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Abstract. In this paper we survey selected categorical properties of module-like objects with
multivalued addition. The general theme of the results included here is that they are aimed
towards designing a version of homological algebra over such structures. A vast majority of
these results has been already known for some time, in a few instances where the authors could
not find references, they provide short proofs in order to fill gaps in their exposition.

1. Introduction. Algebras with multivalued binary operations have been investigated
by numerous researchers with respect to all sorts of applications. From the authors’ point
of view, of particular interest are the ones related in one way or another to axiomatic
approaches to the algebraic theory of quadratic forms: real reduced hyperfields introduced
by Marshall [19] provide an axiomatization of the (reduced) theory of quadratic forms
in a first-order language. Unlike “classical” theory of quadratic forms, axiomatic theories
are lacking the theory of cohomological invariants—it is thus tempting to investigate
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if a version of homological algebra can be built, where hypermodules, hyperrings and
hyperfields play roles similar to modules, rings and fields.

In this survey we review selected categorical properties of hypermodules that are
needed for developing foundations of such homological algebra. Firstly, we start with
listing all familiar definitions of algebras endowed with hyperoperations, and gradually
reduce our considerations to a few categories of objects resembling modules with a few
different notions of morphisms. We then proceed to discussing various characterizations
of monics and epics, and prove variants of Homomorphiesatz wherever possible. In sub-
sequent sections, we focus on products, coproducts, free objects, subobjects and quotient
objects. Finally, we discuss equalizers and kernels, as well as coequalizers and cokernels,
and conclude this survey with a result stating that the category of hypermodules with
strong homomorphisms (possibly multivalued—see below for precise definitions) is Puppe
exact, that is has zero objects, kernels and cokernels, is normal and conormal, and such
that every morphism admits an epi-mono factorization. This is probably as close as one
can get to the notion of Abelian categories for hypermodules.

The results in this paper accumulated over the past few years when the authors were
trying to learn something about categories of hypermodules. A more careful investiga-
tion usually proved that whatever they were “discovering” had been already known and
published in one form or another, most notably by very prolific Persian school of mathe-
maticians and computer scientists working on hyperstructures. The reader will clearly see
this when looking at the cited sources. A few examples and proofs that appear here are
due to the authors, there is, however, no claim that these results are original: rather than
that, the authors believe that they were simply not able to find proper references. This,
as well as the fact that the results cited here are scattered over a plethora of papers,
sometimes published in hard-to-find sources, convinced the authors that it is perhaps
worthwhile to compile a survey like this, and the proceedings of the ALANT5 meeting
in Będlewo is probably a good place where it can be presented to a broader audience.

The authors would like to express their thanks to the anonymous referee for a handful
of valuable suggestions that made their presentation more comprehensible.

2. Basic definitions. Throughout the paper we shall denote by P∗(H) the set of all
nonempty subsets of a set H.

Definition 2.1. Let H 6= ∅. A map + : H × H → P∗(H) is called a hyperoperation.
A hyperoperation + : H ×H → P∗(H) is called weak associative (see [34], [35]) if

∀ a, b, c ∈ H
[
(a+ b) + c ∩ a+ (b+ c) 6= ∅

]
,

associative if
∀ a, b, c ∈ H

[
(a+ b) + c = a+ (b+ c)

]
,

weak commutative if
∀ a, b ∈ H

[
a+ b ∩ b+ a 6= ∅

]
,

commutative if
∀ a, b ∈ H [a+ b = b+ a],
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and is said to satisfy the reproduction axiom if

∀ a ∈ H [a+H = H = H + a],

where a+H =
⋃
h∈H a+ h, 1 and to be simplifiable on the left (right) if

∀ a, b, c ∈ H [a+ b ∩ a+ c 6= ∅ ⇒ b = c] (∀ a, b, c ∈ H [b+ a ∩ c+ a 6= ∅ ⇒ b = c]).

An element 0L ∈ H (0R ∈ H, respectively) is called a left scalar identity (a right scalar
identity, respectively) if

∀ a ∈ H [0L + a = {a}]
(
∀ a ∈ H [a+ 0R = {a}], respectively

)
,

and an element 0 ∈ H is called a scalar identity if it is both a left and a right scalar
identity. If 0 ∈ H is a scalar identity and a ∈ H, an element −a ∈ H is called an inverse
of a if

0 ∈ a+ (−a) ∩ (−a) + a.

