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Abstract. Using Prohorov’s Theorem we give a proof of the Minimax Theorem in the context
of probability measures defined on separable metric spaces. We also introduce the concept of
pseudo-characteristic function and use it to give necessary and sufficient conditions of relative
compactness in the space of probability measures.

1. Introduction. This paper concerns the zero-sum static game represented by strate-
gies of players with opposite objectives. Motivated by well known results (named in the
literature as Minimax theorem) in static games ensuring the existence of value of the
game, when mixed strategies are allowed for both players and the corresponding set of
actions E and F for both players are compact, we extend those results to the case when
the payoff function f is measurable and the minimizer action space is not necessarily
compact.

The interest in this extension comes from different fields, where the compactness
assumption and the continuity of the payoff function are not satisfied; in fact are not
natural hypotheses in view of the nature of the problem at hand. See, for instance,
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[21], [10], [9], or [20] for the study of the Minimax theorem for fuzzy metric spaces.
Also, in the study of deterministic differential games with mixed strategies, the Minimax
theorem appears at a local level, meaning that when the Hamiltonians are analyzed for
the upper and lower values, an interesting question to be answered is if it is possible
to interchange the inf and sup in their definition, as in [11]. Consequently, standard
statements of the Minimax theorem [2], [5] cannot be applied to establish the existence
of equilibrium strategies or a saddle point.

The pioneering work of von Neumann in 1928 established the existence of a saddle
point for games with finite action spaces with the discrete metric. This classical result
has been extended in different directions; here we mention a few of them, since the
existence literature related with this theory is abundant. For instance, concerning the
topology/geometry of the action spaces for the players, in [14], [16], [12] the authors
consider nonconvex and non-Hausdorff spaces. Also, for Hilbert and Lindelöf spaces the
conclusion of the Minimax theorem has been analyzed in [4] and [24].

Concerning the payoff function, some examples of structure that has been studied are
the following. In [10] and [25] the case with semi-continuous functions was considered,
whereas in [23], the authors consider linear operators. Also, when the payoff function is
generalized as a set-valued map, the minimax problem was analyzed in [18] or [15].

In the present paper we study the Minimax theorem when the action space is a
separable metric space, and the proportion of times that each player choose a particular
pure strategy has certain probability distribution, defined on the Borel sigma algebra.
These are called mixed strategies. When the action space of the minimizer player is not
compact we present some interesting conclusions. In order to study this case we introduce
the concept of pseudo-characteristic functions on proper metric spaces and we use this
concept to give a criterion of tightness, which is closely related to the compactness.

The organization of the paper is as follows. In the next section some preliminary
results are stated for static games, describing also in a precise way the main objective of
this work. In Section 3 we present the main conclusions, providing a proof of the Minimax
Theorem in the context of probability measures on separable metric spaces. Finally, in
Section 4 tightness is characterized in terms of pseudo-characteristic functions and an
example is presented, where such characterization is used.

2. Preliminaries on static games. Given metric spaces (E, d) and (F,m), let us
consider a static game with a bounded measurable payoff function f(x, y), with x ∈ E
and y ∈ F . The upper and lower values are defined as

V̂ + = inf
x∈E

sup
y∈F

f(x, y) and V̂ − = sup
x∈E

inf
y∈F

f(x, y). (1)

Somehow the advantage of information for each player is reflected in the order of the
sup or inf. For instance, in the definition of V̂ + the maximizer player has an information
advantage, since y can be chosen as a function of x. This can be made precise using
decision rules α : E → F and writing V̂ + = infα supx∈E f(x, α(x)). A similar argument
can be used for the lower value V̂ − = supβ infy∈F f(β(y), y), where the infimum is taken
over the set of decision rules β : F → E. In fact, under some topological conditions on the
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metric spaces, it can be proved that optimal strategies and decision rules can be chosen
for each player.

