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Abstract. A multiplicative relative value iteration algorithm for solving the dynamic program-
ming equation for the risk-sensitive control problem is studied for discrete time controlled Markov
chains with a compact Polish state space, and controlled diffusions in the whole Euclidean space.
The main result is a proof of convergence to the desired limit in each case.

1. Introduction. Risk-sensitive control problems on an infinite horizon seek to mini-
mize or maximize a functional defined as the exponential growth rate of a multiplicative
cost, resp. reward. Thus unlike the more classical and commonplace criteria, they lead to
a multiplicative dynamic programming equation, in fact a nonlinear eigenvalue problem
for a positive, positively 1-homogeneous continuous nonlinear operator. This has been
extensively studied for the discrete time discrete state (both finite and countable) and
continuous time and state problems, but the important case of discrete time and general
state space has received relatively less attention in comparison, with only a small number
of contributions such as [1, 20, 24]. The same also holds for the corresponding develop-
ment of the value iteration algorithm, which ends up being a multiplicative analog of
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the algorithm encountered in average cost problems, alternatively, in its simplest sce-
nario, a nonlinear counterpart of the power iteration method for computing the principal
eigenvector and eigenvalue of an irreducible non-negative matrix. This again has been
studied in the discrete time and state case [16–18], but not for the general state space.
In this work we take a first step towards filling in this gap by proposing and analyzing a
multiplicative relative value iteration algorithm for two instances of risk-sensitive control
on a general state space: the discrete time compact Polish state space problem, and the
continuous time controlled diffusion in a Euclidean space. In the case of controlled diffu-
sions, we would like to cite here the work in [19,22,23,25] which is very much related to
this problem.

2. Results in discrete time. We consider a controlled Markov chain on a compact
Polish space S with a compact metric action space U and controlled transition kernel

(x, u) ∈ S × U 7→ p(dy |x, u) = ϕ(y |x, u) γ(dy) ∈ P(S),
where γ is some positive measure on S with full support and ϕ(· | ·, ·) > 0 is continuous.
Also given is a ‘per stage’ continuous cost function

(x, u) ∈ S × U 7→ k(x, u).
We shall denote by Xn, n ≥ 0, and Zn, n ≥ 0, resp., the S-valued state process and
U -valued control process. Thus

P (Xn+1 ∈ A |Xm, Zm, m ≤ n) = p(A |Xn, Zn) ∀n ∈ N, ∀A Borel in S.
When Zn = v(Xn) for all n for some measurable v : S 7→ U , we call it a stationary
Markov control policy and denote is simply by v. When

P (Zn ∈ B |Xm, Zm, m < n;Xn) = φ(B |Xn) ∀n ∈ N,

for some φ : S 7→ P(U), we call it a randomized Markov control policy and denote it
simply by φ.

The objective is to minimize the asymptotic risk-sensitive cost

lim sup
n↑∞

1
n

logE
[
exp
(n−1∑
m=0

k(Xm, Zm)
)]
.

The ‘dynamic programming equation’ for this problem ends up being the nonlinear eigen-
value problem

ΛV (x) = min
u∈U

(
ek(x,u)

∫
S
p(dy |x, u)V (y)

)
, x ∈ S. (2.1)

By Theorem 2.2 of [1], this has a solution V (·) ∈ C
(
S; [0,∞)

)
, Λ ∈ (0,∞), where Λ is

unique, and V is unique up to a multiplicative positive scalar. Our objective is to propose
a recursive scheme to compute these. Specifically, we consider the ‘Value Iteration’ (VI)
algorithm given by

Jn+1(x) =
minu∈U

∫
S p(dy |x, u) ek(x,u)Jn(y)

Λ

=
∫
S p(dy |x, un(x)) ek(x,u)Jn(y)

Λ
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for suitable un(·) guaranteed by a standard measurable selection theorem [29]. This is
not a practicable algorithm since Λ is unknown. But it will serve a useful purpose in the
analysis of the more realistic scheme, the ‘Relative Value Iteration’ (RVI). Choose some
x0 ∈ S, which is kept fixed. The RVI is given by

Vn+1(x) =
minu∈U

∫
S p(dy |x, u) ek(x,u)Vn(y)

Vn(x0)

=
∫
S p(dy |x, u

′′
n(x)) ek(x,u)Vn(y)
Vn(x0) ,

for suitable u′′n(·), initiated at J0 = V0 > 0 so that Vn, Jn > 0 for all n.
We have

max
x∈S

(
Vn+1(x)
Jn+1(x)

)
= max

x∈S

(minu∈U
∫
S
p(dy |x, u) ek(x,u)Jn(y)(Vn(y)/Jn(y))

minu∈U
∫
S
p(dy |x, u) ek(x,u)Jn(y)

)
Λ

Vn(x0)

≤ max
x∈S

(
Vn(x)
Jn(x)

)
Λ

Vn(x0) .

Similarly,

min
x∈S

(
Vn+1(x)
Sn+1(x)

)
≥ min

x∈S

(
Vn(x)
Jn(x)

)
Λ

Vn(x0) .

