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Abstract. This paper is devoted to switching diffusions with mean-field interactions. We first
review some of the recent results. Then we examine a case of systems not driven by Brownian
motion but stationary mixing processes. We obtain the limit of the systems by weak convergence
analysis together with our limit results on a law of large numbers for switching diffusion processes
with mean-field terms.

1. Introduction. In this work, we study switching diffusions with mean-field interac-
tions. The motivation stems from two lines of work. One of them is to treat hybrid
diffusions that include both continuous dynamics and discrete events, in which the dis-
crete events are modeled as a continuous-time Markov chain taking values in a finite state
space M = {1, . . . ,m0}. The other line is the consideration of systems with mean-field
interactions. Both lines are of considerable current interests. What we are looking here
is at the intersection of the two lines.

Before proceeding further, let us briefly recall some of the works in each of these

2010 Mathematics Subject Classification: 60J25; 60J27; 60J60; 93E20.
Key words and phrases: mean-field model, Markovian switching diffusion, law of large number,
McKean–Vlasov equation, maximum principle, non-Markov model, weak convergence.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc122-14 [233] c© Instytut Matematyczny PAN, 2020



234 G. YIN AND S. L. NGUYEN

areas. The study of switching diffusion stems from the need of treating hybrid systems.
Typically, in such systems continuous dynamics and discrete events are intertwined. The
system is running in continuous time. The continuous dynamics are as given by solutions
of differential equations or stochastic differential equations. The discrete events, however,
take values in a finite set. In this paper, we are mainly concerned ourselves with systems
that may be called Markovian switching diffusions. A representative of such systems is
the book of Mao and Yuan [MY]. It is called a Markovian switching diffusion because
the Markov chain modulating the system is independent of the Brownian motion in the
continuous part of the dynamic system. A related work is [YZ2], in which the switching
process itself is not necessarily Markov but depending on the continuous states. One of
the reasons that the hybrid diffusions have drawn much attention is the pressing needs
in such emerging applications as social networks, cyber-physical systems, and networked
control systems; see for example, [HY, TY, YI, YZ1, ZY1] among others.

Next consider systems with mean-field interactions, which has a long history. In sta-
tistical physics, it is known that many body problems are difficult to deal with. It is
suggested that one studies the behavior of high-dimensional random (stochastic) mod-
els by a simpler model that approximates the original systems using averaging over the
many bodies. The rationale is to replace all interactions to any one body with an aver-
age or effective interactions. The intuition has been around for a long time, but it was
until 1983, Dawson settled the matter in [D] by providing a mathematically rigorous
proof. He showed that a law of large numbers holds for an empirical measure associated
with a diffusion process together with a phase transition property. This work promoted
much subsequent study; see for example, [DG, DV, DZ, G] and references therein. This
line of work has been much extended, for example, in [BF, CM, O, S]. Consideration of
mean-field models associated with control, optimization, and game problems was started
in the 2000s by Huang, Caines, and Malhamé [HM, HC] and independently by Lasry and
Lions [LL, Lb]. The book by Bensoussan, Frehse, and Yam [BY] provided an illuminating
presentation and discussion of certain aspects of mean-field games and mean-field type
controls, describing their similarities and differences together with a unified approach for
treating them. A more analytic approach can be found in the book by Kolokoltsov [K],
where the author named the processes under consideration nonlinear Markov processes.

Considering the intersections of the switching diffusions and mean-field interactions,
in this paper, our objectives include two parts. In the first part, we provide a survey of
some recent limit results as the number of players getting large; we also deal with con-
trolled switching diffusions with mean-field terms. After reviewing these properties, in the
second part, we devote our attention to a case of stochastic systems involving mean-field
interactions. It is similar to the first part, but the systems are non-Markov. The rational
is that very often the Markovian systems are only a idealization. In applications, very
often we need to deal with non-Markov systems. We consider the case that an ordinary
differential equation involving mean-field terms subject to wide-band noise perturbations.
The wide-band noise is scaled by a small parameter ε. As ε → 0, the wide-band noise
tends to a limit that is a Brownian motion. For this case, we carry out the analysis and
obtain the limit process. Then we show that there is also a law of large numbers in this
case. The desired McKean–Vlasov equation is obtained.
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The rest of the paper is arranged as follows. Section 2 presents the formulation and
some of our recent results including a law of large numbers and a maximum principle for
the controlled systems under consideration. Section 3 is denoted to obtaining the weak
convergence and the limit McKean–Vlasov equation for non-Markovian systems. Finally,
Section 4 concludes the paper with some further remarks.

2. Formulation and some recent results. Consider the following system of switching
diffusions:

dxi(t) = b
(
xi(t),

1
N

N∑
j=1

δxj(t), α(t−)
)
dt+ σ

(
xi(t),

1
N

N∑
j=1

δxj(t), α(t−)
)
dwi(t), (1)

for i = 1, 2, . . . , N , where δx(·) denotes the Dirac measure centered at x with x ∈ Rd,
w1(·), w2(·), . . . , wN (·) areN independent d-dimensional standard Brownian motions, and
α(·) is a Markov chain taking values in a finite state space M = {1, 2, . . . ,m0} with a
generator Q =

(
qi0j0

)
i0,j0∈M

satisfying the following properties: qi0j0 ≥ 0 for i0 6= j0 ∈M
and

∑
j0∈M qi0j0 = 0 for each i0 ∈M. We shall use the following notation.

• Cb(Rd): space of bounded continuous functions on Rd
• Ckb (Rd): Ck functions with bounded partial derivatives
• Ckc : Ck functions with compact support
• E: a metric space
• B(E): Borel σ-field on E
• P(E): space of probability measures on (E,B(E)) with weak topology
• C([0, T ], E): space of continuous functions with sup metric
• D([0, T ], E): space of all càdlàg functions with Skorohod topology
• M := {1, 2, . . . ,m0}: state space of the Markov chain
• dM: metric onM, dM(i0, j0) = 1− δi0,j0 for i0, j0 ∈M.
• Df ([0, T ],M): subspace of D([0, T ],M) with finite jumps
• M1: space of probability measures on Rd
• µN (t) = 1

N

∑N
i=1 δxi(t)