Finally, if 0 ∈ H is a scalar identity and for every element a ∈ H there is an element
−a ∈ H, + is said to satisfy the exchange axiom if

∀ a, b, c ∈ H
[
a ∈ b+ c⇒ b ∈ a+ (−c)

]
.

Definition 2.2. Let H 6= ∅ and let + : H × H → P∗(H) be a hyperoperation. The
algebra (H,+) is called:

(1) an Hv-semigroup, if + is weak associative.
(2) a semihypergroup if + is associative.
(3) a quasihypergroup if + satisfies the reproduction axiom.
(4) a hypermonoid if it is a semihypergroup with a scalar identity.
(5) an (COW ) Hv-group if it is an (weak commutative) Hv-semigroup and a quasihy-

pergroup.
(6) a (commutative) hypergroup if it is a (commutative) semihypergroup and a quasi-

hypergroup.
(7) a regular hypergroup if it is a hypergroup with a scalar identity such that for every

element a ∈ H there is a (not necessarily unique) inverse element −a ∈ H.
(8) a reversible regular hypergroup if it is a regular hypergroup and the exchange axiom

is satisfied.
(9) a polygroup if it is a hypermonoid such that for every element a ∈ H there is a

unique inverse element −a ∈ H and the exchange axiom is satisfied.
(10) a canonical hypergroup if it is a commutative polygroup.

For a semihypergroup (H,+) a subset ∅ 6= A ⊆ H is called a complete part of H if

∀n ∈ N ∀ a1, . . . , an ∈ H
[ n∑
i=1

ai +A 6= ∅ ⇒
n∑
i=1

ai ⊆ A
]
,

1In general, for a hyperoperation + on the set H and A,B ⊆ H, we shall write A + B to
denote the set

A+B =
⋃

a∈A,b∈B

a+ b.
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the intersection of all the complete parts of H is called a complete closure of A and
denoted by C(A), and (H,+) is called a complete semihypergroup if

∀ a, b ∈ H [C(a+ b) = a+ b].

Remark 2.3. Hypergroups were first considered by Marty [20] during the 8th Congress
of Scandinavian Mathematicians when he defined a hypergroup as a set equipped with an
associative and reproductive hyperoperation. Among other things, he has shown that a
hypergroup simplifiable on the left (or on the right) is a group [20]. Later a simpler proof of
the same fact was given by Koskas [15], and Leoreanu [17] proved that a semihypergroup
simplifiable on the left (or on the right) that satisfies the following weaker version of the
reproduction axiom:

∀ a ∈ H [a+H = H] and ∃ a0 ∈ H [H = H + a0]

is a group. Note that, unlike in the group theory, hypergroups need not be hypermonoids,
i.e. here associativity and reproductivity are not enough to infer the existence of a scalar
identity.

Canonical hypergroups appeared for the first time in 1956 in the works by Krasner
[16] on approximations of valued fields. Regular, reversible regular and complete hyper-
groups were introduced by Corsini [5] and Koskas [15] in the early 1970s. Every complete
hypergroup is a regular reversible hypergroup [8, Theorem 46] and there are examples of
regular hypergroups that are not reversible [7]. Polygroups were introduced by Corsini
[6] (there called quasicanonical hypergroups) around 1980 and later independently by
Comer [4]. Hv-structures were first introduced by Vougiouklis in 1990 at the 4th Alge-
braic Hyperstructures and Applications Congress [38].

For a detailed account on the theory of hypergroups in various flavors see the mono-
graphs [8], [9] and [10].

Definition 2.4. Let H 6= ∅ and let +, · : H ×H → P∗(H) be two hyperoperations.

(1) The algebra (H,+, ·) is called a general Hv-ring if (H,+) is an Hv-group, (H, ·) is
an Hv-semigroup and · is weak distributive with respect to +, i.e.

∀ a, b, c ∈ H
[
a(b+ c) ∩ (ab+ ac) 6= ∅ ∧ (b+ c)a ∩ (ba+ ca) 6= ∅

]
.

A general Hv-ring might be weak commutative with respect to either + or ·, or both
of them. We shall often abbreviate and write “Hv-ring” instead of “general Hv-ring”.
If only + is multivalued, then H is called an additive Hv-ring. If only · is multivalued,
then H is called a multiplicative Hv-ring.

