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Abstract. We investigate the pricing-hedging duality for path dependent European options un-
der model uncertainty in discrete time. The super-replicating portfolio consists of a dynamically
traded illiquid risky stock and a static position in vanilla options which can be exercised at
maturity. We provide the minimal super-replication price as the supremum of penalized expec-
tations of the payoff over all probability measures which are consistent with observed market
prices.

1. Introduction. The problem of the robust super-replication has been an active field of
research in mathematical finance over recent years. In contrast to the classical approach,
one does not postulate a fixed probability measure P to describe the future evolution
of stock prices. Rather than having a single probabilistic model, one takes into account
a whole collection P of possible models, each model being represented by a probability
measure. In discrete time, the duality results for super-replication with respect to the
family of probability measure or super-replication in a path-wise sense was shown by, for
example, Bouchard and Nutz in [4], Bayraktar and Zhou in [3], Burzoni, Frittelli, Hou,
Maggis and Obłój in [6], Cheredito, Kupper and Tangpi in [7]. In the robust approach,
one includes finitely many options whose price are known at time zero, which may be
available for trading. Pioneering work in the semistatic approach was done by Hobson
in [10]; we refer to the papers Hobson [11], Dolinsky and Soner [9], Burzoni, Frittelli
and Maggis in [5], Acciaio, Beiglböck, Penkner and Schachermayer in [1]. In this setup,
additional market instruments reduce the set of martingale measure, which may be used
for pricing.
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The aim of the paper is to study the combined effects of model uncertainty and
illiquidity costs following the semistatic approach. As in [2], we consider the discrete
time model with uncertain volatility where the only assumption on the stock’s price
evolutions is that the stock’s returns are bounded. The illiquidity effects are captured
by convex transaction costs. In our version of the duality for European options with
continuous payoff, we may reduce the super-hedging cost by including (liquid) derivatives
in the super-replicating portfolio. We provide the minimal super-replication price as the
supremum of penalized expectations of the payoff over all admissible probability measures,
i.e. measures consistent with observed market prices.

The paper consists of two sections devoted to the pricing-hedging duality with illiq-
uidity costs in discrete models and general uncertain volatility models respectively. In
Section 2 we extend and modify the result of [8]. In the semistatic setting, we give the
formula for the minimal super-replication price for the case of a finite space of pos-
sible scenarios. The main tool that is used in this section is the Kuhn–Tucker theory
for convex optimization. Theorem 1.3, which is a general duality result for the super-
replication prices of path dependent European options, is proved in Section 3. This is
a modification of Bank, Dolinsky and Gökay result from [2], which allows us to reduce
the super-replication price by including additional derivatives that may be available for
trading.

We consider a discrete time financial market on which one can buy or sell three classes
of instruments:

• The risk free asset (the savings account) with price Bn, n = 0, 1, . . . , N : its return is
constant and initially known. The savings account will be used as a numéraire and
without loss of generality we can assume that the bank interest rate is equal to zero.

• The risky asset (stock): their returns are not known in advance. Our sole assumption
is that stock price returns are in the range specified by fixed volatility bounds. The
stock price at time n will be denoted by Sn > 0 for n = 0, 1, . . . , N . The log-return for
period n will be denoted by Xn := ln( Sn

Sn−1
), so we can write

Sn = s0 exp
( n∑
m=1

Xm

)
(1)

for n = 1, . . . , N where s0 is the deterministic price of stock at time 0.
• The set of vanilla options {ϕi : RN+1

+ → R, i ∈ I} written on the underlying asset with
fixed maturity N and initially known prices. Without loss of generality we can assume
that they can be bought at price 0.

Following [2], we assume that

σ ≤ |Xn| ≤ σ, n = 1, . . . , N,

for some constants 0 ≤ σ ≤ σ <∞. Consider the path-space

Ωσ,σ := {ω = (x1, x2 . . . , xN ) ∈ RN : σ ≤ |xn| ≤ σ, n = 1, 2, . . . , N},

the canonical functions Xn : Ωσ,σ → R

Xn(ω) := xn
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for n = 1, . . . , N and the canonical filtration

Fn := σ(Xm : m ≤ n), n = 0, 1, . . . , N.