Therefore

1 ≤
maxx∈S

(
(Vn+1(x)/Jn+1(x))

)
minx∈S

(
(Vn+1(x)/Jn+1(x))

) ≤ maxx∈S
(
(Vn(x)/Jn(x))

)
minx∈S

(
(Vn(x)/Jn(x))

) ≤ . . . ≤ 1,

implying that equality must hold throughout, that is, Vn(x) = CnJn(x) for some constant
Cn independent of x. We can then show inductively that

Cn := Vn(x)
Jn(x) =

n−1∏
m=0

Λ
Vm(x0) .

Furthermore,
Vn+1(x0)
Jn+1(x0) = Vn(x0)

Jn(x0)
Λ

Vn(x0) = Λ
Jn(x0) .

We say that the VI (RVI) converges if the sequence of functions {Jn}n∈N ({Vn}n∈N)
converges pointwise. If the VI converges, in particular Jn(x0) does, and by the above
equations, the RVI will also converge. Thus we only need to establish the convergence of
the VI.

Let V (·) and Λ be as in (2.1). Let v∗(·) denote a measurable minimizer of the right-
hand side of (2.1). This is always possible by a measurable selection theorem [29]. Define

p∗(dy |x) :=
(
ΛV (x)

)−1
p
(
dy |x, v∗(x)

)
ek(x,v∗(x))V (y).

Then
Jn+1(x)
V (x) ≤

∫
S
p∗(dy |x)

(
Jn(y)
V (y)

)
.
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Let {X∗n} denote the stationary chain governed by p∗(· | ·). Let Yn := X∗−n, for n ∈ N. It
then follows that

Jn(Yn)
V (Yn) , n < 0,

is a reverse submartingale that converges a.s. and in L1(ν) [28] to a random variable ζ
(say). For any open O ⊂ S, the martingale law of large numbers [28] yields

lim
n↑∞

1
n

n−1∑
m=0

(
I{X∗m+1 ∈ O} − p∗

(
O |X∗m, v∗(X∗m)

))
= 0 a.s.

Under our assumptions,
min
x,u

p∗(O |x, u) > δγ(O) > 0 (2.2)

for some δ > 0. Thus

lim inf
n↑∞

1
n

n−1∑
m=0

1{X∗n ∈ O} ≥ δγ(O) a.s.,

implying X∗n ∈ O i.o., a.s. Fix η > 0 and let O be an open ε-ball centered at x for a
prescribed ε > 0, chosen such that

y ∈ O =⇒ |V (y)− V (x)| < η.

Pick a zero probability set N outside which all ‘a.s.’ results above hold for ε = 1
m , η = 1

k ,
and m, k ≥ 1. Fix x ∈ S. Fix a sample point ω /∈ N . Take (possibly random) n0 ≥ 1 such
that (say)

n ≥ n0 =⇒ |Jn(X∗n)− ζV (X∗n)| < η = 1
k
.

Then on {X∗n ∈ O} with ε = 1
m (say), we have∣∣Jn(X∗n)− ζV (x)
∣∣ ≤ ∣∣Jn(X∗n)− ζV (X∗n)

∣∣+
∣∣ζ(V (X∗n)− V (x))

∣∣
≤ (ζ + 1) 1

k
.

If we consider k,m ↑ ∞, it follows that if X∗n → x along a subsequence, then Jn(X∗n)→
ζV (x) along that subsequence. By (2.2), it also follows that Jn(x)→ ζV (x) for γ-a.s. x.
It then follows that Vn(x) → some V̄ (x) γ-a.s. But then, passing to the limit in the
defining equation for RVI, V̄ satisfies (2.1) with V̄ (x0) = Λ, which uniquely specifies it.

3. Results in continuous time. In this section we consider the risk-sensitive control
problem for a controlled diffusion on Rd taking the form

dXt = b(Xt, Ut) dt+ σ(Xt) dWt. (3.1)
All random processes in (3.1) live in a complete probability space (Ω,F,P). The process W
is a d-dimensional standard Wiener process independent of the initial condition X0, and
the control process {Ut}t≥0 lives in a compact metrizable space U. The sets of admissible
controls U, and stationary Markov controls Usm are defined in the standard manner.

We let a := σσT, and denote by BR the open ball of radius R in Rd centered
at 0. We impose the following set assumptions on the coefficients, and the running cost
c : Rd × U→ R.



RISK-SENSITIVE RELATIVE VALUE ITERATION 13

Assumption 3.1. The following hold.

(i) The drift b : Rd × U→ Rd and running cost c are continuous, and for some positive
constants CR depending on R > 0, and C0, we have

|c(x, u)− c(y, u)|+ |b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ CR |x− y|

for all x, y ∈ BR and u ∈ U, and
d∑

i,j=1
aij(x)ζiζj ≥ C−1

0 |ζ|2 ∀ (x, ζ) ∈ Rd × Rd,

where ‖σ‖ :=
(
TrσσT)1/2 denotes the Hilbert–Schmidt norm of the matrix σ.