• 〈µ, f〉 =
∫
Rd f(x)µ(dx): for µ ∈M1

• Mi0j0(t) = [Mi0j0 ](t)−
〈
Mi0j0

〉
(t): martingale associate with the Markov chain, where

[Mi0j0 ](t) =
∑

0≤s≤t
11(α(s−) = i0)11(α(s) = j0),

〈
Mi0j0

〉
(t) =

∫ t

0
qi0j011(α(s−) = i0) ds

if i0 6= j0 ∈M and Mi0i0(t) ≡ 0
• For µ ∈M1, f(·, ·, i0) ∈ Cb(R× Rd), g(·, i0) ∈ Cb(Rd),

〈µ, f(t, ·, i0)〉 =
∫
Rd

f(t, x, i0)µ(dx), 〈µ, g(·, i0)〉 =
∫
Rd

g(x, i0)µ(dx)

• ‖ · ‖TV : total variation metric on M1

• ‖µ− η‖BL = sup
{∣∣〈µ, f〉− 〈η, f〉∣∣ : ‖f‖ ≤ 1, sup

x 6=y∈Rd

|f(x)− f(y)|
|x− y|

≤ 1
}
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• (M1, ‖ · ‖BL) is a complete and separable metric space
• d
(
(µ, i0), (η, j0)

)
= ‖µ− η‖BL + dM(i0, j0), ∀µ, η ∈M1, i0, j0 ∈M

• ϕ1(x) = |x| and ϕ2(x) = |x|2
• Fαt− = σ

{
α(s) : 0 ≤ s < t

}
• FN,αt = σ

{
wi(s), α(s) : 0 ≤ s ≤ t, 1 ≤ i ≤ N

}
• For a random variable ς on

(
Ω,F ,P

)
,

– L (ς): distribution (law of ς)
– ηt = L

(
ς
∣∣Fαt−): conditional law given Fαt−

(E
(
f(ς)

∣∣ Fαt−) =
∫
Rd f(x) ηt(dx), ∀f ∈ Cb(Rd))

• PN : the induced probability measure of (µN (·), α(·)) on D
(
[0, T ],M1 ×M

)
[Note PN concentrates on the set C

(
[0, T ],M1

)
×Df ([0, T ],M), a closed subspace of

D
(
[0, T ],M1 ×M

)
.]

We will use the following assumptions.
(H1) For each i0 ∈ M, b(·, ·, i0) : Rd ×M1 → Rd and σ(·, ·, i0) : Rd ×M1 → Rd×d are

Lipschitz continuous in that, there is a constant L such that∣∣b(x, µ, i0)− b(y, η, i0)∣∣+
∣∣σ(x, µ, i0)− σ(y, η, i0)∣∣ ≤ L(|x− y|+ ‖µ− η‖BL),

for all x, y ∈ Rd and µ, η ∈M1.
(H2) The Rd-valued function b(·, ·, ·) satisfies

|b(x, µ, i0)| ≤ C
(
1 + |x|+

〈
µ, ϕ1

〉)
, (x, µ, i0) ∈ Rd ×M1 ×M,

for some constant C, and the matrix-valued function σ(·, ·, ·) is bounded.
For f(·, i0) ∈ C2

c (Rd) and (x, µ, i0) ∈ Rd ×M1 ×M define the operator

L(µ)f(x, i0) = b′(x, µ, i0)∇xf
(
x, i0

)
+ 1

2
(
a(x, µ, i0)∇x

)′∇xf(x, i0)

+
∑
j0∈M

qi0j0

(
f(x, j0)− f(x, i0)

)
, (2)

where
a(x, µ, i0) = σ(x, µ, i0)σ′(x, µ, i0) ∈ Rd×d.

The following theorem provides a law of large numbers for the weakly interacting
systems under consideration.
Theorem 2.1. Assume (H1), (H2), and

sup
N∈N

E
〈
µN (0), ϕ2

〉
<∞, L (µN (0))⇒ δµ0 in P

(
M1, ‖ · ‖BL

)
.

Then
(
µN (·), α(·)

)
converges weakly to a process

(
µα(·), α(·)

)
, where(

µα(t), α(t)
)

=
(
L
(
y(t)

∣∣ Fαt−), α(t)
)
, 0 ≤ t ≤ T,

and y(t), 0 ≤ t ≤ T , is the unique solution of the following stochastic differential equation{
dy(t) = b

(
y(t),L

(
y(t)

∣∣ Fαt−), α(t−)
)
dt+ σ

(
y(t),L

(
y(t)

∣∣ Fαt−), α(t−)
)
dw(t),

L (y(0)) = µ0,

where w(·) is a standard Brownian motion independent of α(·).
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The limit of µN (·) can also be characterized as a solution of a stochastic McKean–
Vlasov equation with Markovian switching as follows.

Theorem 2.2. Assume (H1) and (H2). Then the system of integral equations

〈
µ(t), f(·, α(t))

〉
=
〈
µ0, f(·, α(0))

〉
+
∫ t

0

〈
µ(s),L(µ(s))f(·, α(s−))

〉
ds

+
∑

i0,j0∈S

∫ t

0

〈
µ(s), f(·, j0)− f(·, i0)

〉
dMi0j0(s), (3)

where 0 ≤ t ≤ T and f(·, i0) ∈ C2
c (Rd) for each i0 ∈ M, has a unique solution in

D([0, T ],M1). Moreover, this solution equals L
(
y(t)

∣∣ Fαt−) for all 0 ≤ t ≤ T , where y(t)
is the unique solution of{

dy(t) = b
(
y(t), µα(t), α(t−)

)
dt+ σ

(
y(t), µα(t), α(t−)

)
dw(t), L (y(0)) = µ0,

µα(t) = L
(
y(t)

∣∣ Fαt−),
where w(·) is a standard Brownian motion independent of α(·).

The above theorems were obtained in [NH]. We merely cite the results here and omit
the verbatim proofs. To proceed, we consider an associated controlled dynamic system.
For simplicity, in what follows we will take d = 1.

Let U , the set where the controls take values in, be a nonempty and convex subset
of R, and U be the class of measurable, Ft-adapted, and square integrable processes
u(·, ·) : [0, T ] × Ω → U . We call U the set of admissible controls. For each u(·) ∈ U , we
consider the following controlled stochastic differential equation

dx(t) = b
(
t, x(t),E

(
ψ(x(t)) | Fαt−

)
, u(t), α(t−)

)
dt

+ σ
(
t, x(t),E

(
ϕ(x(t)) | Fαt−

)
, u(t), α(t−)

)
dw(t), (4)

x(0) = x0,

where x0 is a real number, and b(·, ·, ·, ·, ·), σ(·, ·, ·, ·, ·) : [0, T ] × R2 × U ×M → R and
ψ(·), ϕ(·) : R→ R are real functions.