Notice that by (1) we can view the stocks price evolution as the stochastic process de-
fined on the probability space (Ωσ,σ,FN ,P) for any probability measure P defined on FN .
Moreover, the canonical filtration F = (Fn)n=0,1,...,N coincides with the filtration gener-
ated by S.

Next, we introduce a cost function

g : {0, 1, . . . , N} × Ωσ,σ × R→ R+

where g(n, ω, β) denotes the costs of trading β ∈ R worth of stock at time n with the
returns given by ω. The cost function g is assumed to be

(i) nonnegative, F-adapted, and such that gn(0) = 0 for n = 0, 1, . . . , N ,
(ii) convex with respect to β ∈ R for any fixed ω ∈ Ωσ,σ,
(iii) continuous with respect to ω ∈ Ωσ,σ for any fixed β ∈ R.

The convexity of the cost function captures the fact that the unit prices of stock depend
not only on the sign (buy or sell) but also on the quantity of a trade.

Let Gn : Ωσ,σ × R → R+, n = 0, 1, . . . , N , be the Legendre–Fenchel transform of gn,
that is,

G(ω, α) := sup
β∈R
{αβ − g(ω, β)}, ∀ (ω, α) ∈ Ωσ,σ × R.

A semistatic trading strategy π consists of

• the dynamic part which is a pair (v, γ), where v denotes the initial capital and
γ : {1, 2, . . . , N} × Ωσ,σ → R is a (Fn)-predictable process describing the number
γ(n, ω) = γn(ω) of shares held at the beginning of any period n − 1 with the stocks
price evolution given by ω ∈ Ωσ,σ,
• the static part: constants δ1, δ2, . . . , δl and indices i1, i2, . . . , il ∈ I, where δl is the
number of il-th option bought at time 0.

By A(v) we denote the set of all semistatic strategies starting with the initial capital v.
The wealth process V π = (V πn (ω))n=0,...,N generated by the trading strategy π ∈ A(v) is
given by

V π0 = v

V πn+1 = V πn + γn+1(Sn+1 − Sn)− gn((γn+1 − γn)Sn), n = 0, 1, . . . , N − 2

V πN = V πN−1 + γN (SN − SN−1)− gN−1((γN − γN−1)SN−1) +
L∑
l=1

δlϕil(S)

with γ0 = 0.
Consider a European option Φ : RN+1

+ → R+ (possible path-dependent) which pays
off at time N :

Φ(S0, S1, . . . , SN ) : Ωσ,σ → R+.

In a pointwise framework the formal definition of the super-replication price is stated
as follows.
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Definition 1.1. The super-replication price pσ,σ(Φ) of a contingent claim Φ is defined
as

pσ,σ(Φ) := inf{v ∈ R | ∃π ∈ A(v) : V πN (ω) ≥ Φ(S(ω)) ∀ω ∈ Ωσ,σ}.

Naturally, including options that can be bought at price 0 constrains the set of prob-
ability measure.

Definition 1.2. The set of admissible measures is defined as

P(ϕi)i∈I := {P ∈ Pσ,σ : EP[ϕi(S)] = 0, i ∈ I},

where Pσ,σ denotes the set of all Borel probability measures on Ωσ,σ.

Our main result provides a dual characterization of super-replication prices.

Theorem 1.3. The super-replication price of any European option with continuous pay-
off Φ is given by

pσ,σ(Φ) = sup
P∈P(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.

This theorem is proved in Section 3.

2. Discrete models. Let us start with the special case where the set of all possible
evolution of stock prices is finite. Consider the N -step multinomial market model with a
finite path-space

Ωk :=
{
x = (x1, . . . , xN ) ∈ Ωσ,σ : |xn| =

j

k
σ +

(
1− j

k

)
σ for some j ∈ {0, . . . , k}

}
.

Let Pk(ϕi)i∈I ⊂ P(ϕi)i∈I denote the set of those discrete probability measures that are
supported by Ωk such that EP[ϕi(S)] = 0, i ∈ I.

We now provide a pricing-hedging duality in discrete models.

