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Abstract. We consider a semilinear equation linked to the finite horizon consumption-invest-
ment problem under stochastic factor framework, prove it admits a classical solution and provide
all obligatory estimates to successfully apply a verification reasoning. The paper covers the stan-
dard time additive utility, as well as the recursive utility framework. We extend existing results
by considering more general factor dynamics including a nontrivial diffusion part and a stochas-
tic correlation between assets and factors. In addition, this is the first paper which compromise
many other optimization problems in finance, for example those related to the indifference pric-
ing or the quadratic hedging problem. The extension of the result to the stochastic differential
utility and robust portfolio optimization is provided as well. The essence of our paper lays in
using improved stochastic methods to prove gradient estimates for suitable HJB equations with
restricted control space.

1. Introduction. The use of a stochastic factor model in optimal portfolio selection
problems has become recently very popular. A stochastic factor is often used to model
stochastic patterns in the mean and the variance of financial returns. The topic has been
explored under many different assumptions and many different investor’s objectives. In
the current paper we are interested in a semilinear parabolic partial differential equation
which arise naturally in many consumption-investment problems under the recursive
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utility formulation (with the Epstein–Zin utility and after some reduction techniques),
whenever we assume a stochastic factor dependence in the asset price dynamics. Our
setting covers as well many other optimization topics. In particular, we should emphasize
here the minimal variance martingale measure (generally q-optimal martingale measure),
the minimal entropy martingale measure and the quadratic hedging problem. In order to
determine an optimal investment strategy and use a verification theorem, the common
approach is to prove that the PDE admits a classical solution in the C2,1 class, which in
addition satisfies a global gradient estimate.

The regularity of a solution to the suitable PDE was explored by many authors, but
due to our knowledge there is no paper considering the PDE with the full generality
including a multidimensional factor dynamics with a stochastic correlation, a nontrivial
diffusion part and under the recursive utility formulation with a risk averse and a risk
seeking investor. The difficulty with a stochastic correlation lays in the fact that it is
not possible to remove the quadratic gradient part using the power transform or obtain
satisfactory results with the log transform techniques. Some results, concerning regularity
of a related HJB equation, were obtained for example by Pham [33], Zariphopoulou [40]
but they considered only the pure investment problem (without the consumption process)
and with the trivial diffusion part in the factor dynamics or with one-dimensional factor
only.

A separate study should be dedicated to the line of papers concerning optimal in-
vestments with the risk sensitive objective criterion. Usually, those papers consider the
infinite horizon formulation but they provide as well some insights into the finite horizon
framework. This was considered by Bensoussan et al.[2], Hata [18], Nagai [31]. We should
emphasize here the significance of the papers written by Davis and Lleo [6], [7] dedicated
to very general finite horizon jump diffusion models.

Smooth solutions to pure investment problems can be as well easily deduced from
Sobolev’s weak solutions results obtained by BSDE methods (see e.g. Delarue and Guat-
teri [8]).

Under one-dimensional factor dynamics, the possibility of a consumption was con-
sidered by Castañeda-Leyva and Hernández-Hernández [5] (in the time additive utility
setting), Kraft et al. [25], [26] (recursive utility), and by Berdjane and Pergamenshchikov
[4] with the multidimensional factor process, but still the factor dynamics is required to
be suitable to reduce the quadratic gradient term by using the power transform in the
spirit of Zariphopoulou [40]. As indicated in Pham [33, Remark 3.1] the aforementioned
transform cannot be used in a general factor dynamics.

We should mention here as well many research papers embedded into the infinite
horizon setting with the elliptic HJB equation instead of the parabolic one. We have here:
Hernández and Fleming [12], [13], Nagai [31], Trybuła [37], Zawisza [43]. Mostly they were
focused on the one-dimensional factor model, except for works of Hata and Sheu [20] and
Nagai [31]. They obtained their results by applying sub- and super-solution viscosity
methods to deal with a general and a multidimensional factor dynamics. However, to
prove existence result for the suitable viscosity solution they needed higher regularity
assumptions for the model coefficients.
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Just recently Hata et al. [19] have considered the finite horizon case together with
risk averse case, but still under higher smoothness conditions on the coefficients and
within the framework of sub/supersolution method. We are as well aware of recent very
general results of Xing [39], Matoussi and Xing [28], which represent the solution in terms
of the forward-backward equation. Nevertheless, they do not study associated parabolic
equations.

