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Abstract. We give a short survey of result on continuous (resp. continuous semialgebraic or
regulous) solutions of linear equations with polynomial coefficients.

1. The main problems. Unless explicitly stated otherwise, by a function we will mean
a real-valued function.

Consider a linear equation

f1y1 + . . .+ fryr = ϕ (1.1)

where f1, . . . , fr, ϕ are continuous functions on Rn. Fefferman and Kollár [5] study the
following two questions:

Question 1. Is there a continuous solution of (1.1)? In other words, can one find a
solution y1 = ϕ1, . . . , yr = ϕr of (1.1), where the ϕi are continuous functions on Rn?

Question 2. Suppose that (1.1) has a continuous solution. If ϕ and the fi have some
regularity properties, can one find a continuous solution of (1.1) which has the same (or
weaker) properties?

An algebraic version of Question 1, for complex-valued functions on Cn, was posed
by Brenner [3] and led him to the notion of continuous closure of ideals. Epstein and
Hochster [4] presented a detailed discussion of the continuous closure and other closure
operations on ideals. Kollár [6] gave a characterization of the continuous closure and
extended this notion to sheaves.
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It is fairly obvious that in general (1.1) has no continuous solution. Indeed, let
H(f1, . . . , fr;ϕ) = {H(f1, . . . , fr;ϕ)x}x∈Rn , (1.2)

where
H(f1, . . . , fr;ϕ)x := {(v1, . . . , vr) ∈ Rr : f1(x)v1 + . . .+ fr(x)vr = ϕ(x)}.

If H(f1, . . . , fr;ϕ)x is the empty set for some x ∈ Rn, then (1.1) cannot have a continuous
solution.
Definition 3. We say that equation (1.1) satisfies the pointwise test if for every p ∈ Rn

it has a solution y1 = ϕ
(p)
1 , . . . , yr = ϕ

(p)
r , where the ϕ(p)

i are functions on Rn which are
continuous at p.

Evidently, the pointwise test is a necessary condition for equation (1.1) to have a
continuous solution. However, the following example, due to Hochster and discussed in
[5, Example 3.4], shows that the pointwise test is not a sufficient condition in general.
Example 4. On R3 with coordinates (x1, x2, x3), the linear equation

(x2
1)y1 + (x2

2)y2 + (x1x2x
2
3)y3 = x1x2x3

satisfies the pointwise test but it has no continuous solution.
In what follows, both (1.2) and the pointwise test will play an essential role.

2. Singular affine bundles. Fix positive integers n and r. By convention, the empty
set will be regarded as an affine subspace of Rr.
Definition 5. A singular affine bundle (or bundle for short) is a family H = {Hx}x∈Rn

of affine subspaces Hx ⊆ Rr. The affine subspaces Hx are the fibers of the bundle H
(some fibers are allowed to be empty). A section of H is a continuous map s : Rn → Rr

such that s(x) ∈ Hx for all x ∈ Rn.
An example of a bundle is provided by H(f1, . . . , fr;ϕ) in (1.2). Clearly, equation

(1.1) has a continuous solution if and only if the bundle H(f1, . . . , fr;ϕ) has a section.
Let H = {Hx}x∈Rn be a bundle. One readily checks that H′ = {H ′

x}x∈Rn , where
H

′

x := {v ∈ Hx : dist(v,Hy)→ 0 as y → x},

is a bundle. Actually, H′ is a subbundle of H, that is, H ′

x ⊆ Hx for all x ∈ Rn. Further-
more, H and H′ have the same sections. In [5], H′ is called the Glaeser refinement of H.
Iterating the Glaeser refinement, we obtain a sequence of bundles H0,H1,H2, . . . , where
H0 = H and Hi+1 is the Glaeser refinement of Hi for each i ≥ 0.

The following result is established in [5, Lemmas 5 and 6].
Theorem 6. Let H = {Hx}x∈Rn be a bundle.
(i) Hi = H2r+1 for i ≥ 2r + 1.
(ii) If H = H′ and if each fiber Hx is nonempty, then H has a section.

Hence, Theorem 6 provides the following answer to Question 1.
Corollary 7. Equation (1.1) has a continuous solution if and only if each fiber of the
bundle H(f1, . . . , fr;ϕ)2r+1 is nonempty.
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A lot more on Question 1 and the Glaeser refinement is contained in [5]. However, it
is not possible to state these result in a concise form.

3. Continuous semialgebraic and regulous solutions. In what follows we focus on
Question 2. The problem is quite hard even if ϕ and the fi are polynomial functions.

Recall that a subset of Rn is semialgebraic if it is a finite Boolean combination of sets
of the form

{x ∈ Rn : p(x) = 0} and {x ∈ Rn : q(x) > 0},

where p and q are polynomial functions on Rn. A function f : S → R, defined on a
semialgebraic set S ⊆ Rn, is semialgebraic if its graph is a semialgebraic subset of Rn×R.

The main result of [5] concerning Question 2 is a rather complicated algorithm of
which some parts may not be effectively doable. Nevertheless, the general structure of
the algorithm yields the following.