(ii) The function a : Rd → Rd×d is bounded, and for some θ ∈ [0, 1) and a constant κ0,
we have

|b(x, u)| ≤ κ0(1 + |x|θ), and |c(x, u)| ≤ κ0(1 + |x|2θ) (3.2)

for all (x, u) ∈ Rd × U. In addition,

min
x∈BR

min
u∈U

c(x, u) −−−−→
R→∞

∞, (3.3)

and
max
x∈BR

1
|x|1−θ

max
u∈U

〈
b(x, u), x

〉+ −−−−→
R→∞

0. (3.4)

Definition 3.1. For U ∈ U we define the risk-sensitive value under a control U ∈ Usm,
by

ΛxU = ΛxU (c) := lim sup
T→∞

1
T

logExU
[
exp
(∫ T

0
c(Xt, Ut) dt

)]
, (3.5)

and the risk-sensitive optimal values by

Λx∗ := inf
U∈U

ΛxU , and Λ∗ := inf
x∈Rd

Λx∗ . (3.6)

Also let

Gf(x) := 1
2 Tr(a(x)∇2f(x)) + min

u∈U

[〈
b(x, u),∇f(x)

〉
+ c(x, u)f(x)

]
, f ∈ C2(Rd),

and

λ∗ = λ∗(c) := inf
{
λ ∈ R : ∃φ ∈W

2,d
loc(Rd), φ > 0, Gφ− λφ ≤ 0 a.e. in Rd

}
. (3.7)

Some discussion is in order here. The quantity λ∗ is the generalized principal eigen-
value of the semilinear operator G in Rd. We assume that λ∗ <∞. Note that in specific
problems, this is verified via a Foster–Lyapunov equation of the form

1
2 Tr(a(x)∇2V(x)) +

〈
bv(x),∇V(x)

〉
+ cv(x)V(x) ≤ κ0 − κ1V(x)

for some positive function V ∈ C2(Rd) which is bounded away from 0, and for some
v ∈ Usm and constants κ0 and κ1. In this equation we used the convenient notation

bv(x) := b(x, v(x)), and cv(x) := c(x, v(x)) for v ∈ Usm,

which we adopt for the rest of the paper.
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3.1. The risk-sensitive HJB. As shown in [3, Lemmas 2.2 and 2.3], there exists a
positive eigenfunction Ψ ∈ C2(Rd) which solves

GΨ(x) = λ∗Ψ(x), x ∈ Rd, (3.8)
and λ∗ ≤ Λx∗ for all x ∈ Rd. We let U∗sm denote the controls v ∈ Usm which satisfy〈

bv(x),∇Ψ(x)
〉

+ cv(x)Ψ(x) = min
u∈U

[〈
b(x, u),∇Ψ(x)

〉
+ c(x, u)Ψ(x)

]
a.e. x ∈ Rd.

In other words, U∗sm is the set of measurable selectors from the minimizer of (3.8).
A variation of [3, Lemma 3.2], by (3.4), shows that

lim sup
t→∞

1
t
ExU
[
|Xt|1+θ] = 0 ∀U ∈ U. (3.9)

Indeed, using the function |x|2(1+θ) in equation (3.1) of [3] following the rest of the proof
of [3, Lemma 3.2], we obtain (3.9). On the other hand, [4, Lemma 4.1] shows that (3.2)
and (3.4) imply that there exists a constant C̃0 > 0 such that any positive solution
φ ∈W

2,d
loc(Rd) of

1
2 Tr(a(x)∇2φ(x)) +

〈
bv(x),∇φ(x)

〉
+ cv(x)φ(x) = λφ(x)

for v ∈ Usm, satisfies
|∇φ(x)|
φ(x) ≤ C̃0(1 + |x|θ). (3.10)

Therefore, by (3.10), the eigenfunction Ψ in (3.8) satisfies

e−C(1+|x|1+θ) ≤ Ψ(x) ≤ eC(1+|x|1+θ) ∀x ∈ Rd, (3.11)
for some constant C > 0. An application of Fatou’s lemma to the stochastic representation
of the solution Ψ of (3.8) shows that

Ψ(x) ≥ Exv∗

[
exp
(∫ T

0
[cv∗(Xt)− λ∗] dt

)
Ψ(XT )

]
∀T > 0, (3.12)

with v∗ ∈ U∗sm. Taking logarithms on both sides of (3.12), applying Jensen’s inequality,
and dividing by T , we obtain

1
T

Exv∗

[∫ T

0
cv∗(Xt) dt

]
+ 1
T

Exv∗

[
log Ψ(XT )

]
≤ λ∗ + 1

T
log Ψ(x). (3.13)

Using (3.9) and (3.11) and taking limits as T →∞ in (3.13), we obtain

lim sup
T→∞

1
T

Exv∗

[∫ T

0
cv∗(Xt) dt

]
≤ λ∗.

This together with (3.3) implies that the diffusion in (3.1) controlled by v∗ ∈ U∗sm has an
invariant probability measure, and, therefore, it is positive recurrent [21, Theorem 3.3]
(see also [14]). An application of [3, Lemma 2.1] then shows that Ψ is inf-compact, which
in turn implies that Λxv∗ ≤ λ∗ for all x ∈ Rd, by [3, Lemma 2.1 (d) and (f)]. Since we have
already asserted the converse inequality, this shows that

Λx∗ = Λ∗ = λ∗ ∀x ∈ Rd,

or in other words, the optimal risk-sensitive value is equal to the generalized principal
eigenvalue defined in (3.7). Note also that the inf-compactness of Ψ implies by (3.8) that
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the diffusion in (3.1) controlled under v∗ ∈ U∗sm is exponentially ergodic, or in other words,
the transition probability of the process {Xt}t≥0 in (3.1) under the control v∗, converges
to its invariant probability measure in total variation at an exponential rate [27].