Our results extend the recent results of Kraft et al. [25] and Hata et al. [19] but our
approach to the issue is different. In this paper we rewrite the semilinear equation as
the HJB equation with unrestricted control space, then we will restrict the control space
to some compact set and use known existence theorems for such HJB equations. Using
novel stochastic methods we obtain uniform estimates for the solution and its gradient.
In this way we are able to prove that the solution to the restricted control problem is in
fact a solution to our primary equation and as a by-product we get the estimates needed
to apply the verification reasoning. Our paper is the continuation of the line of papers:
Fleming and McEneaney [14], Fleming and Hernández [12], Pham [33], Zawisza [43], but
we present as well novel ideas. Namely, the most challenging problem in our work is to
improve existing gradient stochastic estimates to cover many issues: the non-trivial second
order term (diffusion term), the quadratic dependence in the gradient part, the presence
of the power expression in the equation and finally different configurations of risk aversion
parameters. The power expression corresponds to the presence of the consumption in the
original control problem and prevents us from applying the logarithmic transform as it
was done for example in Pham [33]. The second important extension is a link to the
variance hedging problems.

We would like to point out as well all advantages of our paper:

1. We prove regularity results for nontrivial PDE which is useful to tackle the multidi-
mensional portfolio problems including the Epstein–Zin recursive utility problem (vel
the Kreps–Proteus recursive utility problem) and the quadratic hedging problem.

2. We reduce many financial optimization problems to the analysis of one single semilin-
ear PDE.

3. We provide a general method to prove global gradient estimates for solutions to the
aforementioned equations (see Lemma 3.3).

4. In Lemma 2.1 we show an interesting application of the power transform method. It
can have possible applications in other risk sensitive control problems.

5. We reduce the equation to the form ut + 1
2 Tr(Σ(x)D2

xu) +H(Dxu, u, x, t) = 0, where
the Hamiltonian H(p, u, x, t) satisfies the Lipschitz condition in u and p and therefore
our result paves the way to numerical simulation either by the fixed point method in
partial differential equations (see e.g. Zawisza [43]), BSDE numerical techniques (see
Gobet et al. [15]), or policy iteration algorithm (see Jacka and Mijatović [24]).

6. We present extensions of our result to the robust optimal portfolio selection problems.
7. The paper has implications for the existence of the stochastic differential utility under

the Kreps–Proteus utility.
8. Finally, we provide a proof which is independent of BSDE theory and might be used

to prove existence theorems for forward-backward equations.
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Our paper has the following structure. First we introduce our equation and present
the power transform method. Crucial estimates for the solution to the HJB equation are
done in the third section. The main result (Theorem 4.1) is presented in Section 4. In
the last section we extend the main result to the two important problems: the robust
portfolio optimization and the stochastic differential utility problem.

2. The equation. We consider first the Cauchy problem of the form

Gt + 1
2 Tr(Σ(x)D2

xG) + 1
2

1
G
D∗xGA(x)DxG

+ b∗(x)DxG+ θ(1− k)Gk + h(x)G = 0, (x, t) ∈ Rn × [0, T ), (1)

with the terminal condition G(x, T ) = β(x) and parameters k ∈ R, θ ≥ 0. In the above
notation we ignore (x, t) the dependence for the function G. The lack of the time de-
pendence in the model coefficients is for notational convenience and can be relaxed. In
addition, vectors are treated as column matrices, the symbol b∗ is used to denote the
transpose of the vector (or matrix) b. The above equation is a general version of the
equation considered by Zawisza [43], Trybuła and Zawisza [38] and covers multidimen-
sional setting proposed for example in Hata et al. [19], Hata [18] (after taking the log
transformation of our equation).

We assume here that:
(A1) The function b : Rn → Rn is Lipschitz continuous, while the function h : Rn → R

is Lipschitz continuous and bounded.
(A2) The function β : Rn → R is positive, bounded, Lipschitz continuous and bounded

away from zero, i.e. there exists a constant ε > 0 such that

β(x) ≥ ε > 0, x ∈ Rn.

(A3) The matrices Σ : Rn → Rn×n and A : Rn → Rn×n are symmetric, their
coefficients are Lipschitz continuous and bounded, and the uniform ellipticity condition
holds, i.e. there exists a positive constant ε > 0 such that

z∗Σ(x)z ≥ ε|z|2, z∗A(x)z ≥ ε|z|2, x, z ∈ Rn.