For simplicity of notation, we keep using the letters b and σ for the drift and diffusion
coefficients of the controlled problem in the remaining part of this section. Note that
these functions are just a special case of drift and diffusion coefficients in (1). For each
(t, x, y, u, i0) ∈ [0, T ]×R2×U×M, let bx(t, x, y, u, i0), by(t, x, y, u, i0), and bu(t, x, y, u, i0)
respectively denote the partial derivative of b with respect to the variable x, y and u at
the point (t, x, y, u, i0). The partial derivatives of σ(·, ·, ·, ·, ·) are defined by a similar way.
With a little abuse of notation, we will use the subscript t to denote the value of a function
at t instead of its derivative. For example, xt = x(t) and ut = u(t).

The mean-field SDE (4) is obtained as the mean-square limit as N →∞ of a system
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of interacting particles of the form

dxi,N (t) = b
(
t, xi,N (t), 1

N

N∑
i=1

ψ(xi,N (t)), u(t), α(t−)
)
dt

+ σ
(
t, xi,N (t), 1

n

N∑
i=1

ϕ(xi,N (t)), u(t), α(t−)
)
dwi(t),

where (wi(t), i ≥ 1) is a collection of independent standard Brownian motions. Note that
for more generality, we consider the mean-field term as nonlinear functions of the state
with the use of ψ(·) and ϕ(·), respectively. Moreover, in (4), the conditional expectations
E
(
ψ(x(t)) | Fαt−

)
and E

(
ϕ(x(t)) | Fαt−

)
appear instead of the expectations E(ψ(x(t))) and

E(ϕ(x(t))) because of the effect of the common switching process α(t). Because all the par-
ticles depend on the history of this process, their average (mean-field term) must depend
on the history of αt. Note also that in (4), the conditional expectations E

(
ψ(x(t)) | Fαt−

)
are used for more generality than the usual mean. The idea is that we may consider
the conditional moments beyond the usual consideration of mean (e.g., second moment,
variance, as well as higher moments). The motivation stems from the applications of
cyber-physical systems and social network modeling. The boundedness essentially ensure
the finite moment, which can be done by using the usual truncated moments. This is
analogous to the treatment of diffusion processes, we truncate the function involved.

The control problem we are interested in is to minimize the cost functional given by

J(u) = E
[∫ T

0
h
(
t, x(t),E

(
φ(x(t)) | Fαt−

)
, u(t), α(t−)

)
dt

+ g
(
x(T ),E

(
η(x(T )) | FαT−

)
, α(T )

)]
, (5)

where h(·, ·, ·, ·) : [0, T ] × R2 × U ×M → R, g(·, ·, ·) : R2 ×M → R, and φ(·), η(·) :
R → R are given functions. For (t, x, y, u, i0) ∈ [0, T ] × R2 × U ×M, hx(t, x, y, u, i0),
hy(t, x, y, u, i0), gx(x, y, i0), and gy(x, y, i0) denote the partial derivatives of h and g in a
usual way.

Define the Hamiltonian

H(t, x̂, u, p, q, i0) = h
(
t, x1, x2, u, i0

)
+ b
(
t, x1, x3, u, i0

)
p+ σ

(
t, x1, x4, u, i0

)
q,

where x̂ = (x1, x2, x3, x4) ∈ R4. We make the following assumptions.

(A1) The functions ψ(·), φ(·), ϕ(·), and η(·) are continuously differentiable; g(·, ·, i0)
is continuously differentiable with respect to (x, y); b(·, ·, ·, ·, i0), σ(·, ·, ·, ·, i0), and
h(·, ·, ·, ·, i0) are continuous in t and continuously differentiable with respect to
(x, y, u).

(A2) In (A1), for each t and i0, all derivatives of ψ(·), φ(·), ϕ(·), g(·, ·, i0), b(t, ·, ·, ·, i0),
σ(t, ·, ·, ·, i0), and h(t, ·, ·, ·, i0) with respect to x, y, and u are Lipschitz continuous
and bounded.

(A3) The functions ψ(·), φ(·), ϕ(·), and η(·) are convex, the function g(·, ·, ·) is convex in
(x, y), and the Hamiltonian H(·, ·, ·, ·, ·, ·) is convex in (x̂, u).

(A4) The functions by(·, ·, ·, ·, ·), σy(·, ·, ·, ·, ·), hy(·, ·, ·, ·, ·), and gy(·, ·, ·) are nonnegative.
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For simplicity, for a random variable x, H(t, x, u, p, q, i0) will be used instead of
H
(
t, x,E(φ(x)|Fαt−),E(ψ(x)|Fαt−),E(ϕ(x)|Fαt−), u, p, q, i0

)
with a little abuse of notation.

That is,

H(t, x, u, p, q, i0) = h
(
t, x,E(φ(x)|Fαt−), u, i0

)
+ b
(
t, x,E(ψ(x)|Fαt−), u, i0

)
p

+ σ
(
t, x,E(ϕ(x)|Fαt−), u, i0

)
q. (6)

Let
λt ∗ dMt =

∑
i0,j0∈M

λi0j0(t) dMi0j0(t).

Then ∫ t

0
λs ∗ dMs =

∑
i0,j0∈M

∫ t

0
λi0j0(s) dMi0j0(s).

The proofs of the following theorems are also omitted. They can be found in [NY].

Theorem 2.3. Under assumptions (A1) and (A2), if u(·) is an optimal control with
state trajectory x(·), then there exists a triple

(
p, q, λ

)
of adapted processes that satisfies

the BSDE

dpt = −
[
bx(t)pt + σx(t)qt + hx(t)

]
dt

−
[
E
(
by(t)pt | Fαt−

)
ψx(t) + E

(
σy(t)qt | Fαt−

)
ϕx(t) + E

(
hy(t) | Fαt−

)
φx(t)

]
dt

+ qt dw(t) + λt ∗ dMt, (7)
pT = gx(T ) + E

(
gy(T ) | FαT−

)
ηx(T ). (8)

such that
d

du
H
(
t, xt, ut, pt, qt, αt−

)
(v − ut) ≥ 0, dt dP-a.s. on [0, T ]× Ω for any v ∈ U ,

where

b(t) = b
(
t, xt,E

(
ψ
(
xt
) ∣∣ Fαt−), ut, αt−),

σ(t) = σ
(
t, xt,E

(
ϕ
(
xt
) ∣∣ Fαt−), ut, αt−),

h(t) = h
(
t, xt,E

(
φ
(
xt
) ∣∣ Fαt−), ut, αt−),

g(t) = g
(
xt,E

(
η
(
xt
) ∣∣ Fαt−), αt),

φ(t) = φ(xt), ϕ(t) = ϕ(xt), ψ(t) = ψ(xt), η(t) = η(xt).