Theorem 2.1. Let pkσ,σ(Φ) denote the super-replication price of a contingent claim with
payoff Φ on Ωk, that is,

pkσ,σ(Φ) = inf
{
v ∈ R : V (v,γ)

N (ω) ≥ Φ(S(ω)) ∀ω ∈ Ωkσ,σ for some strategy γ
}
.

Then for any continuous payoff function Φ

pkσ,σ(Φ) = sup
P∈Pk(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.

Proof. The proof is a semistatic modification of the analogous result in [8] where the
binomial model with one risky asset and transaction costs was considered. Consider a
tree whose paths are sequences u = (u1, . . . , un) ∈ (Ak) for 0 ≤ n ≤ N where

Ak :=
{
a : |a| = j

k
σ +

(
1− j

k

)
σ for j = 0, 1, . . . , k

}
for some k ∈ N. The set of all paths is denoted by U . The root of the tree which
corresponds to empty path is denoted by ∅. Each path of the form u = (u1, . . . , un) ∈
(Ak)n has 2(k+1) immediate successors u = (u1, . . . , un, a) for a ∈ Ak, and one immediate
predecessor u = (u1, . . . , un−1). Let l(u) be the number of elements in the sequence u.
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By u+ = {(u1, . . . , ul(u), a), a ∈ A} we denote the set of all immediate successors of u
and by u− = (u1, . . . , ul(u)−1) — the unique immediate predecessor of u. By T we denote
the set of all paths with length N and for u ∈ U \ T by T (u) := {w ∈ T : un = wn for
1 ≤ n ≤ lu} — the set of all paths with length N such that the first lu elements coincide
with u, that is the subtree which start with u.

Finally, we define the functions S : U → R by

S(u) = s0 exp
( lu∑
m=1

um

)
.

In our model, the super-replication price pkσ,σ(Φ) is the solution of an ordinary convex
program of the following form:

minimize Y (∅) (2)

over all (β, γ, δ, Y ) ∈ RU\{T} × RU × RI × RU subject to constraints

γ(∅) = 0, (3)
[γ(u)− γ(u−)]S(u−)− β(u−) = 0 ∀u ∈ U \ {∅}, (4)

Y (u) + g(l(u−), u−, β(u−))− γ(u)(S(u)− S(u−))− Y (u−) ≤ 0 ∀u ∈ U \ {∅}, (5)

Φ(S(u)) ≤ Y (u) +
J∑
j=1

δjϕij (S(u)) ∀u ∈ T. (6)

Following the Lagrange multipliers theory we transform the optimization problem given
by (2)–(6) into the optimization problem involving fewer constraints but more variables.
Define the Lagrangian L : RU × RU\{∅}+ × RT+ × RU\T × RU × RI × RU → R by

L(Υ,Ψ,Θ, β, γ, δ, Y )

= Y (∅) + Υ(∅)γ(∅) +
∑

u∈U\{∅}

Υ(u)
[
(γ(u)− γ(u−))S(u−)− β(u−)

]
+

∑
u∈U\{∅}

Ψ(u)
[
Y (u) + g(l(u−), u−, β(u−))− γ(u)(S(u)− S(u−))− Y (u−)

]
+
∑
u∈T

Θ(u)
[
Φ(S(u))− Y (u)−

J∑
j=1

δjϕij (S(u))
]
.

Firstly note that∑
u∈U\{∅}

Υ(u)[(γ(u)− γ(u−))S(u−)− β(u−)]

=
∑

u∈U\{∅}

Υ(u)γ(u)S(u−)−
∑

u∈U\T

∑
ũ∈u+

Υ(ũ)γ(u)S(u)

−
∑
u∈∅+

Υ(u)γ(∅)S(∅)−
∑

u∈U\T

∑
ũ∈u+

Υ(ũ)β(u).
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By applying the similar transformation of the next sum we get

L(Υ,Ψ,Θ, β, γ, δ, Y )

= Y (∅) + Υ(∅)γ(∅) +
∑

u∈U\{∅}

Υ(u)γ(u)S(u−)−
∑

u∈U\T

∑
ũ∈u+

Υ(ũ)γ(u)S(u)