Theorem 8. Assume that f1, . . . , fr are polynomial functions on Rn and ϕ is a contin-
uous semialgebraic function on Rn. If the equation

f1y1 + . . .+ fryr = ϕ

has a continuous solution, then it also has a continuous semialgebraic solution.

A different approach to Question 2 is presented by Sokantika and Thamrongthanyalak
[12]. They construct definable selections of set-valued maps in the o-minimal setting and,
in particular, obtain a more general version of Theorem 8.

Henceforth, we consider Question 2 for functions of other types.

Definition 9. A function f on Rn is said to be regulous if it is continuous and there
exist two polynomial functions p, q on Rn such that q is not identically 0 and f = p/q on
the set {x ∈ Rn : q(x) 6= 0}.

Regulous functions appear in a natural way in many different contexts; see [7, 8, 11]
and the reference therein. They also play a role in Question 2. By [2, Proposition 2.2.2],
regulous functions are semialgebraic.

Example 10. On R2 with coordinates (x1, x2), the linear equation

(x3
1)y1 + (x3

2)y1 = x2
1x

2
2

has no C∞ solution. It has a regulous solution (y1, y2) = (ϕ1, ϕ2), where

ϕ1(x1, x2) =


x5

1x
2
2

x6
1 + x6

2
for (x1, x2) 6= (0, 0)

0 for (x1, x2) = (0, 0),

ϕ2(x1, x2) =


x2

1x
5
2

x6
1 + x6

2
for (x1, x2) 6= (0, 0)

0 for (x1, x2) = (0, 0).

It can happen that equation (1.1), where ϕ and fi are polynomial functions, has a
continuous semialgebraic solution but has no regulous solution.
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Example 11. On R3 with coordinates (x1, x2, x3), the linear equation

(x3
1x2)y1 + (x3

1 − (1 + x2
3)x3

2)y2 = x4
1 (3.1)

has a continuous semialgebraic solution (y1, y2) = (ϕ1, ϕ2), where

ϕ1(x1, x2, x3) = (1 + x2
3)1/3,

ϕ2(x1, x2, x3) =


x3

1
x2

1 + (1 + x2
3)1/3x1x2 + (1 + x3)2/3x2

2
for (x1, x2) 6= (0, 0)

0 for (x1, x2) = (0, 0).

Now suppose that (y1, y2) = (ψ1, ψ2) is a regulous solution of (3.1). We obtain a
contradiction as follows. The algebraic surface

S := {(x1, x2, x3) ∈ R3 : x3
1 − (1 + x2

3)x3
2 = 0}

is a real analytic submanifold of R3 since it can also be described by a real analytic
equation

x1 − (1 + x2
3)1/3x2 = 0.

Note that the x3-axis is contained in S. Substituting (y1, y2) = (ψ1, ψ2) into (3.1) and
restricting to S, we obtain

(x3
1x2|S)ψ1|S = x4

1|S ,

hence
ψ1|S\(x3-axis) = x1

x3

∣∣∣
S\(x3-axis)

= (1 + x2
3)1/3|S\(x3-axis).

Since S \ (x3-axis) is dense in S, we get

ψ1|S = (1 + x2
3)1/3|S

and consequently
ψ1|(x3-axis) = (1 + x2

3)1/3.

The last equality cannot hold, the function ψ1 being regulous.

Example 11 comes from [8]. It is worthwhile to record the following generalization.

Example 12. For each n ≥ 3, one can interpret (3.1) as a linear equation on Rn with
coordinates (x1, . . . , xn). Then (3.1) has a continuous semialgebraic solution on Rn but
no regulous solution on Rn.

The following question is of interest [8].

Question 13. For which regulous functions f1, . . . , fr, ϕ on Rn, the linear equation

f1y1 + . . .+ fryr = ϕ

has a regulous solution?

As of this writing, Question 13 remains very much open for n ≥ 3. The case n = 1
is an easy exercise. The case n = 2 to which we turn next was settled by Kucharz and
Kurdyka [10]. It is convenient to start with a result on Question 1 and the pointwise test.
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Theorem 14. Let f1, . . . , fr be regulous functions and ϕ a continuous function, all de-
fined on R2. Then the linear equation

f1y1 + . . .+ fryr = ϕ

has a continuous solution if and only if it satisfies the pointwise test.
Theorem 14 shows that the phenomenon described in Example 4 can occur only for

functions on Rn with n ≥ 3.
Theorem 15. Let f1, . . . , fr, ϕ be regulous functions on R2. If the linear equation

f1y1 + . . .+ fryr = ϕ

has a continuous solution, then it also has a regulous solution.
Combining Theorems 14 and 15, we obtain for functions on R2 a satisfactory par-

tial answer to Question 2 and a complete answer to Question 13. In [10], Theorems 14
and 15 are stated and proved in a more general setting, namely for functions defined on
a nonsingular real algebraic set of dimension 2.

Let f1, . . . , fr, ϕ be polynomial functions on Rn and suppose that the linear equation
f1y1 + . . .+ fryr = ϕ

has a continuous solution. By Theorem 8, there is also a continuous semialgebraic solution.
Can one find a continuous semialgebraic solution which has some additional regularity
properties? Several suggestions were put forward in [9] and in discussions among the
experts. Recently, Adamus and Seyedinejad [1] provided counterexamples to some of
them.
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