(2) The algebra (H,+, ·) is called a general hyperring if (H,+) is a hypergroup, (H, ·) is
a semihypergroup and · is distributive with respect to +, i.e.

∀ a, b, c ∈ H
[
a(b+ c) = ab+ ac ∧ (b+ c)a = ba+ ca

]
.

A general hyperring might be commutative with respect to either + or ·, or both of
them. We shall often abbreviate and write “hyperring” instead of “general hyperring”.
If only + is multivalued, thenH is called an additive hyperring. If only · is multivalued,
then H is called a multiplicative hyperring.
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(3) The algebra (H,+, ·) is called a Krasner hyperring if it is an additive hyperring such
that (H,+) is a canonical hypergroup with the scalar identity 0 such that

∀ a ∈ H [a0 = 0a = 0].

A Krasner hyperring is commutative if · is commutative.

Remark 2.5. Krasner hyperrings were introduced by Krasner [16] in 1956 and were
extensively studied by his students, most notably by Mittas [23] and Stratigopoulos [36].
The notion of general hyperrings was introduced in mid-1980s by De Salvo [12] and
Vougiouklis [14]. Multiplicative hyperrings were the object of studies by Procesi [29] and
Rota [31] around the same time. Hv-rings were introduced by Vougiouklis [38] together
with Hv-groups in 1990. For more details on the general theory of hyperrings, Krasner
hyperrings and Hv-rings see the monograph [11].

Definition 2.6.

(1) Let H be an Hv-ring. A COW Hv-group (M,+) is called a left Hv-module over the
Hv-ring H if there is a map · : H ×M →M such that

∀ a, b ∈ H ∀m,n ∈M
[
a(m+ n) ∩ (am+ an) 6= ∅,

(a+ b)m ∩ (am+ bm) 6= ∅, (ab)m ∩ a(bm) 6= ∅
]
.

Right Hv-modules are defined analogously.
(2) Let H be a Krasner hyperring. A canonical hypergroup (M,+) is called a left H-

hypermodule over the Krasner hyperring H if there is a map · : H ×M → M such
that

∀ a, b ∈ H ∀m,n ∈M
[
a(m+ n) = am+ an,

(a+ b)m = am+ bm, (ab)m = a(bm), 0m = 0
]
.

Right H-hypermodules are defined analogously.

Remark 2.7. Hv-modules were introduced together with Hv-groups and Hv-rings by
Vougiouklis [38]. The notion of hypermodules goes back to the early 1970s and the works
of Mittas [24] and Stratigopoulos [36]. Just like in the case with ordinary modules, canon-
ical hypergroups are Z-hypermodules, Krasner hyperrings are hypermodules over them-
selves etc.

Definition 2.8. Let H be an Hv-group. An Hv-subgroup is a subset K ⊆ H which is
an Hv-group itself.

Let H be a canonical hypergroup. A canonical subhypergroup is a subset K ⊆ H

which is a canonical hypergroup itself.
Let H be an Hv-ring and M a left Hv-module over H. An Hv-submodule is a subset

N ⊆M which is a left Hv-module over H itself.
Let H be a Krasner hyperring and M a left H-hypermodule. An H-subhypermodule

is a subset N ⊆M which is a left H-hypermodule itself.
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Lemma 2.9. Let H be a Krasner hyperring, M a left H-hypermodule, and let A ⊆ M .
The smallest H-subhypermodule of M containing the set A is of the form{
r1a1 + . . .+rnan+a′1 + . . .+a′n′ | n, n′ ∈ N, r1, . . . , rn ∈ H, a1, . . . , an, a

′
1, . . . , a

′
n′ ∈ A

}
.

Proof. Firstly, observe that, as the intersection of any family of H-subhypermodules is an
H-subhypermodule, it certainly makes sense to talk about smallest H-subhypermodules
in the above sense. Now the argument is quite standard: let

〈A〉 = {r1a1 + . . .+ rnan + a′1 + . . .+ a′n′ |
n, n′ ∈ N, r1, . . . , rn ∈ H, a1, . . . , an, a

′
1, . . . , a

′
n′ ∈ A},

and denote by N the smallest H-subhypermodule containing the set A. That 〈A〉 is an
H-subhypermodule is apparent, it is also clear that A ⊆ 〈A〉, and thus N ⊆ 〈A〉. Fix
m ∈ 〈A〉. Then

m ∈ r1a1 + . . .+ rnan + a′1 + . . .+ a′n′

for some n, n′ ∈ N, r1, . . . , rn ∈ H, a1, . . . , an, a
′
1, . . . , a

′
n′ ∈ A. But then a1, . . . , an,

a′1, . . . , a
′
n′ ∈ A ⊆ N which is an H-subhypermodule, so that r1a1 + . . . + rnan + a′1 +

. . .+ a′n′ ⊆ N and, consequently, m ∈ N .