The inequality V̂ − ≤ V̂ + is valid in general. In the case when the upper and lower
values are equal we say that neither player has an advantage and the game has a value,
the value of the game is the common amount. Under suitable topological conditions, there
exist saddle points, points where the value of the game is reached, and they can be found
by solving a sequential optimization problem, for V̂ −, for instance, we proceed as follows:
first we define β∗(y) = arg minx∈E f(x, y), and then

y∗ = arg max
y

inf
x
f(x, y) = arg max

y
f(β∗(y), y).

When the strict inequality V̂ − < V̂ + holds, the “pure” strategies can be defined
through mixed strategies in order to get a value of the game, meaning that a randomiza-
tion procedure can be implemented where the players select probability measures in the
set of actions, from which the players select their decisions from random sampling.

More precisely, if we denote by τE the collection of all open subsets of the metric space
(E, ρ) and by BE = σ(τE) the Borel σ-algebra on E, the family of probability measures
on E is denoted by P(E). The same notation is used when E is substituted by the other
metric space F . The spaces P(E) and P(F ) are endowed with the weak topology; it is
well known that with this topology these spaces are metrizable. Indeed, one metric is the
Prohorov’s metric in P(E) which is defined as

ρP(E)(P,Q) = inf
{
ε > 0 : P (A) ≤ Q(Aε) + ε for all E \A ∈ τE

}
, (2)

where Aε = {x ∈ E : %(x,A) < ε} with %(x,A) = infy∈A %(x, y).
For static games, when the players are allowed to consider as strategies probability

measures in P(E) and P(F ), we say that they are using mixed strategies. This type of
strategies can be described as if the game were repeated indefinitely and the average
results in the expression

J(P,Q) :=
∫
E

∫
F

f(x, y)Q(dy)P (dx), (3)

which represents the corresponding payoff associated to the strategy P ∈ P(E) and
Q ∈ P(F ) for the minimizer and maximizer players, respectively. Then, the upper and
lower values of the game, analogous to (1), are defined as

V + = inf
P∈P(E)

sup
Q∈P(F )

J(P,Q), (4)

V − = sup
Q∈P(F )

inf
P∈P(E)

J(P,Q). (5)

As it was defined above for pure strategies, when the values (4) and (5) are equal the
common value is called the value of the game, and if this common value is reached at
a point (P0, Q0) we say that it is a saddle point. Intuitively it means that if any of the
players deviates from their optimal strategy, (P0, Q0), they can only give an advantage
to the opposite player.

Since the function (P,Q) 7→ J(P,Q) is bilinear, it is well known that if f is continuous
and the action spaces E and F are compact, there exists a value of the game, and there
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is a pair of measures (P ∗, Q∗) such that, for every pair of probability measures (P,Q),

J(P ∗, Q) ≤ J(P ∗, Q∗) ≤ J(P,Q∗). (6)

That is, the inf and sup can be interchanged in expressions (4)–(5); see, for instance,
[2, p. 218]. Recall that under this compactness assumption the spaces P(E) and P(F )
are also compact under the weak topology. Hence, in this particular case, V + = V −.

Roughly speaking, when this interchange of supremum and infimum is possible we
say that the Minimax theorem holds, as it will be recalled in the next section. In this
note we are interested in the extension of (6) to the case when the payoff function f is
measurable and l.s.c. in the minimizer action variable. These are nonstandard conditions
from a technical viewpoint.

3. The Minimax theorem. In order to present the main results of this note, we first
introduce some notation and classical statements of the Minimax theorem. Let X and Y
be separated (Hausdorff) locally convex topological vector spaces and L : X × Y → R
a real valued function defined in the product space.

Definition 3.1. We say that L : X × Y → R is convex-concave if L(·, y) is convex for
all y ∈ Y and L(x, ·) is concave for all x ∈ X. Analogously, we say that L is l.s.c.-u.s.c.
if L(·, y) is lower semi-continuous for all y ∈ Y and L(x, ·) is upper semi-continuous for
all x ∈ X.