Recall that to reduce notation, we have used pt, qt, λt, xt, ut, and αt− to denote
p(t), q(t), λ(t), x(t), u(t), and α(t−), respectively. We also obtain the following sufficient
condition.

Theorem 2.4. Assume that assumptions (A1)–(A4) hold. Let u(·) be a control in U with
the corresponding state trajectory x(·). Let (p, q, λ) be the solution to the adjoint equation.
If

H(t, xt, ut, pt, qt) = inf
v∈U

H(t, xt, v, pt, qt), dt dP-a.s. on [0, T ]× Ω, (9)

then u(·) is an optimal control.
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3. Weak convergence and limit McKean–Vlasov equations for non-Markovian
systems. Our main concern here is to be able to treat certain non-Markov driving noise.
Almost all the stochastic models considered thus far have been centered around the
“Markovian” formulation. That is, although allowing the treatment of the noise effect, the
formulation has been confined to the cases that the driving noise is given by a Brownian
motion or a jump process. Because of the Markovian formulation, we have good technical
machineries to handle the systems. A question naturally arises. What can we do about a
non-Markovian system? We show in this section, with a class of non-Markovian systems,
we can still carry out a lot of work. For simplicity of notation, we consider the state,
the functions involved and the Brownian motions are all one-dimensional. Consider the
following system with mean-field interactions

ẋεi (t) = b̃
(
xεi (t),

1
N

N∑
j=1

xεj(t), α(t−)
)

+ 1
ε
σ̃
(
xεi (t),

1
N

N∑
j=1

xεj(t), α(t−)
)
ξεi (t),

1 ≤ i ≤ N, (10)

where b̃(·) and σ̃(·) are real-valued but otherwise similar to b(·) and σ(·) defined before
and satisfy the similar conditions (to be specified shortly), and ξεi (t) = ξi(t/ε2) such
that ξi(·) is a bounded stationary mixing process. Note that in (10), xεi (t) = xεi,N (t). For
simplicity, we omit the subscript N and assume xεi (·) is scalar. Vector-valued xεi (·) can
be treated with no essential difficulty and only notation is more complex. In addition, we
assume that xεi (0) = x0 for each ε > 0 and i = 1, 2, . . . , N . For each ε > 0 and positive
integer N set

Fαt− = σ
{
α(s) : 0 ≤ s < t

}
, Fεt = Fε,Nt = Fαt− ∨σ

{
ξi(s) : 0 ≤ s ≤ t

ε2 , i = 1, 2, . . . , N
}
,

and
xε(·) =

(
xε1(·), xε2(·), . . . , xεN (·)

)′
. (11)

Equation (10) can be written in a vector form. To do so, for x = (x1, . . . , xN )′ ∈ RN
and ı ∈M define

b(x, ı) =
(
b̃(x1,x, ı), . . . , b̃(xN ,x, ı)

)′ ∈ RN ,
σ(x, ı) = diag

(
σ̃(x1,x, ı), . . . , σ̃(xN ,x, ı)

)
∈ RN×N ,

(12)

where x = (1/N)
∑N
j=1 xj ∈ R and diag(c1, . . . , cN ) is the diagonal matrix with entries

c1, . . . , cN where ci ∈ R. Then (10) can be rewritten as

ẋε(t) = b
(
xε(t),xε(t), α(t−)

)
+ 1
ε

σ
(
xε(t),xε(t), α(t−)

)
ξε(t), (13)

where xε(t) is as in (11), ξ =
(
ξ1, . . . , ξN

)′ ∈ RN , and ξε(t) = ξ(t/ε2).
As illustrated in [Kh, p. 34], under such driven processes {ξi(·) : i = 1, . . . , N},

xε(·) is not Markovian. In [Kh, Chapters 8–10] a collection of examples in applications
is provided. In [vK], van Kampen noted that “non-Markov is the rule, Markov is the
exception.” Thus there is a real need to consider non-Markovian systems. To proceed, we
first state the conditions needed to get the weak convergence and law of large number
result.
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(H3) For each i = 1, . . . , N , the process ξεi (t) = ξi(t/ε2) such that ξi(·) is a stationary
φ-mixing process that is bounded, that satisfies Eξi(t) = 0, and that has right
continuous sample paths and a mixing measure φ̃(t) satisfying∫ ∞

0
φ̃1/2(t) dt <∞.

Moreover, ξ1(t), ξ2(t), . . . , ξN (t) are independent for each t and∫ ∞
0

Eξi(u)ξi(0) du = Σ, i = 1, . . . , N.

(H4) The following conditions are satisfied.

– Conditions (H1) and (H2) hold.
– For each i0 ∈M, b̃(x̂, x, i0) and σ̃(x̂, x, i0) are differentiable with respect to x̂

and x. Denote the partial derivatives with respect to x̂ and x by σ̃
x̂
and σ̃x,

respectively; assume that σ̃
x̂
and σ̃x are bounded.

Remark 3.1. In (H3), for simplicity, we have assumed that for each i, ξi(·) has the same
mixing measure.

We proceed to obtain a weak convergence results. A weak limit is obtained by first
letting ε→ 0 which is a mean field switched diffusion system with N processes. Then we
take N →∞ to obtain the second one in the spirit of Theorem 2.2 which is again a law
of large number.

3.1. Weak convergence. We first state the main convergence theorem. In this process,
we keep N fixed and take limit only as ε→ 0. For (x̂, x, i0) ∈ R2 ×M let

b(x̂, x, i0) = b̃(x̂, x, i0) + σ̃
x̂
(x̂, x, i0)σ̃(x̂, x, i0)Σ,

bN (x̂, x, i0) = b(x̂, x, i0) + 1
N
σ̃x(x̂, x, i0)σ̃(x̂, x, i0)Σ,

σ(x̂, x, i0) =
√

2Σ σ̃(x̂, x, i0).