+
∑
u∈∅+

Υ(u)γ(∅)S(∅)−
∑

u∈U\T

∑
ũ∈u+

Υ(ũ)β(u)

+
∑

u∈U\({∅}∪T )

Ψ(u)Y (u) +
∑
u∈T

Ψ(u)Y (u) +
∑

u∈U\T

∑
ũ∈u+

Ψ(ũ)g(l(u), u, β(u))

−
∑

u∈U\{∅}

Ψ(u)γ(u)(S(u)− S(u−))−
∑

u∈U\T

∑
ũ∈u+

Ψ(ũ)Y (u)−
∑
u∈∅+

Ψ(u)Y (∅)

+
∑
u∈T

Θ(u)Φ(S(u))−
∑
u∈T

Θ(u)Y (u)−
∑
u∈T

Θ(u)
[ J∑
j=1

δjϕij (S(u))
]
.

Now rearrange the above expression in the following way

L(Υ,Ψ,Θ, β, γ, δ, Y )

= Y (∅)
(

1−
∑
u∈∅+

Ψ(u)
)

+
∑

u∈U\({∅}∪T )

Y (u)
(

Ψ(u)−
∑
ũ∈u+

Ψ(ũ)
)

+
∑
u∈T

Y (u)[Ψ(u)−Θ(u)] + γ(∅)
[
Υ(∅)−

∑
u∈∅+

Υ(u)S(∅)
]

+
∑

u∈U\{∅}

γ(u)
[
Υ(u)S(u−)−

∑
ũ∈u+

Υ(ũ)S(u)−Ψ(u)(S(u)− S(u−))
]

+
∑
u∈T

Θ(u)Φ(S(u))−
∑
u∈T

Θ(u)
[ J∑
j=1

δjϕij (S(u))
]

+
∑

u∈U\T

∑
ũ∈u+

[
Ψ(ũ)g

(
l(u), u, β(u)

)
−Υ(ũ)β(u)

]
.

(7)

By Theorem 28.4 in [12], we conclude that the value of the optimization problem (2)–(6)
is equal to

pkσ,σ(Φ) = sup
(Υ,Ψ,Θ)∈RU×RU\{∅}+ ×RT+

inf
(β,γ,δ,Y )∈RU\T×RU×RI×RU

L(Υ,Ψ,Θ, β, γ, Y ). (8)

Using (7) and (8) we conclude that

pkσ,σ(Φ) = sup
(Υ,Ψ,Θ)∈D

inf
β∈RU\T

(∑
u∈T

Θ(u)Φ(S(u))

+
∑

u∈U\T

(∑
ũ∈u+

Ψ(ũ)g(l(u), u, β(u))−
∑
ũ∈u+

Υ(ũ)β(u)
))

(9)
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where D ⊂ RU × RU\{∅}+ × RT+ satisfies the constraints∑
u∈∅+

Ψ(u) = 1, (10)

∑
ũ∈u+

Ψ(ũ) = Ψ(u) ∀u ∈ U \ ({∅} ∪ T ), (11)

Υ(u)S(u−) =
∑
ũ∈u+

Υ(ũ)S(u) + Ψ(u)(S(u)− S(u−)) ∀u ∈ U \ {∅} , (12)

Θ(u)ϕi(S(u)) = 0 ∀u ∈ T ∀ i ∈ I, (13)
Ψ(u) = Θ(u) ∀u ∈ T. (14)

We will prove by induction on n that (11) and (12) imply that for any u ∈ U \ T∑
ũ∈u+

Υ(ũ)S(u) =
∑

ũ∈T (u)

Ψ(ũ)S(ũ)−Ψ(u)S(u). (15)

It follows that for any (Υ,Ψ,Θ) ∈ D∑
ũ∈u+ Υ(ũ)∑
ũ∈u+ Ψ(ũ) =

∑
ũ∈T (u) Ψ(ũ)S(ũ)

Ψ(u)S(u) − 1 (16)

for any u ∈ U \ T . This together with (9), (14) and (16) yields that

pkσ,σ(Φ) = sup
Ψ∈D̄

inf
β∈RU\T

(∑
u∈T

Ψ(u)
[
Φ(S(u))