Proposition 2.10. Let H be a canonical hypergroup, let K ⊆ H be a canonical subhy-
pergroup. For an element h ∈ H denote by h the coset h+K, consider the set

H/K = {h | h ∈ H},

and for h1, h2 ∈ H/K define the hyperoperation ⊕ on H/K by

h1 ⊕ h2 =
⋃
{h | h ∈ h1 + h2},

as well as the element 	h ∈ H/K to be the coset of −h, h ∈ H. Then H/K with ⊕ is a
canonical hypergroup.

See, for example, [3, Proposition 3.2] for a proof (as well as for other concepts of
quotients of canonical hypergroups), although the result itself has been well-known for a
much longer time.

Definition 2.11. Let H be a canonical hypergroup, let K ⊆ H be a canonical subhy-
pergroup. The canonical hypergroup H/K is called a quotient hypergroup.

Proposition 2.12. Let H be a Krasner hyperring, M a left H-hypermodule and N ⊆M
an H-subhypermodule of M . Consider the canonical hypergroup M/N and for a ∈ H,
m ∈M/N define the external operation · on M/N by

a ·m = a ·m.

Then M/N with · is a left H-hypermodule.

See [33, Proposition 3] for a proof.

Definition 2.13. Let H be a Krasner hyperring, M a left H-hypermodule and N ⊆M
an H-subhypermodule of M . The hypermodule M/N of Proposition 2.12 is called a
quotient hypermodule.
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Definition 2.14.

I. LetH1, H2 be twoHv-groups or canonical hypergroups. A map f : H1 → H2 (which,
if H1, H2 are canonical hypergroups, also satisfies f(0) = 0) is called:

1. a weak homomorphism, abbreviated w-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) ∩ (f(a) + f(b)) 6= ∅

]
,

2. an inclusion homomorphism, abbreviated i-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) ⊆ f(a) + f(b)

]
,

3. a strong homomorphism, abbreviated s-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) = f(a) + f(b)]

II. Let H1, H2 be two Hv-groups or canonical hypergroups. A map f : H1 → P∗(H2)
(which, if H1, H2 are canonical hypergroups, also satisfies f(0) = {0}) is called:

1. a multivalued weak homomorphism, abbreviated mw-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) ∩ (f(a) + f(b)) 6= ∅

]
,

2. a multivalued inclusion homomorphism, abbreviated mi-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) ⊆ f(a) + f(b)

]
,

3. a multivalued strong homomorphism, abbreviated ms-homomorphism, if

∀ a, b ∈ H1
[
f(a+ b) = f(a) + f(b)

]
.

Lemma 2.15. Let H1, H2 be canonical hypergroups, let f : H1 → H2 be i- or s-homomor-
phism. Then

∀ a ∈ H1 [f(−a) = −f(a)].

Proof. For a fixed a ∈ H1, as 0 ∈ a− a, one has

f(0) ∈ f(a− a) ⊆ f(a) + f(−a),

so that
f(−a) ∈ f(0)− f(a) = 0− f(a) = −f(a).

Definition 2.16.

(1) Let H be an Hv-ring, let M1,M2 be two left Hv-modules. A w-, i-, s-, mw-, mi- or
ms-homomorphism f : M1 → M2 is a w-, i-, s-, mw-, mi- or ms-homomorphism of
underlying Hv-groups such that

∀ a ∈ H ∀m ∈M1 [af(m) = f(am)].

(2) Let H be a Krasner hyperring, let M1,M2 be two left H-hypermodules. A w-, i-,
s-, mw-, mi- or ms-homomorphism f : M1 → M2 is a w-, i-, s-, mw-, mi- or ms-
homomorphism of underlying canonical hypergroups such that

∀ a ∈ H ∀m ∈M1 [af(m) = f(am)].
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Notation 2.17.