Uniqueness of the eigenfunction Ψ, which we refer to as the ground state, is related
to the ergodic properties of the ground state diffusion, which takes the form

dX∗t =
(
b(X∗t , Ut) + a(X∗t )∇ψ(X∗t )

)
dt+ σ(X∗t ) dW ∗t , (3.14)

with ψ := log Ψ. First, we have equality in (3.12) if and only if (3.14) controlled under
Ut = v∗(X∗t ) is regular. This is shown in [5, Lemma 2.3 and Corollary 2.2]. Note that
(3.8) can be written in the form

G∗ψ(x) := 1
2 Tr(a(x)∇2ψ(x))

+ min
u∈U

[〈
b(x, u) + 1

2a(x)∇ψ(x),∇ψ(x)
〉

+ c(x, u)ψ(x)
]

= λψ(x).
(3.15)

Naturally, the sets of measurable selectors from the minimizers of (3.8) and (3.15) are
equal. By (3.10), the hypothesis that a is bounded, and the growth assumptions of the
drift in (3.2), it follows that (3.14) is regular for any U ∈ U. Thus, mimicking the proof
of [5, Lemma 2.3] we obtain

Ψ(x) ≤ ExU
[
exp
(∫ T

0
[c(Xt, Ut)− λ∗] dt

)
Ψ(XT )

]
∀T > 0, (3.16)

with equality when Ut = v∗(Xt) for any v∗ ∈ U∗sm.
We review one important property of the generalized principal eigenvalue which con-

cerns its dependence on the running cost c. Let

Luf(x) := 1
2 Tr(a(x)∇2f(x)) +

〈
b(x, u),∇f(x)

〉
, u ∈ U, (3.17)

and Lv for v ∈ Usm, denote the operator defined as above, but with b(x, u) replaced by
bv(x). For v ∈ Usm let

λv(c) := inf
{
λ ∈ R : ∃φ ∈W

2,d
loc(Rd), φ > 0, Lvφ+ cvφ− λφ ≤ 0 a.e. in Rd

}
. (3.18)

Naturally, we have λv∗(c) = λ∗ for all v∗ ∈ U∗sm. Let C+
o (Rd) denote the collection of all

non-trivial, non-negative, continuous functions which vanish at infinity. We say that λv is
strictly monotone at c on the right if λv(c + h) > λv(c) for all h ∈ C+

o (Rd). We can of
course define the analogous property for λ∗, independently of the control v∗ ∈ U∗sm, using
the definition in (3.7). Since U∗sm is the set of measurable selectors from the minimizer, it
is clear that monotonicity at c on the right for λ∗ and λv∗ are equivalent.

Let τ̂(A) denote the first hitting time of the set A. By [5, Lemma 2.7, Corollary 2.3,
and Theorem 2.3], together with the equivalence of strict monotonicity on the right of λ∗
and λv∗ for v∗ ∈ U∗sm, we can assert that the following statements are equivalent.

1. The eigenvalue λ∗ is simple.
2. For any open ball B and v∗ ∈ U∗sm,

Ψ(x) = Exv∗

[
exp
(∫ τ̂(B)

0
[cv∗(Xs)− λ∗] ds

)
Ψ(Xτ̂(B))1{τ̂(B)<∞}

]
∀x ∈ B̄c. (3.19)

3. The ground state process in (3.14) controlled under any v∗ ∈ U∗sm is recurrent.
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We summarize the above discussion in the following theorem which is a slight variation
of [4, Proposition 5.1].

Theorem 3.1. Grant Assumption 3.1, and suppose that λ∗ is finite. Then the HJB equa-
tion

min
u∈U

[
LuΨ(x) + c(x, u)Ψ(x)

]
= λ∗Ψ(x) ∀x ∈ Rd (3.20)

has a solution Ψ ∈ C2(Rd), satisfying infRd Ψ > 0, and the following hold:

(a) Λx∗ = Λ∗ = λ∗ for all x ∈ Rd.
(b) Any v∗ ∈ U∗sm renders the SDE in (3.1) exponentially ergodic and is optimal, that is,

Λxv∗ = Λ∗ for all x ∈ Rd.
(c) For any v ∈ U∗sm,

Ψ(x) = Exv∗

[
exp
(∫ T

0
[c(Xt, v(Xt))− λ∗] dt

)
Ψ(XT )

]
∀ (T, x) ∈ R+ × Rd,

and, in addition, (3.16) holds.
(d) The function ψ = log Ψ satisfies |∇ψ| ≤ C̃0(1 + |x|) for some constant C̃0.
(e) If λ∗ is strictly monotone at c on the right, then there exists a unique (up to a positive

multiplicative constant) positive solution to (3.20) (ground state), and any optimal
v ∈ Usm lies in U∗sm. In addition, the ground state Ψ satisfies (3.19), and (3.14)
controlled under Ut = v∗(X∗t ) with v∗ ∈ U∗sm is recurrent.

There is another important property that we need in the study of convergence of the
value iteration, which we explain next. Let v ∈ Usm. We say that λv(c), defined in (3.18),
is strictly monotone at c if λv(c − h) < λv(c) for some h ∈ C+

o (Rd). Of course, strict
monotonicity implies strict monotonicity on the right as can be seen from the fact that
c 7→ λv(c) is convex. By [5, Theorem 2.1] strict monotonicity of λv∗(c) at c is equivalent
to the statement that the ground state diffusion in (3.14) controlled under v∗ is positive
recurrent.