Next version of the Minimax theorem is one of the classical versions of that result. It
states the existence of value for the static game under suitable technical conditions; its
proof can be found in [26] or, for a modern treatment, the interested reader can also find
it in [19] or [3]. This result also represents an extension of the fundamental result of von
Neumann proved in 1928 in the context of the simplex sets.

Theorem 3.2. Let E and F be nonempty convex subsets of X and Y , respectively, with
E compact. Let L : E ×F → R be convex-concave and L(·, y) l.s.c. for each y ∈ F . Then

sup
y∈F

inf
x∈E

L(x, y) = inf
x∈E

sup
y∈F

L(x, y),

and there exists x0 ∈ E such that

sup
y∈F

L(x0, y) = inf
x∈E

sup
y∈F

L(x, y).

As an immediate consequence we have the existence of saddle points; see Theorem
11.5 in [13] for its proof.

Corollary 3.3. Let E and F be nonempty convex and compact subsets of X and Y ,
respectively. Let L : E × F → R be convex-concave and l.s.c.-u.s.c.. Then, there exists a
point (x0, y0) ∈ E × F such that

L(x0, y) ≤ L(x0, y0) ≤ L(x, y0), for all x ∈ X, y ∈ Y,

and, in particular,

min
x∈X

sup
y∈Y

L(x, y) = L(x0, y0) = max
x∈X

inf
y∈Y

L(x, y).
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Our attempt now is to apply the above results to prove the existence of value of the
game defined in (4)–(5), and a saddle point, satisfying (6), within the context of mixed
strategies and the payoff function J , as it was defined in (3).

The main result of this note is the following. Its proof requires the concept of tightness
of a family of probability measures, which we recall for completeness. Given a metric
space S, a family {µα} ⊂ P (S) is tight if for each ε > 0 there exists a compact set K ⊂ S
such that

inf
α
µα(K) ≥ 1− ε. (7)

Theorem 3.4. Let E,F be separable metric spaces, with F compact. Let f : E × F → R
be a bounded measurable function such that f(·, y) is l.s.c. for each y ∈ F . Then,

sup
ν∈P(F )

inf
µ∈P(E)

∫
E

∫
F

f(x, y) ν(dy)µ(dx) = inf
µ∈P(E)

sup
ν∈P(F )

∫
E

∫
F

f(x, y) ν(dy)µ(dx).

Proof. We proceed to verify the hypotheses of Theorem 3.2 in order to apply that result.
It is clear that P(E) and P(F ) are convex sets (moreover, if instead of measures we
consider signed measures then they are linear spaces over the real numbers). Since E
is compact, P(E) is also compact; see [17, Theorem 6.4]. Let us define the function
L : P(E)× P(F )→ R by

L(µ, ν) =
∫
E

∫
F

f(x, y) ν(dy)µ(dx),

so, we are done if we prove that L(·, ν) is l.s.c. for each ν ∈ P(F ).
Let ν ∈ P(F ) be a fix probability measure. For each r ∈ R we need to verify that the

set (called section) defined by

Ar(ν) =
{
µ ∈ P(E) :

∫
E

∫
F

f(x, y) ν(dy)µ(dx) ≤ r
}

is closed in P(E). Let (µn) be a sequence in the section Ar(ν), such that

lim
n→∞

ρP(E)(µn, µ) = 0;

see (2). This implies that the set {µn : n ∈ N} ∪ {µ} is compact, and then {µn : n ∈ N}
is relatively compact, concluding that {µn : n ∈ N} is tight by Prohorov’s theorem; see,
for instance, [8, Theorem 3.2.2]). Let us check that {µn × ν : n ∈ N} is also tight. Since
{ν} is compact it is also tight by Prohorov’s theorem. Therefore, for each ε > 0 there are
compacts sets K1 ⊂ E, K2 ⊂ F such that