I. Let H be an Hv-ring.
1. The category of left Hv-modules over H with mw-homomorphisms and compo-

sition of morphisms M f−→ N and N g−→ K defined by
gf(m) =

⋃
n∈f(m)

g(n)

will be denoted by H–Hw
vMod.

2. The category of left Hv-modules over H with mi-homomorphisms will be denoted
by H–Hi

vMod.
3. The category of leftHv-modules overH with ms-homomorphisms will be denoted

by H–Hs
vMod.

4. The category of left Hv-modules over H with w-homomorphisms will be denoted
by H–hwvMod.

5. The category of left Hv-modules over H with i-homomorphisms will be denoted
by H–hivMod.

6. The category of left Hv-modules over H with s-homomorphisms will be denoted
by H–hsvMod.

II. Let H be a Krasner hyperring.
1. The category of left hypermodules over H with mw-homomorphism will be de-

noted by H–HwMod.
2. The category of left hypermodules over H with mi-homomorphism will be de-

noted by H–HiMod.
3. The category of left hypermodules over H with ms-homomorphism will be de-

noted by H–HsMod.
4. The category of left hypermodules over H with w-homomorphism will be denoted

by H–hwMod.
5. The category of left hypermodules over H with i-homomorphism will be denoted

by H–hiMod.
6. The category of left hypermodules over H with s-homomorphism will be denoted

by H–hsMod.
For categories C and D we shall write C ≺ D to denote that C is a subcategory of D.

The following observation follows straight from the above definitions:

Proposition 2.18. If H is an Hv-ring then
H–Hs

vMod ≺ H–Hi
vMod ≺ H–Hw

vMod
and

H–hsvMod ≺ H–hivMod ≺ H–hwvMod.

If H is a Krasner hyperring then
H–HsMod ≺ H–HiMod ≺ H–HwMod

and
H–hsMod ≺ H–hiMod ≺ H–hwMod.
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3. Monics, epics, isos and factorizations

Proposition 3.1. Let H be a Krasner hyperring, let M,N be H-hypermodules.

1. For a morphism f : M → N in H–hiMod the following are equivalent:

i. f is a monic;
ii. f is injective.

2. For a morphism f : M → N in H–hsMod the following are equivalent:

i. f is a monic;
ii. f is injective;
iii. Ker(f) = {m ∈M | f(m) = 0} = {0}.

See [33, Proposition 4] and [18, Theorem 3.3] for a proof.

Proposition 3.2. Let H be a Krasner hyperring, let M,N be H-hypermodules.

1. For a morphism f : M → N in H–hiMod, if f is surjective, then it is an epic.
2. For a morphism f : M → N in H–hsMod the following are equivalent:

i. f is an epic;
ii. f is surjective.

See [33, Proposition 5] and [18, Theorem 3.4] for a proof. As functions between sets
are injective if and only if they have left inverses, and are surjective if and only if they
have right inverses, the following is now clear:

Corollary 3.3. Let H be a Krasner hyperring. The category H–hsMod is balanced,
i.e. isos are bijections.

Proposition 3.4. Let H be a Krasner hyperring, let M,N be H-hypermodules.

1. For a morphism f : M → N in H–hiMod and a H-subhypermodule K ⊆ Ker(f), there
exists exactly one morphism g : M/K → N such that f = g ◦ κ, where κ : M →M/K

is the canonical i-homomorphism given by κ(m) = m+K. In other words, the following
diagram is commutative:

M
f //

κ

��

N

M/K .

g

<<

2. For a morphism f : M → N in H–hsMod and a H-subhypermodule K ⊆ Ker(f),
there exists exactly one morphism g : M/K → N such that f = g ◦ κ, where κ : M →
M/K is the canonical s-homomorphism given by κ(m) = m+K. In other words, the
following diagram is commutative:

M
f //

κ

��

N

M/K .

g

<<
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Moreover, if f is an epic, then g is an epic, and if K = Ker(f), then g is a monic.
Consequently, if f is an epic and K = Ker(f), then g is an iso.

See [33, Theorem 1] and [18, Corollary 3.2] for a proof. In particular in H–hsMod
every morphism f factors through Ker(f).