3.2. The value iteration. Let

C2
Ψ,+(Rd) :=

{
g ∈ C2(Rd) : g > 0, ‖g‖Ψ <∞

}
.

We introduce the equation

∂t Φ(t, x) = min
u∈U

[
LuΦ(t, x) + c(x, u) Φ(t, x)

]
− λ∗ Φ(t, x), t > 0, (3.21)

with Φ(0, x) = Φ0(x), Φ0 ∈ C2
Ψ,+(Rd).

Definition 3.2. Let {v̂t}t≥0 be an a.e. measurable selector from the minimizer of (3.21).
We define the corresponding (non-stationary) Markov control

v̂t := {v̂ts = v̂t−s(x), s ∈ [0, t]}.

and denote the set of these controls by Û(Φ0), including explicitly the dependence on the
initial condition Φ0 in the notation.
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We do not care so much about uniqueness of solutions to (3.21); however, see [11,
Theorems 3.12–3.13]. We work with the solution Φ(t, x) which satisfies

Φ(t, x) = inf
U∈U

ExU
[
exp
(∫ t

0
[c(Xs, Us)− λ∗] ds

)
Φ0(Xt)

]
= Exv̂t

[
exp
(∫ t

0
[c(Xs, v̂

t
s(Xs))− λ∗] ds

)
Φ0(Xt)

]
∀ {v̂t}t≥0 ∈ Û(Φ0).

Note that for any element of Û(Φ0) we have v̂t+τs+τ = v̂ts for all t ≥ s ≥ 0 and τ ≥ 0. Also,
by (3.16), we obtain

Ψ(x) ≤ Exv̂t
[
exp
(∫ t

0
[c(Xs, v̂

t
s(Xs))− λ∗] ds

)
Ψ(Xt)

]
∀ {v̂t}t≥0 ∈ Û(Φ0).

Incorporating explicitly the dependence on the initial condition Φ0 in the notation,
we let St[Φ0](x), t ≥ 0, denote the solution of (3.21). It is clear that St[Ψ] = Ψ for all
t ≥ 0 by Theorem 3.1 (c), and that the uniqueness of the ground state in Theorem 3.1 (e)
implies that any positive initial condition Φ0 satisfying St[Φ0] = Φ0 for all t ≥ 0 must
equal the ground state Ψ up to a positive multiplicative constant.

Let E denote the set of equilibria of the semiflow St, or equivalently, the set of solutions
of the HJB in (3.20), that is,

E := {rΨ : r > 0}.

By CΨ(Rd) we denote the class of continuous functions φ satisfying

‖φ‖Ψ := sup
x∈Rd

|φ(x)|
Ψ(x) <∞.

For κ > 0 we define the set Hκ ⊂ C2(Rd) by

Hκ :=
{
h ∈ C2(Rd) : h ≥ κ−1Ψ, ‖h‖Ψ < κ

}
. (3.22)

We have
κ−1Ψ(x) = St[κ−1Ψ](x) ≤ St[Φ0](x)

≤ St
[
‖Φ0‖ΨΨ

]
(x) ≤ St

[
κΨ
]
(x) = κΨ(x) ∀Φ0 ∈ Hκ,

(3.23)

where the first and the last equalities follow by Theorem 3.1 (c), and the inequalities by
the monotonicity of f 7→ St[f ] and the definition of Hκ. It follows from (3.23) that if
Φ0 ∈ Hκ then St[Φ0] ∈ Hκ for all t ≥ 0. So the set Hκ is positively invariant under the
semiflow St.

Recall the definition of L in (3.17), and let

L̃u := Lu +
〈
∇ψ(x), a(x)∇

〉
, u ∈ U. (3.24)

This definition can be extended to L̃v for any Markov control v (not necessarily station-
ary) by replacing u ∈ U with v in (3.24). Clearly then Lv, with v ∈ Usm, is the extended
generator of (3.14) controlled by v. The operator L̃u satisfies a very important identity.
If Φ ∈ C2(Rd) is a positive function then

L̃u
(Φ

Ψ

)
=
(
LuΦ

Φ − LuΨ
Ψ

)
Φ
Ψ ∀u ∈ U. (3.25)
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In the sequel we work under the following hypothesis.

(H1) The ground state diffusion in (3.14) is positive recurrent under some v∗ ∈ U∗sm. We
let µ̃∗ denote its invariant probability measure, and Ẽx∗ expectation operator on the
canonical space of the process controlled under v∗.

As explained in Subsection 3.1, under (H1), λv∗(c) is strictly monotone at c. Therefore,
by Theorem 3.1, we have unicity of the ground state Ψ, and complete verification of
optimality results. In what follows v∗ is the control in (H1).

We present the following important convergence result.

Theorem 3.2. Grant (H1). For each Φ0 ∈ Hκ, κ > 0, the semiflow St[Φ0] converges to
κ0Ψ ∈ E for some κ0 ∈ [κ−1, κ] as t→∞. Moreover, if A is a bounded subset of CΨ(Rd),
then the only subsets of Hκ ∩A, with κ > 0, which are invariant under the semiflow are
the points (singletons) of E ∩Hκ ∩A.