+
∑

u∈U\T

(
g(l(u), u, β(u))−

(∑
ũ∈T (u) Ψ(ũ)S(ũ)

Ψ(u)S(u) − 1
)
β(u)

)])

= sup
Ψ∈D̄

(∑
u∈T

Ψ(u)
[
Φ(S(u))−

∑
u∈U\T

G

(
l(u), u,

∑
ũ∈T (u) Ψ(ũ)S(ũ)

Ψ(u)S(u) − 1
)])

where D̄ denotes the set of functions Ψ ∈ RU\{∅}+ which satisfy (10), (11) and

Ψ(u)ϕi(S(u)) = 0 ∀u ∈ T ∀ i ∈ I.

Since we can identify any Ψ ∈ D̄ with the function Ψ : U \ {∅} → R+ with probability
measure P defined on Ωk such that EP[ϕi(S)] = 0, i ∈ I, we conclude that

pkσ,σ(Φ) = sup
P∈Pk(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.

It remains to prove (15). Note that for u ∈ T (i.e. l(u) = N) by (12) we have

Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)). (17)

As a first step, we take u ∈ U \ T such that l(u) = N − 1. By (12)

Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)) +
∑
a∈Ak

Υ(u, a)S(u)

and by (17), for any a ∈ Ak,

Υ(u, a)S(u) = Ψ(u, a)(S(u, a)− S(u)).



214 A. RYGIEL

Hence,

Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)) +
∑
a∈Ak

Ψ(u, a)(S(u, a)− S(u))

= Ψ(u)(S(u)− S(u−)) +
∑

ũ∈T (u)

Ψ(ũ)S(ũ)−
∑
ũ∈u+

Ψ(ũ)S(u)

= Ψ(u)(S(u)− S(u−)) +
∑

ũ∈T (u)

Ψ(ũ)S(ũ)−Ψ(u)S(u),

where the last equality holds by (11). On the other hand, by (12):

Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)) +
∑
ũ∈u+

Υ(ũ)Si(u),

which means that ∑
ũ∈u+

Υ(ũ)S(u) =
∑

ũ∈T (u)

Ψ(ũ)S(ũ)−Ψ(u)S(u)

for any u such that l(u) = N − 1. Assume (15) for u with the length k + 1. We want to
show (15) for any u such that l(u) = k. From (12) and the induction assumption, we get

Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)) +
∑
a∈Ak

Υ(u, a)S(u) = Ψ(u)(S(u)− S(u−))

+
∑
a∈Ak

Ψ(u, a)(S(u, a)− S(u)) +
∑
a∈Ak

∑
ũ∈T (u,a)

Ψ(ũ)S(ũ)−
∑
a∈Ak

Ψ(u, a)S(u, a).

Notice that∑
a∈Ak

∑
ũ∈T (u,a)

Ψ(ũ)S(ũ) =
∑

ũ∈T (u)

Ψ(ũ)S(ũ) and
∑
a∈Ak

Ψ(u, a)S(u) = Ψ(u)S(u),

hence
Υ(u)S(u−) = Ψ(u)(S(u)− S(u−)) +

∑
ũ∈T (u)

Ψ(ũ)S(ũ)−Ψ(u)S(u),

so (by using (12) again)∑
ũ∈u+

Υ(ũ)S(u) =
∑

ũ∈T (u)

Ψ(ũ)S(ũ)−Ψ(u)S(u)

for u of length k. This completes the proof of (15).

3. Proof of the main result. In this section, we carry out the proof of the Theorem 1.3.
We first prove one of the inequalities of the duality result. Let π = (v, γ, δ) be the

semistatic super-replicating strategy for the payoff Φ. Then

v ≥ Φ(S)−
N−1∑
n=0

γn+1(Sn+1 − Sn) +
N−1∑
n=0

gn((γn+1 − γn)Sn)−
L∑
l=1

δlϕil(S)

= Φ(S)−
N−1∑
n=0

(γn+1 − γn)(SN − Sn) +
N−1∑
n=0

gn((γn+1 − γn)Sn)−
L∑
l=1

δlϕil(S)
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since γ0 = 0. Let P be an admissible probability measure in P(ϕi)i∈I . By taking the con-
ditional expectations with respect to P and using the definition of the dual functions Gn,
n = 0, 1, . . . , N , we get

v ≥ EP

[
Φ(S)−

N−1∑
n=0

((γn+1 − γn)Sn)EP(SN | Fn)− Sn
Sn

+
N−1∑
n=0

gn((γn+1 − γn)Sn)
]

≥ EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.