4. Products, coproducts and free objects

Proposition 4.1. Let H be a Krasner hyperring. Products exist in the categories
H–hsMod and H–HsMod and coproducts exist in the category H–HsMod.

See [1, Theorem 3.14 and Theorem 3.17] for a proof in the H–HsMod case that
easily translates to the H–hsMod one for products. These are standard constructions:
for a Krasner hyperring H and a family of H-hypermodules {Mi | i ∈ I} consider the
Cartesian product

∏
i∈IMi of sets and define

(mi)i∈I + (m′i)i∈I =
{

(ni)i∈I | ni ∈ mi +m′i, i ∈ I
}
for (mi)i∈I , (m′i)i∈I ∈

∏
i∈I

Mi,

as well as
a(mi)i∈I = (ami)i∈I for a ∈ H, (mi)i∈I ∈

∏
i∈I

Mi.

Then
∏
i∈IMi is an H-hypermodule which together with canonical projections

πk :
∏
i∈IMi →Mk given by

πk((mi)i∈I) = mk,

for k ∈ I, forms a product in the categories H–hsMod and H–HsMod: if M is another
H-hypermodule with a family of ms- or s-homomorphisms {fk : M → Mk | k ∈ I}, then
the unique ms- or s-homomorphism f : M →

∏
i∈IMi such that πk ◦ f = fk, k ∈ I, is

given by
f(m) = (fi(m))i∈I for m ∈M.

Similarly, the set∑
i∈I

Mi =
{

(mi)i∈I ∈
∏
i∈I

Mi |mi 6= 0 for only finitely many i ∈ I
}

is an H-hypermodule with the above defined operations that along with canonical injec-
tions ιk : Mk →

∑
i∈IMi given by

ιk(m) = (mi)i∈I
where

mi =
{
m, if i = k,

0, if i 6= k,

for k ∈ I, constitutes a coproduct in the category H–HsMod: ifM is an H-hypermodule
with a family of ms-homomorphisms {gk : Mk → M | k ∈ I}, then the uniquely defined
ms-homomorphism g :

∑
i∈IMi →M such that g◦ιk = gk, k ∈ I, is given by the formula

g((mi)i∈I) = gi1(mi1) + . . .+ gil(mil),
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where {i1, . . . , il} = {i ∈ I |mi 6= 0} (note that there is no reason why this map would
be an s-homomorphism).

Proposition 4.2. Let H be a Krasner hyperring. Free objects do not exist in the category
H–hiMod.

See [25, Theorem 2.1] for a proof of the corresponding result for hypergroups, that
readily applies to hypermodules. Various notions of partial freeness in the categories
H–HiMod and H–HsMod are also discussed by Ameri and Shojaei in [2]. “Free hyper-
modules”, although not free objects in the category theoretical meaning, were initially
considered by Massouros in [21].

5. Subobjects and quotient objects

Proposition 5.1. Let H be a Krasner hyperring. In the category H–hsMod subobjects
are H-subhypermodules together with the inclusion maps.

Proposition 5.2. Let H be a Krasner hyperring. In the category H–hsMod quotient
objects are quotient hypermodules together with the canonical projection maps.

See [18, Theorem 4.1] for a proof of both results.

6. Kernels, coimages, images and cokernels

Proposition 6.1. Let H be a Krasner hyperring. The categories H–HsMod,
H–HiMod, H–HwMod, H–hsMod, H–hiMod and H–hwMod all have the zero object
0 := {0}.

Proof. It suffices to check that if f : M → N is a ms-, mi-, mw-, s-, i- or w-homomorphism
of H-hypermodules, then f(0) = 0, which is the case as:

f(0) = f(0m) = 0f(m) = 0,

for any choice of m ∈M .

Proposition 6.2.