(14)

We have the following theorem.

Theorem 3.2. Assume (H3) and (H4) and the stochastic differential equation (15) has
a unique solution (unique in the sense of distribution). Then for each i = 1, . . . , N , xε(·)
converges weakly to x(·) =

(
x1(·), x2(·), . . . , xN (·)

)
where xi(·) is the unique solution of

the stochastic differential equation

dxi(t) = bN

(
xi(t),

1
N

N∑
j=1

xj(t), α(t−)
)
dt+ σ

(
xi(t),

1
N

N∑
j=1

xj(t), α(t−)
)
dwi(t), (15)

where wi(·), i = 1, . . . , N , are independent Brownian motions and bN (·, ·, ·) and σ(·, ·, ·)
are defined as in (14).

Remark 3.3. Note that both xε(·) and x(·) depend on N as well. So strictly speaking,
these should have been written as xε,N (·) and xN (·), respectively. However, for notational
simplicity, in the above and the following computation, we suppress the dependence on N
although keeping in mind this dependence is there.
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To proceed, note that equation (15) can be written in a vector form. Define

bN (x, ı) =
(
bN (x1,x, ı), . . . , bN (xN ,x, ı)

)′ ∈ RN ,
σ(x, ı) = diag

(
σ(x1,x, ı), . . . , σ(xN ,x, ı)

)
∈ RN×N ,

(16)

for x = (x1, . . . , xN )′ and ı ∈M. Then we can rewrite (15) as

dx(t) = bN
(
x(t), α(t−)

)
dt+ σ

(
x(t), α(t−)

)
dw(t), (17)

where w(t) = (w1(t), . . . , wN (t))′ ∈ RN . The limit Markov process (x(·), α(·)) is a solution
of the martingale problem with the operator L = L(N) which is defined as for each
(real-valued function) f(·, ·) : RN×M 7→ R, and each ı∈M, f(·, ı)∈C2

c (RN ) such that

Lf(x, ı) = ∇f ′(x, ı)bN (x, ı) + 1
2 tr
[
∇2f(x, ı)A(x, ı)

]
+Qf(x, ı), (18)

where A(x, ı) = σ(x, ı)σ′(x, ı) and

Qf(x, ı) =
∑
∈M

qıf(x, ).

Under (H3) and (H4), the martingale problem with the operator L has a unique solution
[XZ]. In order to construct perturbed functions to prove the weak convergence, it is more
convenient to consider each component of x(t). We therefore separate the operator L
into several components such that each of which corresponds to one component of x(t)
as follows: For each x = (x1, x2, . . . , xN )′ ∈ RN , ı ∈ M, f(·, ı) ∈ C2

c (RN ) (C2 function
with compact support), set

Lif(x, ı) = fxi
(x, ı)bN

(
xi,

1
N

N∑
j=1

xj , ı
)

+ 1
2 fxixi

(x, ı)
[
σ
(
xi,

1
N

N∑
j=1

xj , ı
)]2

= fxi
(x, ı)

[
b̃
(
xi,

1
N

N∑
j=1

xj , ı
)

+ σ̃
x̂

(
xi,

1
N

N∑
j=1

xj , ı
)
σ̃
(
xi,

1
N

N∑
j=1

xj , ı
)

Σ

+ 1
N
σ̃x

(
xi,

1
N

N∑
j=1

xj , ı
)
σ̃
(
xi,

1
N

N∑
j=1

xj , ı
)

Σ
]

+ fxixi
(x, ı)

[
σ̃
(
xi,

1
N

N∑
j=1

xj , ı
)]2

Σ. (19)

Now we have

Lf(x, ı) =
N∑
i=1
Lif(x, ı) +Qf(x, ı).

In fact, f(x(t), α(t)) −
∫ t

0 Lf(x(s), α(s)) ds is a martingale; the martingale is driven
by two martingales, one of them is driven by the Brownian motion and the other is driven
by a compensated jump process (Poisson process) due to the Markov chain. We refer the
reader to [YZ2, Chapter 2] for further details.

Using weak convergence methods, we shall show that the non-Markovian systems with
mean-field interactions has a limit. The limit can be characterized as the solution of the
martingale problem with operator L. The corresponding stochastic differential equation
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is given by (15). Roughly, the non-Markovian systems with driving noise ξεi (·) yields a
limit in which the ξεi (·) are “replaced” by independent Brownian motions wi(·).

Because the solution of (10) is not a priori bounded, we use a truncation device as
in [Kh, p. 83]. Let ` be a fixed but otherwise arbitrary integer. Let B` = {x : |x| ≤ `},
the ball of radius ` centered at the origin. Consider a truncated process xε,`(·) =(
xε,`1 (·), xε,`2 (·), . . . , xε,`N (·)

)′ defined by xε,`i (0) = x0, and xε,`i (t) = xεi (t) on the set {t ≤ τ},
and

lim
m→∞

lim sup
ε→0

P
(
sup
t≤T
|xε,`i (t)| ≥ m

)
= 0, 1 ≤ i ≤ N, (20)

where τ = inf{s : max1≤j≤N |xεj(s)| > `}, the first exit time of xεj(·)’s from the `-ball B`.
Such a truncated process can be obtained by using a truncation function ρ` defined as
follows

ρ`(x) =


1, if x ∈ B`,
0, if x ∈ Rd −B`+1,

smooth, otherwise.

For i = 1, . . . , N , define the ith component xε,`i (·) of this desired truncated process as
the solution of

ẋε,`i (t) = b̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

+ 1
ε
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (t), (21)

where

b̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), ı
)

= b̃
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), ı
)
ρ`(xε,`i (t)),

σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), ı
)

= σ̃
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), ı
)
ρ`(xε,`i (t)).

(22)

From the definition of xε,`i (·), it is readily seen that

P
(
sup
t≤T
|xε,`i (t)| ≥ m

)
≤ 1
m

E sup
t≤T
|xε,`i (t)| → 0 as m→∞.

It thus confirms that xε,`(·) is an `-truncation process [Kh]. We will first prove that for a
fixed `, {xε,`(·) : ε > 0} is tight. Then we establish its weak convergence. Letting `→∞,
we finally show that the untruncated process {xε(·) : ε > 0} also converges. To proceed,
we state a lemma first.