µn(K1) ≥ |1− ε|1/2, for all n ∈ N,

and ν(K2) ≥ |1− ε|1/2. For the compact set K1 ×K2 ⊂ E × F we have

(µn × ν)(K1 ×K2) = µn(K1)ν(K2) ≥ 1− ε, for all n ∈ N,

and Prohorov’s theorem implies that {µn × ν : n ∈ N} is relatively compact.
Now, we proceed to verify that every convergent subsequence of {µn × ν} converges

to µ× ν. Let {µnj
× ν} be a subsequence of {µn × ν} converging to m ∈ P(E × F ). Let

A ⊂ E, B ⊂ F be closed sets and for each k ∈ N define gk : E → R, hk : F → R as

gk(x) = max{0, 1− kd(x,A)}, hk(y) = max{0, 1− kd(y,B)}.
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The functions (x, y) 7→ gk(x)hk(y), defined on E × F , are bounded and continuous and
limk→∞ gkhk = 1A1B . The dominated convergence theorem yields (see Theorem 3.3.1
in [8]): ∫

E×F
1A(x)1B(y)m(dx, dy) = lim

k→∞

∫
E×F

gk(x)hk(y)m(dx, dy)

= lim
k→∞

lim
j→∞

∫
E×F

gk(x)hk(y) (µnj × ν)(dx, dy)

= lim
k→∞

lim
j→∞

∫
E

gk(x)µnj (dx)
∫
F

hk(y) ν(dy)

= lim
k→∞

∫
E

gk(x)µ(dx)
∫
F

hk(y) ν(dy) =
∫
E

1A(x)µ(dx)
∫
F

1B(y) ν(dy),

therefore
m(A×B) = (µ× ν)(A×B), for all A ⊂ E, B ⊂ F, closed.

Since E and F are separable we can apply Lindelöf theorem to get τE×F ⊂ σ(τ cE × τ cF ),
where τ cE×τ cF = {A×B : E\A ∈ τE , F \B ∈ τF }, and therefore σ(τE×F ) ⊂ σ(τ cE×τ cF ) ⊂
σ(τE×F ). Since τ cE×τ cF is a π-system we conclude that m = µ×ν, by [6, Corollary 1.6.3].

If (µn × ν) does not converge to µ × ν, then there exist ε0 > 0 and a subsequence
(µnj

× ν) such that
ρP(E×F )(µnj

× ν, µ× ν) ≥ ε0, for all j ∈ N. (8)
Since {µnj

× ν : j ∈ N} is relatively compact, there exists a subsequence (µnjk
× ν) that

converge to µ× ν. This is a contradiction to (8).
The last step in the proof consists in verifying that µ ∈ Ar(ν). Let

||f || = sup
{
|f(x, y)| : x ∈ E, y ∈ F

}
,

and notice that by Fatou’s lemma∫
F

∫ ||f ||
0

lim inf
n→∞

[
1− µn({x ∈ E : f(x, y) ≤ t})

]
dt ν(dy)

≤ lim inf
n→∞

∫
F

∫ ||f ||
0

[
1− µn({x ∈ E : f(x, y) ≤ t})

]
dt ν(dx). (9)

Since f is l.s.c. the set {x ∈ E : f(x, y) ≤ t} is closed, for each t ∈ R and y ∈ F . Using
Fubini’s theorem, Theorem 3.3.1 in [8] and (9) we get

||f || − r ≤ ||f || − lim inf
n→∞

∫
E×F

f(x, y) (µn × ν)(dx, dy)

= lim sup
n→∞

(
||f || −

∫
E×F

f(x, y) (µn × ν)(dx, dy)
)

= lim sup
n→∞

∫
F

(
||f || −

∫
E

f(x, y)µn(dx)
)
ν(dy)

= lim sup
n→∞

∫
F

∫ ||f ||
0

µn({x ∈ E : f(x, y) ≤ t}) dt ν(dx)

≤
∫
F

∫ ||f ||
0

lim sup
n→∞

µn({x ∈ E : f(x, y) ≤ t}) dt ν(dx)
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≤
∫
F

∫ ||f ||
0

µ({x ∈ E : f(x, y) ≤ t}) dt ν(dx)

=
∫
F

(
||f || −

∫
E

f(x, y)µ(dx)
)
ν(dy) = ||f || −

∫
E×F

f(x, y) (µ× ν)(dx, dy).