1. Let H be an Hv-ring. Equalizers exist in the categories H–Hs
vMod and H–hsvMod.

2. Let H be a Krasner hyperring. Equalizers exist in the categories H–HsMod and
H–hsMod.

Proof. The arguments are basically identical for both Hv-modules and H-hypermodules,
we shall carry them for H-hypermodules here. Let H be a Krasner hyperring, let M,N

be left H-hypermodules, let f, g : M → N be s-homomorphisms. The set

Eq(f, g) = {m ∈M | f(m) = g(m)}

is an H-subhypermodule of M . Indeed, if m1,m2 ∈ Eq(f, g), then

f(m1 +m2) = f(m1) + f(m2) = g(m1) + g(m2) = g(m1 +m2),

so that m1 +m2 ∈ Eq(f, g), and if m ∈M and a ∈ H, then

f(am) = af(m) = ag(m) = g(am),
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so that am ∈ Eq(f, g). The inclusion map eq(f, g) : Eq(f, g) ↪→ M is clearly an s-homo-
morphism and f ◦ eq(f, g) = g ◦ eq(f, g). If E is another H-hypermodule and e : E →M

another s-homomorphism such that f ◦e = g◦e, then for the corestriction e �Eq(f,g) clearly
one has eq(f, g)◦e �Eq(f,g)= e. Moreover, if e : E → Eq(f, g) is another s-homomorphism
such that eq(f, g) ◦ e = e then, since eq(f, g) is a monic as an injective function between
sets, e = e �Eq(f,g).

Example 6.3. Let H be a Krasner hyperring. Equalizers do not exist in the categories
H–HiMod andH–hiMod. Indeed, we shall see this for the categoryH–hiMod. Consider
the three-element “sign hypergroup” Q2 consisting of the elements −1, 0, 1 and with
addition defined by 0 +m = m, for all m ∈ Q2, m+m = m, for all m ∈ Q2, and

1 + (−1) = (−1) + 1 = {−1, 0, 1}.

One easily checks that this is, indeed, a hypergroup (see, for example, [19] or [37, Section
3.5]). Next, let M be the three-element hypergroup M = {0, 1, 2} with + defined by
0 +m = m, for all m ∈M , and

1 + 1 = 2, 1 + 2 = 2 + 1 = {0, 1}, 2 + 2 = {1, 2}

(see [37, Section 3.5]), and let R>0 = {m ∈ R |m > 0} be the “ultratriangle hypergroup”
(see [37, Section 5.2]) with addition defined as follows:

m+ n =
{

max(m,n), if m 6= n,

[0,m], if m = n.

Consider two maps f, g : R>0 → R>0, f being just the identity, and g the square function:

g(m) = m2 for all m ∈ R>0.

They are both easily checked to be i-homomorphisms. Furthermore, consider the map
e1 : Q2 → R>0 given by

e1(0) = 0, e1(−1) = e1(1) = 1,

and the map e2 : M → R>0 given by

e2(0) = 0, e2(1) = e2(2) = 1.

A straightforward verification shows that they are both i-homomorphisms and that

f ◦ e1 = g ◦ e1 and f ◦ e2 = g ◦ e2.

However, as one can easily check, there are no i-homomorphisms Q2 → M other than
the zero map.

Proposition 6.4. Let H be a Krasner hyperring. Kernels exist in the categories
H–HsMod, H–HiMod, H–hsMod and H–hiMod.

Proof. For H-hypermodules M,N and for a ms-, mi-, s- or i-homomorphism f : M → N

Ker(f) = {m ∈M | f(m) = 0}

with the inclusion map ker(f) : Ker(f) ↪→ M is the equalizer of the pair f and 0M,N :
M → N—for a ms- or s-homomorphism f this is clear by Proposition 6.2, and for a mi-
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or i-homomorphism f , it suffices to check that Ker(f) is an H-subhypermodule, which is
apparent: if m1,m2 ∈ Ker(f), then

f(m1 +m2) ⊆ f(m1) + f(m2) = 0 + 0 = 0,

so that m1 +m2 ∈ Ker(f), and if a ∈ H, m ∈ Ker(f), then

f(am) = af(m) = a0 = 0,

so that am ∈ Ker(f).

Proposition 6.5. Let H be a Krasner hyperring. Coimages exist in the category
H–hsMod.

See [18, Theorem 4.2.(2)] for a proof using the standard argument relying on the
factorization theorem of Proposition 3.4. The coimage of an s-homomorphism f : M → N ,
where M,N are left H-hypermodules, is

Coim(f) = M/Ker(f)

and coim(f) : M → Coim(f) is the canonical s-homomorphism given by coim(f)(m) =
m+ Ker(f).

Proposition 6.6. Let H be a Krasner hyperring. Images exist in the categories
H–HsMod and H–hsMod.