Lemma 3.4. Under (H3)–(H4), {xε,`(·) : ε > 0} is tight in D([0, T ],RN ), where
D([0, T ],RN ) is the space of RN -valued functions defined on [0, T ] that are right con-
tinuous and that have left limit, endowed with the Skorohod topology.

Remark 3.5. Although the solution of (10) is not Markovian, we can still define an
operator Lε by using the idea of p-limit [Kh, p. 38]. The p-limit requires the sequence
under consideration to be integrable and the convergence to the limit taking place in the
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L1 sense. Let h and g be in C2
c (R). With f(·) ∈ D(Lε), the domain of Lε and Lεh = g, if

p- lim
δ→0

[
Eεth(t+ δ)− h(t)

δ
− g(t)

]
= 0,

where Eεt denotes the conditional expectation with respect to Fεt . Then Lε is still a type
of infinitesimal operator. Moreover, for h(·) ∈ D(Lε),

h(t)−
∫ t

0
Lεh(u) du is a martingale, and

Eεth(t+ s)− h(t) =
∫ t+s

t

EεtLεh(u) du w.p.1;
(23)

see [Kh, Theorem 1, p. 39] and [EK]. The first line above confirms the martingale prop-
erty and the second line is a Dynkin like formula with E replaced by the conditional
expectation Eεt .

Proof of Lemma 3.4. We shall use the idea of p-limit, the truncation device, and the
perturbed test function methods (see [Kh, Chapter 4] and [KY, p. 172]). Mainly, we define
a perturbation that is small in magnitude and that results in the desired cancellation.
Note that for each ı ∈M and each f(·, ı) ∈ C2

c (RN ), it is easy to see that

Lε,`f(x, ı) =
N∑
i=1
Lε,`i f(x, ı) +Qf(x, ı), x = (x1, x2, . . . , xN )′ ∈ RN ,

where for each i = 1, . . . , N ,

Lε,`i f(x, ı) = fxi
(x, ı)̃b`

(
xi,

1
N

N∑
j=1

xj , ı
)

+ 1
ε
fxi

(x, ı)σ̃`
(
xi,

1
N

N∑
j=1

xj , ı
)
ξεi (t). (24)

We have

Lε,`i f(xε,`(t), α(t−)) = fxi

(
xε,`(t), α(t−)

)
b̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

+ 1
ε
fxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (t). (25)

The notation reflects the dependence on the truncation level `. For each i, the term

1
ε
fxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (t)

is undesirable due to the order O(ε−1). We wish to “average” it out. To do so, we proceed
to define a perturbation. To emphasize the dependence on xεi (t) and α(t), we define a
perturbation by

fε1,i
(
xε,`(t), α(t−), t

)
= 1
ε

∫ T

t

Eεtfxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (u) du. (26)
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Because Eξi(t) = 0 for each t > 0,

fε1,i
(
xε,`(t), α(t−), t

)
= 1
ε

∫ T

t

fxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)[

Eεtξεi (u)− Eξεi (u)
]
du. (27)

Using ξεi (t) = ξi(t/ε2) and a change of variable u 7→ u/ε2, the above can be rewritten as
sup
t∈[0,T ]

∣∣fε1,i(xε,`(t), α(t−), t
)∣∣

= ε sup
t∈[0,T ]

∣∣∣∣∫ T/ε2

t/ε2
fxi

(
xε,`(t), α(t−), t

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

×
[
Eεtξεi (u)− Eξεi (u)

]
du

∣∣∣∣
≤ Kε sup

t∈[0,T ]

∫ ∞
t/ε2

φ̃
(
u− (t/ε2)

)
du = O(ε).

Thus the perturbation is small in magnitude. We proceed to demonstrate that it results
in desired cancellations. Define

fε(t) = f
(
xε,`(t), α(t−)

)
+

N∑
i=1

fε1,i
(
xε,`(t), α(t−), t

)
.

Because of the cancellation of the last term in (25),

Lε,`fε(t) = ∂

∂t
fε
(
α(t−), t

)
+

N∑
i=1
Lε,`i fε

(
α(t−), t

)
+Qfε

(
α(t−), t

)
=

N∑
i=1

fxi

(
xε,`(t), α(t−)

)
b̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

+
N∑
k=1

N∑
i=1

T/ε2∫
t/ε2

Eεt
[
fxi

(
xε,`(t), α(t−), t

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)]

xk

ξi(u) du

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t) +Qf

(
xε,`(t), α(t−)

)
+O(ε),

(28)

where O(ε) → 0 as ε → 0. (Detailed calculation will be carried out in (31), (33), and
(34)). In the next to the last line above, the term [· · · ]xi

denotes the partial derivative of
the term [· · · ] with respect to xi at x = xε,`i (t). Because {ξi(t)} is bounded and stationary
mixing, it can be verified that Lε,`fε(t) is uniformly integrable. It then follows from [Kh,
Theorem 3.4, p. 48], {xε,`(·) : ε > 0} is tight as desired. The lemma is proved.
Lemma 3.6. Under the conditions of Lemma 3.4, {xε,`(·) : ε > 0} converges weakly to
x`(·) as ε → 0, where x`(·) is the solution of the martingale problem with operator L`
given by

L`f(x, ı) =
N∑
i=1
L`if(x, ı) +Qf(x, ı),
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with

L`if(x, ı) = fxi
(x, ı)

[
b̃`
(
xi,

1
N

N∑
j=1

xj , ı
)

+ σ̃`
x̂

(
xi,

1
N

N∑
j=1

xj , ı
)
σ̃`
(
xi,

1
N

N∑
j=1

xj , ı
)

Σ

+ 1
N
σ̃`x

(
xi,

1
N

N∑
j=1

xj , ı
)
σ̃`
(
xi,

1
N

N∑
j=1

xj , ı
)

Σ
]

+ fxixi
(x, ı)

[
σ̃`
(
xi,

1
N

N∑
j=1

xj , ı
)]2

Σ, (29)

for any f(x, ı) ∈ C2
c with b̃`(·, ·, ·) and σ̃`(·, ·, ·) defined as in (22).