In many financial optimization problems the matrix A is negative definite, so we will
further prove that our results can be easily extended to the following case:

(A3’) The matrices Σ : Rn → Rn×n and A : Rn → Rn×n are symmetric, their
coefficients are Lipschitz continuous and bounded, and there exist ε > 0, µ ∈ (0, 1) such
that

z∗Σ(x)z ≥ ε|z|2, z∗[µΣ(x) +A(x)]z ≥ ε|z|2, x, z ∈ Rn.

If we consider β ≡ 1, then the equation is suitable for the consumption-investment
problem in a general stochastic factor model under the recursive utility formulation using
continuous time Epstein–Zin preferences. Our framework includes as well the standard
time additive utility objectives. The equation has already been derived in many papers
(see for example Hata et al. [19]), so we will limit ourselves only to the one-dimensional
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case as it is was done in Zawisza [43]. First, we would like to present the constant corre-
lation case 

dBt = r(Xt)Bt dt,
dSt = b(Xt)St dt+ σ(Xt)St dW 1

t ,

dXt = g(Xt) dt+ a(Xt)(ρ dW 1
t + ρ̄ dW 2

t ),

whereW 1,W 2 are independent Wiener processes, ρ is the constant correlation coefficient,
the process S denotes the stock price, whereas X is the factor process. The wealth process
is given by

dV π,ct = r(Xt)V π,ct dt+ πt[b(Xt)− r(Xt)] dt+ πtσ(Xt) dW 1
t − ct dt.

By (π, c) we denote the portfolio process and the consumption intensity process respec-
tively, i.e. a pair of progressively measurable processes such that the process (ct, t ∈ [0, T ])
is positive, ∫ T

0
π2
s ds < +∞, a.s.

and the random variable V π,cT is almost surely positive. The investor’s objective is to
maximize

Ev,x,t
1
γ

[∫ T

t

e−w(s−t)(cs)γ ds+ e−w(T−t)(V π,cT )γ
]
.

The HJB equation associated with that problem (after suitable reduction techniques —
see e.g. Zariphopoulou [40]) is given by

Ft + 1
2 a

2(x)D2
xF + γρ2

2(1− γ) a
2(x) [DxF ]2

F
+
[
g(x) + γρ

1− γ a(x)λ(x)
]
DxF

+
[

γ

2(1− γ)λ
2(x) + γr(x)− w

]
F + (1− γ)F γ/(γ−1) = 0,

where λ(x) := (b(x)− r(x))/σ(x) is a market price of risk.
In this case the power transform F ζ (for suitable choice of ζ) can be used to reduce

the nonlinear term [DxF ]2
F . The candidate optimal controls are given by

π̂(Vt, Xt) := Vt

[
ρa(Xt)

(1− γ)σ(Xt)
DxF

F
+ λ(Xt)

(1− γ)σ(Xt)

]
, ĉ(Vt, Xt) := Vt[F (Xt, t)]1/(γ−1).

However, instead of a deterministic correlation, we can consider a stochastic correla-
tion effect, i.e.

dXt = g(Xt) dt+ a1(Xt) dW 1
t + a2(Xt) dW 2

t .

For that model the HJB equation is given by

Ft + 1
2[a2

1(x) + a2
2(x)]D2

xF + γ

2(1− γ)a
2
1(x) [DxF ]2

F
+
[
g(x) + γ

1− γ a1(x)λ(x)
]
DxF

+ γ

2(1− γ) [λ2(x) + γr(x)− w]F + (1− γ)F−γ/(1−γ) = 0 (2)

with the candidate optimal controls

π̂(Vt, Xt) := Vt

[
a1(Xt)

(1− γ)σ(Xt)
DxF

F
+ λ(Xt)

(1− γ)σ(Xt)

]
, ĉ(Vt, Xt) := Vt[F (Xt, t)]1/(γ−1).
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In this example there is no further possibility to use the power transform to simplify the
equation.

Although the fundamental motivation for considering the problem comes from the
above example, equation (1) is sufficiently general to cover and extend many other im-
portant optimization problems in finance. We will try to review it once more by giving
more information about the specific choice of the optimization objectives and the litera-
ture with the recent contribution in the field:
1. β ≡ 1 — consumption-investment problem for the recursive utility and the time ad-

ditive utility aggregator (Kraft et al. [25], [26], Hata et al. [19]).
2. β ≡ 1, θ = 0 — the pure investment problem in the CRRA utility (HARA utility)

framework (Davis and Lleo [6], [7]).
3. θ = 0 and condition (A3’) — indifference pricing under the exponential utility func-

tion, the minimal entropy martingale measure (Benth and Karlsen [3], Hernández-
Hernández and Sheu [23], Sircar and Zariphopoulou [35], Musiela and Zariphopoulou
[29], Henderson [21], Benedetti and Campi [1], Grasselli and Hurd [16], Zawisza [43]).