Proof. Define ΦΨ(t, x) := St[Φ0](x)
Ψ(x) . By (3.25) applied to (3.8) and (3.21), we have

∂tΦΨ(t, x)− L̃v∗ΦΨ(t, x) ≤ 0. (3.26)

Since ΦΨ(t, x) is bounded by (3.23), we obtain from (3.26)

ΦΨ(t, x) ≤ Ẽx∗
[
ΦΨ(τ,Xτ )

]
, 0 ≤ τ ≤ t. (3.27)

Integrating (3.27) with respect to µ̃∗, and using the abbreviated notation µ̃∗(f) =∫
Rd f(x) µ̃∗(dx), we obtain

µ̃∗
(
ΦΨ(t, x)

)
≤ µ̃∗

(
ΦΨ(s, x)

)
for all t > s.

Thus, since t 7→ µ̃∗
(
ΦΨ(t, x)

)
is non-increasing, and ΦΨ(t, x) ∈ Hκ by (3.23), it converges

to some constant κ0 ∈ [κ−1, κ] as t → ∞. It is clear that supt>0 ‖St[Φ0]‖Ψ < ‖Φ0‖Ψ by
(3.23). Therefore by the interior estimates of solutions of (3.21) (see [26, Theorem 6.2,
p. 457]),

{
St[Φ0] : t > 0

}
is locally precompact in C2(Rd). Hence the ω-limit set of Φ0

under the semiflow St, denoted by ω(Φ0), is non-empty, and is a subset of C2(Rd). Note
that the convergence of µ̃∗

(
ΦΨ(t, x)

)
to κ0 as t→∞ implies that

µ̃∗

( h
Ψ

)
= κ0 ∀h ∈ ω(Φ0). (3.28)

Fix some h ∈ ω(Φ0), and define

g(t, x) := Lv∗St[h](x) + cv∗(x)St[h](x)−min
u∈U

[
LuSt[h](x) + c(x, u)St[h](x)

]
. (3.29)

Therefore, by (3.21) and (3.29), we have

∂t Φ(t, x) = Lv∗St[h](x) + cv∗(x)St[h](x)− g(t, x)− λ∗Φ(t, x), t > 0, (3.30)

which we write as

∂t Φ(t, x) = Lv∗St[h](x) +
(
cv∗(x)− g(t, x)

St[h](x)

)
St[h](x)− λ∗Φ(t, x).

Using (3.21), (3.25), and (3.30), we obtain

∂t
St[h](x)

Ψ(x) − L̃v∗
St[h](x)

Ψ(x) = −g(t, x)
Ψ(x) . (3.31)
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Since ‖St[h]‖Ψ ≤ κ by the positive invariance of Hκ, we can apply Itô’s formula to (3.31)
to obtain

St[h](x)
Ψ(x) = −Ẽx∗

[∫ t

0

g(t− s,Xs)
Ψ(Xs)

ds
]

+ Ẽx∗
[
h(Xt)
Ψ(Xt)

]
∀ t > 0. (3.32)

As argued earlier t 7→ µ̃∗

(
St[h](x)

Ψ(x)

)
is constant. Hence, integrating (3.32) with respect

to µ̃∗, we obtain∫ t

0

∫
Rd
g(t− s, x) 1

Ψ(x) µ̃∗(dx) ds = 0 =⇒ g(t, x) = 0 (t, x)-a.e.

where we used the fact that Ψ(x) > 0. Therefore, the first term on the right-hand side
of (3.29) is identically equal to 0. Since h

Ψ is bounded and the diffusion governed by L̃∗
is ergodic, the second term on the right-hand side of (3.32) converges as t → ∞ to
some constant κ0 by (3.28). Thus, again by (3.32), St[h] converges to κ0Ψ along any
subsequence as t → ∞, and the invariance of the ω-limit set of St[Φ0] implies that
h = κ0Ψ. This completes the proof.

3.3. The relative value iteration. We modify (3.21) as follows:

∂tΦ(t, x) = min
u∈U

[
LuΦ(t, x) + f(x, u)Φ(t, x)

]
− Φ(t, 0)Φ(t, x), t > 0, (3.33)

with Φ(0, x) = Φ0(x). Existence of solutions to (3.33) is evident from the following
observation: If Φ solves (3.33) then

Φ(t, x) = Φ(t, x) exp
(∫ t

0
(Φ(s, 0)− λ∗) ds

)
(3.34)

solves (3.21). Therefore,

Φ(t, x)
Φ(t, x) = Φ(t, 0)

Φ(t, 0) ∀ (t, x) ∈ (0,∞)× Rd, (3.35)

so that Φ(t,x)
Φ(t,x) does not depend on x. By (3.34)–(3.35) we have

d
dt

Φ(t, x)
Φ(t, x)

= −Φ(t, 0) + λ∗ = −Φ(t, 0) Φ(t, x)
Φ(t, x)

+ λ∗.