Proof. By Lemma 3.4, {xε,`(·)} is tight in D([0, T ],Rd). By Prohorov’s theorem (see [Kh,
p. 28] or [EK, p. 104]), we may extract a weakly convergent subsequence. Select such a
subsequence, still denote the sequence by {xε,`(·)} for simplicity, and denote the limit by
x`(·). We proceed to characterize the limit process. By the Skorohod representation (see
[Kh, pp. 29-30] or [EK, p. 102]), we assume with a slight abuse of notation that xε,`(·)
converges to x`(·) in the sense of with probability one. Also recall our notation of σ̃

x̂
and

σ̃x for the partial derivatives of σ̃ with respect to the first and second variable xi and∑N
j=1 xj/N , respectively.
To characterize the limit, we use the perturbed test function methods [Kh]. For each

ı ∈ M and any f(·, ı) ∈ C2
c (RN ), define fε1 (·, ·) as in the tightness proof. Using the

notation just mentioned above, we have

fε1,i(xε,`(t), α(t−), t)

= ε

∫ T/ε2

t/ε2
fxi

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
Eεtξi(u) du.

To proceed, we first observe that because of the chain rule of differentiations,

∂

∂xi
σ̃`
(
xi,

1
N

N∑
j=1

xj , ı
)

= σ̃`
x̂

(
xi,

1
N

N∑
j=1

xj , ı
)

+ 1
N
σ̃`x

(
xi,

1
N

N∑
j=1

xj , ı
)
. (30)

Detailed calculation yields that
Lε,`k fε1,i

(
xε,`(t), α(t−), t

)
= ε

∫ T/ε2

t/ε2
Eεt
[
fxixk

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× b̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(u) du

+ ε

∫ T/ε2

t/ε2
Eεt
[
fxi

(
xε,`(t), α(t−)

) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× b̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t) du
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+
∫ T/ε2

t/ε2
Eεt
[
fxi

(
xε,`(t), α(t−)

) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t) du

+
∫ T/ε2

t/ε2
Eεt
[
fxixk

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t) du, (31)

and

∂

∂t
fε1,i
(
xε,`(t), α(t−), t

)
= −1

ε
fxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (t). (32)

Because of the φ-mixing property, for some generic positive constant K > 0,∣∣∣∣∣ε
∫ T/ε2

t/ε2
Eεt
[
fxixk

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× b̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεi (t) du

∣∣∣∣∣ ≤ Kε
∫ T/ε2

t/ε2
φ̃
(
u− (t/ε2)

)
du ≤ Kε. (33)

Likewise,∣∣∣∣∣ε
∫ T/ε2

t/ε2
Eεt
[
fxi

(
xε,`(t), α(t−)

) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]

× b̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t) du

∣∣∣∣∣ ≤ Kε. (34)

Thus we need only work on the remaining two terms in (31). Define

fε2,i,k
(
xε,`(t), α(t−), t

)
=
∫ T

t

∫ T/ε2

s/ε2
Eεt
{[
fxi

(
xε,`(t), α(t−)

) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)][

ξi(u)ξεk(s)− E
(
ξi(u)ξεk(s)

)]}
du ds,
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fε3,i,k
(
xε,`(t), α(t−), t

)
=
∫ T

t

∫ T/ε2

s/ε2
Eεt
{[
fxixk

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)][

ξi(u)ξεk(s)− E
(
ξi(u)ξεk(s)

)]}
du ds. (35)

Note that

fε2,i,k
(
xε,`(t), α(t−), t

)
=
[
fxi

(
xε,`(t), α(t−)

) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)] T∫

t

T/ε2∫
s/ε2

[
Eεt
(
ξi(u)ξεk(s)

)
− E

(
ξi(u)ξεk(s)

)]
du ds (36)

and that ∣∣∣∣∣
∫ T

t

∫ T/ε2

s/ε2

[
Eεt
(
ξi(u)ξεk(s)

)
− E

(
ξi(u)ξεk(s)

)]
du ds

∣∣∣∣∣
≤
∫ ∞
t

∫ ∞
s/ε2

∣∣∣∣Eεt(ξi(u)ξk(s/ε2)
)
− E

(
ξi(u)ξk(s/ε2)

)∣∣∣∣ du ds
= ε2

∫ ∞
t/ε2

∫ ∞
v

∣∣∣Eεt(ξi(u)ξk(v)
)
− E

(
ξi(u)ξk(v)

)∣∣∣ du dv
≤ Kε2

∫ ∞
t/ε2

∫ ∞
v

φ̃1/2(u− v)φ̃1/2(v − (t/ε2)) du dv = O(ε2).

(37)

Similar to the case of fε1,i
(
xε,`(t), α(t−), t

)
, it can be verified that

sup
0≤t≤T

∣∣fεp,i,k(xε,`(t), α(t−), t)
∣∣ = O(ε2) for p = 2, 3 and 1 ≤ i, k ≤ N.

Thus, the perturbations are all small. Moreover, for each l = 1, 2, . . . , N , we obtain

Lε,`l
[
fε2,i,k(xε,`(t), α(t−), t) + fε3,i,k(xε,`(t), α(t−), t)

]
= eεl (t), (38)

where eεl (t) = O(ε)→ 0 as ε→ 0. In addition,

∂

∂t
fε2,i,k(xε,`(t), α(t−), t)

= −
[
fxi

(xε,`(t), α(t−)) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2

[
Eεt
(
ξi(u)ξεk(t)

)
− E

(
ξi(u)ξεk(t)

)]
du
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= −
∫ T/ε2

t/ε2
Eεt
[
fxi

(xε,`(t), α(t−)) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]
du

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t)

+
[
fxi

(xε,`(t), α(t−)) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E
(
ξi(u)ξεk(t)

)
du. (39)

Similarly,

∂

∂t
fε3,i,k

(
xε,`(t), α(t−), t

)
= −

∫ T/ε2

t/ε2
Eεt
[
fxixk

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
ξi(u)

]
du

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)
ξεk(t)

+
[
fxixk

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E
(
ξi(u)ξεk(t)

)
du.