Since P ∈P(ϕi)i∈I is arbitrary and v is an arbitrary initial wealth of the super-replicating
strategy, we have

pσ,σ(Φ) ≥ sup
P∈P(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.

We next observe that by applying the above inequality and the duality result for discrete
models (Theorem 2.1) we obtain

pσ,σ(Φ) ≥ sup
P∈P(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]

≥ sup
P∈Pk(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
= pkσ,σ(Φ).

(18)

Thus, to complete our proof it remains to prove the following.

Lemma 3.1. Suppose that the payoff function Φ is continuous. Then

lim inf
k↑∞

pkσ,σ(Φ) ≥ pσ,σ(Φ). (19)

Proof. The same result for the case where the trading strategy consists of dynamic part
only (without taking the static position in options) was proved in [2].

For any k ∈ N, by definition of the minimal super-replication price of the payoff Φ in
the k-th discrete model, there exists the dynamic trading strategy γ̂k and static position
δ̂k = (δ̂k1 , δ̂k2 , . . . , δ̂kl ) in options ϕi1 , ϕi2 , . . . , ϕil such that

pkσ,σ(Φ) + 1
k

+
N−1∑
n=0

γ̂kn+1(ω̂)(Sn+1(ω̂)− Sn(ω̂))

−
N−1∑
n=0

gn((γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω̂)) +
L∑
l=1

δ̂kl ϕil(S(ω̂)) ≥ Φ(S(ω̂))

for any ω̂ ∈ Ωkσ,σ.
We will prove the uniform boundedness of the sequence (γ̂k)k=1,2,..., that is,

|γ̂k| ≤ C (20)
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for some constant C > 0. By induction on n, we will show that for any strategy
π̂k = (pkσ,σ(Φ) + 1

k , γ̂
k, δ̂k) there are constants A > 0 and Mk > 0 such that

V π̂
k

n (ω̂) ≤ A(1 + eσ)n −Mk (21)∣∣γ̂kn+1(ω̂)
∣∣ ≤ A(1 + eσ)n

(1− e−σ)Sn(ω̂)

for any ω̂ ∈ Ωk and n = 0, . . . , N − 1. The bound for the absolute value of γ̂k does
not depend on k and Sn(ω̂) ≥ s0e

−σN for any n = 0, . . . , N , so (20) holds for C :=
(A(1 + eσ)n)/(s0(1− e−σ)e−σN ). By continuity of S, ϕi, i ∈ I, and boundedness of Ωk,
there is Mk > 0 such that

L∑
l=1

δ̂kl ϕil(S) ≥ −Mk.

First we prove the statement for n = 0. Note that vk = pkσ,σ(Φ)+ 1
k ≤ A−M

k, k = 1, 2, . . .,
for some A > 0. Since each strategy π̂k super-replicates payoff Φ ≥ 0, the profit or loss
generated by the dynamic strategy γ̂k up to time n is not less than −Mk on Ωk for any
n = 1, 2, . . . , N . It follows that

vk + γ̂k1 s0(eσ − 1) ≥ −Mk

vk + γ̂k1 s0(e−σ − 1) ≥ −Mk

which implies

|γ̂k1 | ≤
A

s0(1− e−σ) .