Thus
Φ(t, x)
Φ(t, x)

= exp
(
−
∫ t

0
Φ(s, 0) ds

)
+ λ∗

∫ t

0
exp
(
−
∫ t

τ

Φ(s, 0) ds
)

dτ. (3.36)

It follows by (3.36) that if Φ(t, 0)→ C > 0 as t→∞ for some positive constant C, then
Φ(t,x)
Φ(t,x)

converges to a positive constant as t→∞, and thus by (3.34) we have∫ t

0
(Φ(s, 0)− λ∗) ds −−−→

t→∞
constant.

In particular Φ(t, 0)→ λ∗ as t→∞.
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3.4. Results under blanket exponential ergodicity. Under blanket exponential
ergodicity, we can remove the hypotheses in Assumption 3.1 (ii). We keep Assump-
tion 3.1 (i), and add an affine growth condition of the form

sup
u∈U
〈b(x, u), x〉+ + ‖σ(x)‖2 ≤ C0(1 + |x|2) ∀x ∈ Rd. (3.37)

Concerning the running cost, we assume that it is bounded below, and, without loss of
generality, we normalize it so that infRd×U c = 0.

The essential hypothesis in this subsection is the following.

Assumption 3.2. We distinguish two cases.

(i) If c is bounded, we assume that there exist a function V ∈ C2(Rd) taking values in
[1,∞), a compact set K ⊂ Rd, and constants Ĉ and γ > ‖c‖∞ which satisfy

LuV(x) ≤ Ĉ1K(x)− γV(x) ∀u ∈ U. (3.38)

(ii) If c is not bounded, we assume that there exist an inf-compact function F and a
constant β ∈ (0, 1) such that βF − c is also inf-compact, and V, K, and Ĉ as in
part (i), such that

LuV(x) ≤ Ĉ1K(x)− F (x)V(x). (3.39)

The reason for differentiating cases (i) and (ii) in Assumption 3.2 is because if the
coefficients a and b are bounded, it is not, in general, possible to find an inf-compact
function F which satisfies (3.39).

Under Assumption 3.2 we obtain a much stronger version of Theorem 3.1. Recall
the definitions in (3.5)–(3.7), and U∗sm in the beginning of Subsection 3.1. The following
theorem is a combination of [5, Theorems 4.1 and 4.2], and the results in [5, Section 3].

Theorem 3.3. Grant Assumption 3.1 (i), (3.37), and Assumption 3.2. Then λ∗ is finite,
and the equation

min
u∈U

[
LuΨ(x) + c(x, u)Ψ(x)

]
= λ∗Ψ(x) ∀x ∈ Rd (3.40)

has a unique positive solution Ψ ∈ C2(Rd), Ψ(0) = 1, and the following hold:

(a) Λx∗ = Λ∗ = λ∗ for all x ∈ Rd.
(b) A stationary Markov control is optimal, if and only if it belongs to U∗sm.
(c) Part (c) of Theorem 3.1 holds, and also (3.19).
(d) The ground state diffusion (3.14) is exponentially ergodic under any stationary

Markov control.

We review part (d) of Theorem 3.3 which is not discussed in [5]. First, it is straightfor-
ward to show, by using (3.38) and (3.39) as a barrier in the construction of the solution Ψ,
that V

Ψ is bounded away from 0 on Rd. Second, note that the nonnegativity of c implies
that λ∗ ≥ 0, Thus, from (3.25), (3.38), and (3.40) we obtain

L̃u
(V

Ψ

)
(x) ≤

(
V−1(x)Ĉ1K(x)− λ∗ + c(x, u)− γ

)V(x)
Ψ(x) ∀ (x, u) ∈ Rd × U. (3.41)
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Under (3.39), γ gets replaced by F in (3.41). It is well known (see [9, Lemma 2.5.5]) that
(3.41) implies that there exist positive constants κ̃0 and κ̃1 such that

ẼxU

[
V

Ψ(Xt)
]
≤ κ̃0 + V

Ψ(x) e−κ̃1t ∀x ∈ Rd, ∀U ∈ U. (3.42)

Let P̃ vt (x, dy) denote the transition probability of the process {X∗t }t≥0 in (3.14) under
the control v ∈ Usm, and µ̃v its invariant probability measure. Then, using the argument
as in the proof of [13, Theorem 2.1 (b)], one can show that (3.41) implies that there exist
positive constants γ◦ and Cγ◦ , which do not depend on v ∈ Usm, such that∥∥P̃ vt (x, · )− µ̃v(·)

∥∥
TV ≤ Cγ◦

V(x)
Ψ(x) e−γ◦t ∀ (t, x) ∈ R+ × Rd,

where ‖ · ‖TV denotes the total variation norm.

Remark 3.1. We want to point out that the proof of [5, Theorems 4.1 and 4.2], shows
that under the hypotheses of Theorem 3.3, the generalized principal eigenvalue λv defined
in (3.18) is finite for any v ∈ Usm, and there exists a positive Ψv ∈ W

2,p
loc(Rd), for any

p ≥ d, which solves

LvΨv(x) + cv(x)Ψv(x) = λvΨv(x) a.e. x ∈ Rd. (3.43)

In addition, Ψv is the unique positive solution of (3.43) in W
2,d
loc(Rd) up to a positive mul-

tiplicative constant, and λv = Λxv for all x ∈ Rd, or in other words, the risk-sensitive value
equals the generalized principal eigenvalue of the operator Lv + cv. Another important
result is given in [5, Theorem 4.3] which shows that, under Assumption 3.2, v 7→ λv is
continuous in the topology of Markov controls (see [15] for a definition of this topology).