4. For β ≡ 1, θ = 0, condition (A3’) — the mean variance portfolio selection problem, the
variance optimal martingale measure, (Hernández-Hernández [22], Laurent and Pham
[27], Trybuła and Zawisza [38]). These authors have considered so far only problems
with one-dimensional factor dynamics.

Remark. It might happen that in the quadratic hedging and the mean variance hedging
problem both conditions (A3) and (A3’) are not satisfied. But then the substitution
H = 1/G allows us to make condition (A3’) applicable (see Trybuła and Zawisza [38]).

It is useful to note that we can restrict ourselves to the equation with parameter
k ∈ (−∞, 0) ∪ (1,+∞) and instead of condition (A3’) we can consider only (A3).

To prove this observation suppose first that condition (A3’) is satisfied. Let us define

Bψ(x) := ψA(x) + (ψ − 1)Σ(x) = 1
(1− µ) [A(x) + µΣ(x)],

where ψ := 1
1−µ (µ as in (A3’)). Note that

Bψ(x) = 1
(1− µ) [A(x) + µΣ(x)],

which implies that the matrix Bψ satisfies condition (A3). Hence, we have
Lemma 2.1. Suppose that condition (A3’) is satisfied and the function G is a classical
solution to the equation

Gt + 1
2 Tr(Σ(x)D2

xG) + 1
2

1
G
D∗xGBψ(x)DxG+ b∗(x)DxG

+ θ

ψ
(1− k)Gk + h(x)

ψ
G = 0, (x, t) ∈ Rn × [0, T ).

Then the function H = Gψ is a solution to

Ht + 1
2 Tr(Σ(x)D2

xH) + 1
2

1
H
D∗xHA(x)DxH + b∗(x)DxH

+ θ
1− k
1− ξ (1− ξ)Hξ + h(x)H = 0, (x, t) ∈ Rn × [0, T ), (3)
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where ξ := 1
ψ [k + ψ − 1] = 1 + k−1

ψ . Moreover,
1. ξ > 1 if and only if k > 1,
2. ξ < 0 implies k < 0,
3. ξ ∈ [0, 1) can be get by taking ψ sufficiently large (µ close to one) and then taking

suitable k < 0,
4. The case ξ = 1 can be treated by considering the case θ = 0.
Proof. We have

Ht = ψGψ−1Gt,

DxH = ψGψ−1DxG,

Hxixj
= ψGψ−1Gxixj

+ ψ(ψ − 1)Gψ−2Gxi
Gxj

.

By the direct substitution, we get equation (3). The latter part of the conclusion is left
to the reader.

For the applications of the power transform method see for example Musiela and
Zariphopoulou [29], Zariphopoulou [40], Zawisza [43], and Trybuła and Zawisza [38],
Kraft et al. [25].

3. Stochastic estimates. In the current section we reduce this equation to the HJB
equation for the restricted stochastic control problem and prove estimates for the solu-
tion F and its derivative DxF . As it has been observed in the previous section we can
limit ourselves to prove there exists a smooth solution to

Gt + 1
2 Tr(Σ(x)D2

xG) + 1
2

1
G
D∗xGA(x)DxG+ b∗(x)DxG

+ θ(1− k)Gk + h(x)G = 0, (x, t) ∈ Rn × [0, T ),
with the parameter restriction k ∈ (−∞, 0)∪(1,+∞). We will consider cases k ∈ (−∞, 0)
and k ∈ (1,+∞) separately.

Case 1: k < 0.
First, we should notice that it is well known that if the matrix is symmetric and

positive definite, then there exists the unique positive square root of the matrix, which is
also symmetric. Moreover, if the coefficients are bounded, uniformly Lipschitz continuous
and the uniform ellipticity condition holds, then the same is true for the square root (cf.
Stroock and Varadhan [36, Lemma 5.2.1 and Theorem 5.2.2]). Thus, let σ denote the
unique square root of Σ and V denote the square root of A.