This shows that µ ∈ Ar(ν) and the result follows directly from Theorem 3.2.

From this point, the previous result together with Corollary 3.3 yield as a straight-
forward consequence the existence of saddle points.

Corollary 3.5. Let E and F be compact metric spaces. Let f : E×F → R be a bounded
measurable function that is l.s.c.-u.s.c. Then, there exists a point (µ0, v0) ∈ P(E)×P(F )
such that

sup
ν∈P(F )

inf
µ∈P(E)

∫
E

∫
F

f(x, y) ν(dy)µ(dx) =
∫
E

∫
F

f(x, y) ν0(dy)µ0(dx)

= inf
µ∈P(E)

sup
ν∈P(F )

∫
E

∫
F

f(x, y) ν(dy)µ(dx).

4. Pseudo-characteristic functions on proper metric spaces and tightness.
A locally compact metric space (S, %) is said to be proper (see [22, p. 204]) if the closed
balls {x : %(x, x0) ≤ r} are compact for some x0 and all r ∈ (0,∞). It is easy to show
that tightness condition (7) is equivalent to

lim
r→∞

sup
α
µα{x : %(x, x0) > r} = 0.

The pseudo-characteristic function of a measure µ ∈ P (S) is defined as

µ̂(t) =
∫
S

eitd(z,x0) µ(dz), t ∈ R;

observe that |µ̂(t)| ≤ 1 = µ̂(0). As it has been seen in the proof of Theorem 3.4, tightness
of a family of probability measures plays a crucial role. The following result is particularly
useful when we do not have compactness in the action space of the players.

Theorem 4.1. A family {µα} ⊂ P (S) is tight if and only if {µ̂α} is equicontinuous at 0.

Proof. Suppose that {µα} ⊂ P (S) is tight. Given ε > 0 there exists r0 > 0 such that

sup
α
µα{x : %(x, x0) > r} < ε

2 , for all r ≥ r0.

Therefore, if |t| < min{2, ε}/2r0, then

|µ̂α(t)− 1| ≤
∫
S

∣∣1− eitd(z,x0)∣∣µα(dz) ≤
∫
S

min{1, td(z, x0)}µα(dz)

≤
∫
{z:d(z,x0)>r0}

µα(dz) +
∫
{z:d(z,x0)≤r0}

td(z, x0)µα(dz)

≤ µα({z : d(z, x0) > r0}) + tr0 < ε, for all α.



166 D. HERNÁNDEZ-HERNÁNDEZ AND J. VILLA-MORALES

In order to prove the reciprocal implication, take r > 0 and observe that by Fubini’s
theorem, for each α we have∫ 2/r

−2/r
(1− µ̂α(t)) dt =

∫ 2/r

−2/r

∫
S

(1− eitd(z,x0))µα(dz) dt

=
∫
S

[
r −

∫ 2/r

−2/r
eitd(z,x0) dt

]
µα(dz) = r

∫
S

[
1− 2

rd(z, x0) sin
(
rd(z, x0)

2

)]
µα(dz).

Since 2 sin(x) ≤ x, for x ≥ 2, it follows that∫ 2/r

−2/r
(1− µ̂α(t)) dt ≥ r

∫
{z:d(z,x0)≥r}

1
2 µα(dz) = 2

r
µα({z : %(z, x0) ≥ r}).

Now, given ε > 0, there exists δ > 0 for which

1− µ̂α(t) < ε

2 , for all |t| < δ and α.