(40)

Now, we define the perturbed function as follows

f̃ε(t) = f(xε,`(t), α(t−)) +
N∑
i=1

fε1,i(xε,`(t), α(t−), t)

+
N∑
i=1

N∑
k=1

(
fε2,i,k(xε,`(t), α(t−), t) + fε3,i,k(xε,`(t), α(t−), t)

)
. (41)

Using (31), (39), and (40), applying Lε,` to f̃ε(t), and recalling that ξεi (t) = ξi(t/ε2),
upon cancellations, direct calculation yields that

Lε,`f̃ε(t) = ∂

∂t
f̃ε(t) +

N∑
i=k
Lε,`k fε(t) +Qfε

(
α(t−), t

)
=

N∑
i=1

fxi

(
xε,`(t), α(t−)

)
b̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)
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+
N∑
i=1

N∑
k=1

[
fxi

(xε,`(t), α(t−)) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E(ξi(u)ξεk(t)) du

+
N∑
i=1

N∑
k=1

[
fxixk

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E(ξi(u)ξεk(t)) du

+Qf(xε,`(t), α(t−)) +O(ε), (42)
Observe that E

(
ξi(u)ξεk(t)

)
= 0 if i 6= k. Under the conditions of Lemma 3.6, as ε→ 0,

for each i = 1, . . . , N ,∫ T/ε2

t/ε2
E
(
ξi(u)ξi(t/ε2)

)
du→

∫ ∞
0

E
(
ξi(u)ξi(0)

)
du = Σ. (43)

Hence, using (30), we can demonstrate that
N∑
i=1

N∑
k=1

[
fxi

(xε,`(t), α(t−)) ∂

∂xk
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E(ξi(u)ξεk(t)) du

−→
N∑
i=1

[
fxi

(
xε,`(t), α(t−)

)
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
x̂

(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

Σ
]

+ 1
N

N∑
i=1

[
fxi

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`x
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

Σ
]

(44)

and
N∑
i=1

N∑
k=1

[
fxixk

(xε,`(t), α(t−))σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)

× σ̃`
(
xε,`k ,

1
N

N∑
j=1

xε,`j (t), α(t−)
)]∫ T/ε2

t/ε2
E(ξi(u)ξεk(t)) du

−→
N∑
i=1

fxixi
(xε,`(t), α(t−))

[
σ̃`
(
xε,`i (t), 1

N

N∑
j=1

xε,`j (t), α(t−)
)]2

Σ. (45)
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In view of the estimates obtained so far, putting the pieces together, and using [Kh,
Thorem 2, p. 44], we have proved that xε,`(·) converges weakly to x`(·) such that x`(·)
is the solution of martingale problem with operator L`.

Lemma 3.7. Under the conditions of Lemma 3.4, xε(·) converges weakly to x(·).

Idea of proof. Here, we can use the idea similar to the last part of [Kh, p. 46] to prove that
the untruncated process {xε(·)} also converges. Denote by P and P` the measures induced
by x(·) and x`(·), respectively. Note that the martingale problem has a unique solution on
[0, T ]. Thus the measure P is unique. Then for each T <∞, P is the same with P` on all
Borel subsets of the set of paths in D([0,∞) : RN ) with values in the product of `-balls
BN` for all t ≤ T . In addition, the existence of the unique solution of the martingale
problem implies lim`→∞ P

(
supt≤T

∣∣ x(t)
∣∣≤ `

)
= 1. Thus as in the reference mentioned

above, the desired convergence follows. Thus the proof of Theorem 3.2 is complete.

3.2. Mean-field limit. Using the results obtained so far, we can carry out analysis
similar to that of Theorem 2.2 to prove the law of large number for the limit interacting
diffusion system (15). More precisely, for each positive integer N , consider

µN (·) = 1
N

N∑
i=1

δxi(·),

where x(·) = (x1(·), x2(·), . . . , xN (·))′ with xi(·) for i = 1, . . . , N , being the solutions to
the limit system (15). In view of Remark 3.3, both xε(·) and x(·) should have really
been written as xε,N (·) and xN (·), respectively. That is, they are N dependent. However,
we have used the simplified notation to suppress the N -dependence. The next result is
concerned with N →∞;

Theorem 3.8. Under assumptions of Theorem 3.2,
(
µN (·), α(·)

)
converges weakly to a

process
(
µ(·), α(·)

)
where(
µ(t), α(t)

)
=
(
L (y(t) | Fαt−), α(t)

)
, 0 ≤ t ≤ T,

and y(t), 0 ≤ t ≤ T , is the unique solution of the following McKean–Vlasov stochastic
differential equation

dy(t) = b
(
y(t),E(y(t) | Fαt−), α(t−)

)
dt+ σ

(
y(t),E(y(t) | Fαt−), α(t−)

)
dw(t) (46)

where w̃(·) is a standard Brownian motion independent of α(·).

The proof is similar to that of Theorem 2.2 (see [NY]). We only note that

sup
x̂,x,i0

∣∣bN (x̂, x, i0)− b(x̂, x, i0)
∣∣ ≤ C

N

for some constant C and that the term with order O(N−1) disappears in the limit.
Next, for each i = 1, 2, . . . the following McKean–Vlasov stochastic differential equa-

tion has a unique solution
dyi(t) = b

(
yi(t),E(yi(t) | Fαt−), α(t−)

)
dt+ σ

(
yi(t),E(yi(t) | Fαt−), α(t−)

)
dwi(t).

We observe that
E(yi(t) | FαT ) = E(yi(t) | Fαt−), E(xi(t) | FαT ) = E(xi(t) | Fαt−), 0 ≤ t ≤ T.
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In addition, x1(·), x2(·), . . . , xN (·) are conditionally independent given FαT and identically
distributed. Thus by using the Gronwall’s inequality and the conditional expectation
E(· | FαT ) instead of the expectation E(·), the standard approach (see [S, NN]) yields the
following estimate.
Lemma 3.9. There exists a constant C independent of i,N such that for all 1 ≤ i ≤ N ,

sup
0≤t≤T

E
(
|xi(t)− yi(t)|2

∣∣ Fαt−) ≤ C

N
. (47)

Using the results obtained so far, we see that xεi (t) converges weakly to y(t) as ε→ 0
and N →∞ for each i = 1, . . . , N and 0 ≤ t ≤ T , that is

lim
N→∞

lim
ε→0

E
[
f(xεi (t))

]
= E

[
f(y(t))

]
for each bounded continuous function f(·) where y(·) is the solution of the McKean–
Vlasov equation (46).

4. Further remarks. This paper reviews some recent results on switching diffusions
with mean-field interactions together with the associated control problems. It also ex-
amines a non-Markovian case. The non-Markovian system is treated by using repeated
limits. It is possible that we investigate the limit problem in the last part with ε→ 0 and
N = Nε →∞.
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