See [18, Theorem 4.2.(1)] for a proof in the H–hsMod case that carries automat-
ically to the H–HsMod case. The image of an s-homomorphism (ms-homomorphism)
f : M → N , where M,N are left H-hypermodules, is just

Im(f) = {f(m) |m ∈M}
(

Im(f) =
⋃
m∈M

{f(m) |m ∈M}
)
,

and im(f) : Im(f) ↪→ N is the inclusion map.

Example 6.7. Let H be a Krasner hyperring. Coequalizers do not exist in the categories
H–HsMod, H–HiMod, H–hsMod and H–hiMod. We shall carry the argument for the
category H–hsMod. Denote by R the set of non-zero reals R× together with multivalued
addition defined as follows:

m+ n =
{
{mn,−mn}, if m 6= 1 ∧ n 6= 1,
mn, if m = 1 ∨ n = 1.

By means of tedious, but straightforward computation (which, in particular, involves
going through eight different cases to verify the law of associativity) one checks that R is
a canonical hypergroup, hence a Z-hypermodule. Consider the map µ : R → R given by

µ(m) =
{
−m, if m 6= ±1,
m, if m = ±1,

for m ∈ R.

Again, a routine verification shows that µ is an s-homomorphism. Now take two maps
f, g : R×R → R×R defined by

f(m,n) = (m,n),
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and
g(m,n) = (µ(m), n),

respectively, for (m,n) ∈ R×R. They are both easily seen to be s-homomorphism, and
they are clearly coequalized on the second coordinate by the identity s-homomorphism
c1 : R×R → R, c1(m,n) = n:

c1 ◦ f = c1 ◦ g.

Denote by R+ the multiplicative group (hence a hypergroup, hence a Z-hypermodule) of
positive reals and consider the absolute value on the first coordinate map c2 : R×R → R+
given by

c2(m,n) = |m| for (m,n) ∈ R×R.
It is easily checked to be an s-homomorphism such that

c2 ◦ f = c2 ◦ g.

However, there is no s-homomorphism c : R+ → R such that c ◦ c2 = c1, for if such a c
existed, then

c(1) = c ◦ c2(−1,−1) = c1(−1,−1) = −1,
which is impossible, as s-homomorphisms carry identities to identities.
Proposition 6.8. Let H be a Krasner hyperring. Cokernels exist in the categories
H–HsMod and H–hsMod.

See [1, Theorem 3.18] for a proof in the H–HsMod case and [18, Theorem 4.3] in the
H–hsMod case. The cokernel of an ms- or s-homomorphism f : M → N is just

Coker(f) = N/Im(f),
and coker(f) : N → Coker(f) is the canonical projection.
Corollary 6.9. Let H be a Krasner hyperring. Pullbacks exist in the categories
H–HsMod and H–hsMod. Pushouts do not exist in the categories H–HsMod,
H–HiMod, H–hsMod, H–hiMod.
Proposition 6.10. Let H be a Krasner hyperring. The categories H–HsMod and
H–hsMod are normal and conormal, i.e. monics are kernels and epics are cokernels.
See [18, Theorem 4.3] for a proof in the H–hsMod case that also applies to H–HsMod.

7. Exactness and final remarks. In view of the concluding results of the previous
section we have, in particular, the following:
Corollary 7.1. Let H be a Krasner hyperring. The categories H–HsMod and
H–hsMod are Puppe exact, i.e. have zero object, kernels and cokernels, are normal and
conormal, and every morphism has an epi-mono factorization.

Recall that Puppe exact categories were introduced in the 1960s [30] and, roughly
speaking, are Abelian categories without additivity. The categories of hypermodules dis-
cussed in this survey are clearly not Abelian, as binary products are not coproducts, so
that it seems that Puppe exactness is the best attainable notion of exactness here. Nev-
ertheless, a version of homological algebra for Puppe exact categories can be developed,
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as shown by Mitchell in his classical textbook [22]. Also see a relatively recent preprint
by Grandis [13] for generalizations of Puppe exactness and related concepts (as well as
references to his earlier work).

Various weak notions of additivity in categories of hypermodules have been studied by
numerous authors, see, for example, [32]. It is not clear if these notions would lead to the
development of a well-behaved homological algebra. Also, see [26] for a very well-known
survey on hyperrings by Nakassis, as well as [28] for a more general approach to the
categorical aspects of hyperstructures through multialgebras, and [27] for most recent
results on Krasner hyperrings.
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