In this way, for r > 4/δ,

µα{x : %(x, x0) > r} ≤
∫ 1

−1

(
1− µ̂α

(2
r
t
))

dt ≤ ε, for all α,

and therefore limr→∞ supα µα{x : %(x, x0) > r} = 0.

Now we present an example illustrating the difficulties to get the conclusions of the
Minimax theorem when the action spaces are not compact, as a complement of the
previous results.

Example. Let us take E = {1, 2, . . . } with the usual distance d on R, and put x0 = 1,
in such a way that (E, d) is a proper metric space. On the other hand, let F = {1, 2, . . . },
with the discrete metric m, be the set of actions for the maximizer player. Suppose that
the minimizer player chooses a strategy k ∈ E with frequency µα({k}) = (1 − α)k−1α,
α ∈ [1/2, 1]. In this case, by Theorem 4.1, the closure of {µα}α∈[1/2,1] is compact, since

µ̂α(t) =
∫
E

eit|z−1| µα(dz) =
∞∑
k=1

eit(k−1)(1− α)k−1α = α

1− eit(1− α)

is equicontinuous at 0. Indeed, this follows from next calculations∣∣∣∣ α

1− eit(1− α) − 1
∣∣∣∣ = (1− α)|1− eit|
|1− eit(1− α)| ≤

(1− α)|1− eit|
1− |eit(1− α)| ≤ |1− e

it|, for all 1
2 ≤ α ≤ 1.

Let f : E × F → R be a bounded function, representing the payoff function for the
players. We denote by C(E,F ) the set of continuous mappings from E to F , they shall
represent decision rules for the maximizer player. In order to use Theorem 8.4 in [3] let
us observe that for each g ∈ C(E,F ), the mapping T : P(E)→ P(F ) defined as

T (µ)(A) = µg(A) = µ(g−1(A)), A ∈ B(F ),
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is continuous. Therefore, the change of variable theorem (see Theorem 12.46 in [1]) yields

sup
g∈C(E,F )

inf
α∈[1/2,1]

∫
E

∫
F

f(x, g(y))µα(dy)µα(dx)

= sup
g∈C(E,F )

inf
α∈[1/2,1]

∫
E

∫
F

f(x, y)µgα(dy)µα(dx)

= inf
α∈[1/2,1]

sup
v∈P(F )

∫
E

∫
F

f(x, y) v(dy)µα(dx)

= inf
α∈[1/2,1]

sup
g∈C(E,F )

∫
E

∫
F

f(x, y)µgα(dy)µα(dx)

= inf
α∈[1/2,1]

sup
g∈C(E,F )

∫
E

∫
F

f(x, g(y))µα(dy)µα(dx).

The result intuitively gives a representation of the upper value of the game, when the
maximizer player is forced to use only continuous decision rules and the minimizer player
takes mixed strategies within the set {µα : α ∈ [ 1

2 , 1]}.
In particular, when the continuous decision rule for the maximizer player is the iden-

tity, g(k) = k, for all k, with payoff function f(x, y) = e−yyx/x!, we get a lower bound
for the upper value

inf
α∈[1/2,1]

α2
∞∑
r=1

∞∑
s=1

e−ssr

r! (1− α)r−1(1− α)s−1

= inf
α∈[1/2,1]

α2
∞∑
s=1

e−s(1− α)s−1
∞∑
r=1

(1− α)r−1 s
r

r!

= inf
α∈[1/2,1]

α2
∞∑
s=1

e−s(1− α)s−1
[

1
α− 1 −

e−s(α−1)

α− 1

]
= inf
α∈[1/2,1]

e−α − e−1

1− α · 1(
αe−1 − e−1 + 1

)(
αe−α − e−α + 1

) = 1
e
.

Under these conditions, the maximum loss in which the minimizer player might incur, in
average, is bigger than 0.367.
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