Now suppose that the assertion holds for n. Observe that

V π̂
k

n+1 ≤ V π̂
k

n + γ̂kn+1Sn(eσ − 1)− gn((γ̂kn+1 − γ̂kn)Sn)

≤ V π̂
k

n + γ̂kn+1Sn(eσ − 1)

so by the inductive assumption we have

V π̂
k

n+1 ≤ A(1 + eσ)n −Mk + A(1 + eσ)n

(1− e−σ)Sn(ω̂) Sn(eσ − 1)

= A(1 + eσ)n+1 −Mk. (22)

Moreover, since the wealth generated by the strategy γ̂k at time n+ 2 is bounded below
for any ω̂ ∈ Ωk we get

−Mk ≤ V π̂
k

n+1 + γ̂kn+2Sn+1(eσ − 1)

−Mk ≤ V π̂
k

n+1 + γ̂kn+2Sn+1(e−σ − 1),

which together with (22) gives∣∣γ̂kn+2(ω̂)
∣∣ ≤ A(1 + eσ)n+1

(1− e−σ)Sn+1(ω̂) . (23)

This completes the proof of (21).
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Consider the dynamic strategies γk := γ̂k ◦ pk where pk : Ω 3 ω = (x1, . . . , xN ) →
ω̂ = (x̂1, . . . , x̂N ) ∈ Ωk is the projection given by

x̂n = max
{
x : x ≤ xn and |x| = j

k
σ +

(
1− j

k

)
σ for some j ∈ {0, 1, . . . , k}

}
and static strategies δk := δ̂k. Observe that

V
(v,γk,δk)
N (ω)− V (v,γ̂k,δ̂k)

N (ω̂)

=
N−1∑
n=0

γ̂kn+1(ω̂)
(
(Sn+1(ω)− Sn(ω))−

(
Sn+1(ω̂)− Sn(ω̂)

))
−
N−1∑
n=0

(gn
(
ω, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω)

)
− gn

(
ω̂, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω̂)

))
+

L∑
l=1

δ̂kl
(
ϕil(S(ω))− ϕil(S(ω̂))

)
for any initial capital v. In view of (22), for the first sum we get∣∣∣N−1∑

n=0
γ̂kn+1(ω̂)

(
(Sn+1(ω)− Sn(ω))− (Sn+1(ω̂)− Sn(ω̂))

)∣∣∣
≤ C

N−1∑
n=0

∣∣Sn+1(ω)− Sn+1(ω̂)
∣∣+ C

N−1∑
n=0

∣∣Sn(ω)− Sn(ω̂)
∣∣

and by continuity of S this bound tends to 0 as |ω − ω̂| → 0. Similarly, the absolute value
of the second sum does not exceed

N−1∑
n=0

∣∣gn(ω, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω)
)
− gn

(
ω̂, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω)

)∣∣
+
N−1∑
n=0

∣∣gn(ω̂, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω)
)
− gn

(
ω̂, (γ̂kn+1(ω̂)− γ̂kn(ω̂))Sn(ω̂)

)∣∣,
which tend to 0 as |ω − ω̂| → 0 because Sn and gn are continuous and the sequence γ̂k
is uniformly bounded. Because ϕi, i ∈ I, are also continuous, the last sum tends to 0. It
follows that there are εk → 0 as k →∞ such that

V
(v,γ̂k,δ̂k)
N (ω̂) ≤ V (v,γk,δk)

N (ω) + εk (24)
for all |ω − ω̂| ≤ 1

k and v ∈ R. By assumption, Φ is also continuous, so that there are
ηk → 0 as k →∞ such that for all |ω − ω̂| ≤ 1

k

Φ(S(ω)) ≤ Φ(S(ω̂)) + ηk. (25)
The trading strategy π̂k = (pkσ,σ(Φ) + 1

k , γ̂
k, δ̂k) super-replicates payoff Φ on Ωk, so

together with (24) and (25) we get

Φ(S(ω)) ≤ Φ(S(ω̂)) + ηk ≤ V
(pk
σ,σ

(Φ)+1/k,γ̂k,δ̂k)
N (ω̂) + ηk

≤ V
(pk
σ,σ

(Φ)+1/k,γk,δk)
N (ω) + εk + ηk,
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which means that pσ,σ(Φ) ≤ pkσ,σ(Φ) + 1
k + εk + ηk and passing to the limit we get our

claim.
It is immediate from the series of inequalities (18) and Lemma 3.1 that

pσ,σ(Φ) = sup
P∈P(ϕi)i∈I

EP

[
Φ(S)−

N−1∑
n=0

Gn

(
EP(SN | Fn)− Sn

Sn

)]
.
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