to see that the restriction of the co-product of Q to Q1 leaves it
invariant and makes it a CQG which acts faithfully on C(M). Thus, replacing Q by Q1,
we may assume that α is faithful. If αr(f) = 0 for f ∈ C∞(M) then for each x, applying
εx obtained by Theorem 3.2, we conclude f(x) = 0 for all x, hence f = 0. This proves
the injectivity of the restriction of αr to C∞(M). Now, we have to prove its injectivity
on the whole of C(M). To this end, consider any positive Borel measure µ of full support
on M , with φµ being the positive functional obtained by integration with respect to µ.
Let ψ := (φµ⊗h)◦αr be the positive functional which is clearly αr-invariant and faithful
on C∞(M), i.e. ψ(f) = 0, f ∈ C∞(M) and f nonnegative implies f = 0. But by Riesz
Representation Theorem there is a positive Borel measure ν such that ψ(f) =

∫
M
f dν.

We claim that ν has full support, hence ψ is faithful also on C(M). This will complete
the proof of the corollary by Lemma 2.5. Indeed, for any nonempty open subset U of M
there is a nonzero positive f ∈ C∞(M), such that 0 ≤ f ≤ 1, and the support of f is
contained in U . By faithfulness of ψ on C∞(M) we get 0 < ψ(f) =

∫
U
f dν ≤ ν(U).

As the injectivity of αr clearly implies that of α, we also get the following:

Corollary 3.4. Any faithful smooth action of a CQG on a compact smooth manifold
is injective.



INJECTIVITY OF ACTIONS OF COMPACT QUANTUM GROUPS 77

Remark 3.5. In a recent work [8], Goswami has proved that any CQG which admits a
faithful smooth action on a compact connected smooth manifold must be isomorphic to
C(G) for some group G and the CQG action becomes a G-action. Hence any such action
is injective. However, the injectivity result of the present note was used to prove the main
result of [8], so we cannot use [8] to prove Corollary 3.3. Moreover, the results of this
paper are applicable to a possibly disconnected manifold.

4. Smooth action on Rieffel deformation. Let us now consider CQG actions on
noncommutative C∗-algebras. Rieffel deformation (see [18]) is a well-known and very
useful procedure to obtain interesting noncommutative C∗-algebras from the commuta-
tive ones. In particular, given a smooth compact manifoldM equipped with the action of
a compact abelian group T ∼= Tn, one can construct a family of (typically noncommuta-
tive) C∗-algebras C(M)θ indexed by n×n skew symmetric matrices θ. There is a similar
procedure (see [21], [14] and the references therein) for deforming a CQG with some toral
quantum subgroup of rank n inducing an action of a torus of rank 2n combining left
and right actions by the elements of the n-toral subgroup. In this case, one gets a CQG
by retaining the same co-algebra structure as the original one but changing the algebra
structure. This will be called the Rieffel–Wang–Kasprzak (RWK) deformation of G.

Let Aθ be the noncommutative n-torus, which is the universal C∗-algebra generated
by unitaries U1, . . . , Un satisfying the commutation relations UjUk = exp(2πiθjk)UkUj ,
where θ = ((θjk)). Given a unital C∗-algebra C with a Tn-action βz (say), the deformed
C∗-algebra Cθ can be described in two alternative ways: either in the original picture
of Rieffel where one defines a new, twisted multiplication on the spectral algebra for
the toral action and then considers appropriate C∗-completion, or as in [3], identifying
Cθ with the fixed point subalgebra (C ⊗ Aθ)β⊗v

−1 where vz denotes the canonical toral
action on Aθ satisfying vz(Ui) = ziUi for all i. We also have a ‘dual’ T -action on Cθ which
is the restriction of (id⊗ v) on C ⊗ Aθ.

Given a CQG Q and a quantum subgroup of Q isomorphic with T = Tn, with
the corresponding surjective CQG morphism π : Q → C(T ), we can define left and
right Tn-actions χlz, χrz (say) respectively, by setting χlz = (id ⊗ (evz ◦ π)) ◦ ∆ and
χrz = ((evz ◦ π) ⊗ id) ◦ ∆. Using this, we have a T2n-action χz,w = χlzχ

r
w on Q and

the corresponding deformed CQG is the C∗-algebra Qθ⊕(−θ).
We have the following from Theorem 3.11 of [2].

Lemma 4.1. Let C be a unital C∗-algebra equipped with a Tn-action given by ∗-automor-
phism βz, Q be a reduced CQG with an action α of Q on C and a quantum subgroup
of Q isomorphic with Tn as above (with the corresponding morphism π) satisfying βz :=
(id ⊗ (evz ◦ π)) ◦ α. Then we have an action αθ of Qθ̃ (θ̃ = θ ⊕ (−θ)) on Cθ. Here the
deformation of C is taken with respect to the action β.

Consider now C = C(M), whereM is a compact smooth manifold equipped with a Tn
action, which also induces a Tn action (say β) on C(M). Let γ = β⊗v−1 as before and let
us call the subalgebra C∞(M)θ ≡ C∞(M,Aθ)γ ⊂ C(M,Aθ)γ ≡ (C(M)⊗Aθ)γ = C(M)θ
the ‘smooth subalgebra’ and call an action α on C(M)θ by a CQG Q to be smooth if
it maps the above smooth subalgebra into C∞(M,Aθ ⊗Q)(γ⊗id) and the linear span of
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{α(F )(1⊗ q) : F ∈ C∞(M,Aθ)γ , q ∈ Q} is dense in C∞(M,Aθ ⊗Q)(γ⊗id). Now, we can
state and prove the following.

Theorem 4.2. Let M be as above and let α be a smooth action of a CQG on C(M)θ in
the above sense. Moreover, assume that there is a quantum subgroup of Q isomorphic with
T = Tn, given by a surjective CQG morphism π : Q → C(T ) such that (id⊗ (evz ◦π))◦α
coincides with the canonical ‘dual’ T -action on C(M)θ. Then the action (in fact, the
reduced one too) is injective.

Proof. We only very briefly sketch the proof. As before, assume without loss of generality
that the CQG is reduced. It follows from the proof of Theorem 3.11 of [2] that the action
α−θ of Qθ̃ on (C(M)θ)−θ ∼= C(M) is smooth. We note that the word ‘smooth’ in the
statement of Theorem 3.11 of [2] is used in a sense weaker than ours: it only means
the invariance of the smooth algebra there. However, there is a canonical Fréchet-dense
subalgebra (e.g. the analogue of the Peter–Weyl subalgebra) of C∞(M)θ for the action α,
on which Q0 (co)acts algebraically and which can be identified as a vector space with a
Fréchet-dense subalgebra of C∞(M) on which the deformed action (which is the same
as α as a linear map on this space) α−θ is algebraic. From this, the Podleś type density
condition follows, i.e. α−θ is smooth in our sense. Hence it is injective by Corollary
3.3. Moreover, by that corollary and Theorem 2.5, we get a unitary representation of Qθ̃
which implements α−θ. But by the generalities of RWK (or, more general cocycle-twisted)
deformation of CQG as in the Chapter 7 of [9], we conclude that α = (α−θ)θ is unitarily
implemented too, where the corresponding Hilbert space and unitary essentially remain
the same. In particular, α is injective.

Remark 4.3. In [14], it is shown that the Rieffel deformations of classical compact groups
are co-amenable, hence actions by such deformed compact quantum groups are always
injective. In combination with [8], this will prove Theorem 4.2 in the special case when
M is assumed to be connected. However, Theorem 4.2 remains valid even when M is
disconnected.
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