Moving on to the VI algorithm under the assumptions of Theorem 3.3, note that by
(3.27) we have

ΦΨ(t, x) = St[Φ0](x)
Ψ(x) ≤ Ẽx∗

[
Φ0

Ψ (Xt)
]
∀ t ≥ 0. (3.44)

This gives us an upper bound. To obtain a lower bound, we use the measurable selector
{v̂t} in Definition 3.2 and combine (3.21), (3.25), and (3.40), to write

∂tΦΨ(t, x)− L̃v̂tΦΨ(t, x) ≥ 0. (3.45)

With ϕ̄(t, x) := log Φ(t, x) and ϕ0 := log Φ0, we deduce from (3.45) that

ϕ̄(t, x) ≥ ψ(x) + Ẽxv̂t
[
ϕ0(Xt)− ψ(Xt)

]
, (3.46)

where the expectation is under the non-stationary control {v̂t}t≥0 ∈ Û(Φ0) in Defini-
tion 3.2.

We borrow the following result. As shown in the proof of [5, Theorem 4.3], under
Assumption 3.2, there exist positive constants κ̂0, and δ◦ > 1 such that V ≥ κ̂0Ψδ◦ . This
together with (3.42) and Jensen’s inequality shows that there exists a constant κ̂1 such
that

Ẽxv̂t
[
ψ(Xt)

]
≥ 1
δ◦ − 1 log

(
κ̃0

κ̂0
+ V(x)
κ̂0Ψ(x) e−κ̃1t

)
. (3.47)
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Combining (3.46) and (3.47), we obtain

lim inf
t→∞

ϕ̄(t, x) ≥ ψ(x) +
(
inf
Rd

ϕ0
)

+ 1
δ◦ − 1 log

(
κ̃0

κ̂0

)
. (3.48)

Equations (3.44) and (3.48) shows that as long as the initial condition Φ0 is bounded
from below away from 0 in Rd, and ‖Φ0‖V < ∞, then any limit point in C2(Rd) of the
semiflow St[Φ0] lies in the setHκ for some κ > 0 (recall the definition in (3.22)). Using the
interior estimates of solutions and the bounds in (3.44), (3.46), and (3.47), as in the proof
of Theorem 3.2, it is straightforward to show that the ω-limit set of Φ0 is a non-empty
subset of C2(Rd), therefore also of Hκ. Hence, following the arguments in [6, Section 4.2]
which is based on convergence of reverse supermartingales, or the method in [7] that has
a dynamical systems flavor (see also [10, Theorem 3.1]), one can establish the following
result.

Theorem 3.4. Grant Assumption 3.1 (i), (3.37), and Assumption 3.2, and suppose that
the initial condition Φ0 ∈ C2(Rd) is bounded from below away from 0, and satisfies
‖Φ0‖V < ∞. Then there exists a positive constant κ0 = κ0(Φ0) such that the value
iteration Φ(t, x) in (3.21) converges to κ0Ψ(x) as t→∞ uniformly on compact sets.

Remark 3.2. When the state space is compact, stronger results can be obtained. Such
a scenario is investigated in [12], and Theorem 4.3 in that paper shows in fact that
under mild assumptions, and for a large class of abstract problems, the convergence is
exponential.

Remark 3.3. It is worth investigating if the global convergence result in Theorem 3.4
holds under additional assumptions in the near-monotone case. Suppose that θ = 1 in
(3.2) and (3.4) and that c has strictly quadratic growth. Then, by (3.10), c satisfies

min
u∈U

c(x, u) ≥ θ1ψ(x)− θ2 ∀x ∈ Rd (3.49)

for some positive constants θ1 and θ2. In the case of the ergodic control problem, under the
structural condition in (3.49), with ψ replaced by the solution of the HJB equation, global
convergence can be established for the value iteration in continuous [11, Theorem 3.2], as
well as in discrete time [8, Theorems 6.1–6.2] (see also [2]). For the risk-sensitive problem,
this inequality has to be modified to account for the relative entropy rate term arising
from the logarithmic transformation. We strengthen (3.49) to

min
u∈U

c(x, u)− 1
2
∣∣σT(x)∇ψ(x)

∣∣2 ≥ θ1ψ(x)− θ2 ∀x ∈ Rd. (3.50)

Note that (3.50) implies (H1). We conjecture that under the structural assumption in
(3.50) the value iteration Φ(t, x) in (3.21), starting from any initial condition Φ0 ∈
C2

Ψ,+(Rd), converges to an equilibrium in E.
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[21] R. Z. Has′minskĭı, Ergodic properties of recurrent diffusion processes and stabilization of
the solution of the Cauchy problem for parabolic equations, Teor. Verojatnost. i Primenen.
5 (1960), 196–214; English transl.: Theory Probab. Appl. 5 (1960), 179–196.

[22] N. Ichihara, The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations
of ergodic type, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 623–650.
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[24] A. Jaśkiewicz, Average optimality for risk-sensitive control with general state space, Ann.
Appl. Probab. 17 (2007), 654–675.

[25] H. Kaise, S.-J. Sheu, On the structure of solutions of ergodic type Bellman equation related
to risk-sensitive control, Ann. Probab. 34 (2006), 284–320.
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