Suppose first that there exists a positive solution G to equation (1) such that

m1 ≤ G1/(α−1) ≤ m2,

∣∣∣∣D∗xGV (x)
G

∣∣∣∣ ≤ R,
for some 0 ≤ m1 < 1 < m2, R > 0, where 0 < α < 1 is a constant determined by the
formula α

α−1 = k. Then

(1− α)Gα/(α−1) = max
c≥0

(−αcG+ cα) = max
c∈[m1,m2]

(−αcG+ cα), (4)

and
1
2

1
G
D∗xGA(x)DxG = max

q∈Rn

(
D∗xGV (x)q − 1

2 |q|
2G
)

= max
q∈BR

(
D∗xGV (x)q − 1

2 |q|
2G
)
, (5)
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where BR is the compact set {q ∈ Rn : |q| ≤ R}. Therefore, this is the motivation to
consider first the HJB equation for a control problem of the form

Gt + 1
2 Tr(Σ(x)D2

xG) + b∗(x)Gx + max
q∈BR

(
D∗xGV (x)q − 1

2 |q|
2G
)

+ θ max
m1≤c≤m2

(−αcG+ cα) + h(x)G = 0, (6)

with the terminal condition G(x, T ) = β(x). In fact, to keep consistency of the notation
we should use in (6) the term

θ

(1− α)2 max
m1≤c≤m2

(−αcG+ cα) .

Nonetheless, the term θ
(1−α)2 is positive, so for notational convenience and without loss

of generality we can simply replace it by θ.
Assuming conditions (A1)–(A3) and using Zawisza [44, Theorem 2.3], we know that

equation (6) has a smooth solution and we will denote it by Gm1,m2,R (alternatively we
may use W 2,1 very general results proved by Delarue and Guatteri [8] but it includes
only the bounded coefficients case and consequently it does not cover full generality of
our paper). By the standard verification theorem, we have

Gm1,m2,R(x, t)

= sup
q∈AR,c∈Cm1,m2

Ex,t
[∫ T

t

θ exp
{∫ s

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}
cαs ds

+ exp
{∫ T

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}
β(Xq

T (x, t))
]
,

where
dXq

k = [b(Xq
k)− V (Xq

k)qk] dk + σ(Xq
k) dWk, (7)

and (Wk = (W 1
k ,W

2
k , . . . ,W

n
k )∗, 0 ≤ k ≤ T ) is a n-dimensional Brownian motion. Note,

that to apply properly the verification reasoning we need the existence of the solution
to SDE (7) when q is a feedback control. Here we can use the result proved by Gyöngy
and Krylov [17, Corollary 2.6]. In the above stochastic control representation the symbol
AR is used to denote all progressively measurable processes (qs, 0 ≤ s ≤ T ) taking values
in BR, the symbol Cm1,m2 to denote all progressively measurable processes taking values
in [m1,m2]. In addition, by using Ex,tf(Xs) we stress the fact we take the expected
value of suitable random variable, when the system starts from x at time t. In future, for
notational convenience, we will often write Ef(Xs(x, t)).

Our aim is now to prove that we can find the constant R̂ > 0 and m̂1 > 0 and m̂2 > 0
such that for Ĝ := G

m̂1,m̂2,R̂
, we have∣∣∣∣D∗xĜV (x)

Ĝ

∣∣∣∣ ≤ R̂, m̂1 ≤ [Ĝ]1/(1−α) ≤ m̂2, (x, t) ∈ Rn × [0, T ). (8)

In that case, using equations (4) and (5), we will be sure that Ĝ is as well the solution
to (1). To find such parameters we need first to find the upper and the lower uniform
bound for Gm1,m2,R and the uniform bound for |DxGm1,m2,R|. We start by proving uni-
form bounds for Gm1,m2,R(x, t).
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Proposition 3.1. Suppose that k < 0, conditions listed in (A1)–(A3) are satisfied and
Gm1,m2,R(x, t) is a classical solution to (6). Then there exist D1, D2 > 0 such that

D2 ≤ Gm1,m2,R(x, t) ≤ D1, (x, t) ∈ Rn × [0, T ], m1 ≤ 1 ≤ m2.

Proof. Since functions h and β are bounded there exists a constant D > 0 such that

|Gm1,m2,R(x, t)|

≤ sup
q∈AR,c∈Cm1,m2

Ex,t
[∫ T

t

θ exp
{∫ s

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}
cαs ds

+ exp
{∫ T

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}
β(Xq

T (x, t))
]

≤ D sup
c∈Cm1,m2

Ex,t
[∫ T

t

exp
{
−
∫ s

t

θαck dk
}
cαs ds+ 1

]
.

Furthermore, for α ∈ (0, 1) we have∫ T

t

exp
{
−
∫ s

t

θαck dk
}
cαs ds

≤
∫ T

t

exp
{
−
∫ s

t

θαck dk
}
χ{cs≤1} ds+

∫ T

t

exp
{
−
∫ s

t

θαck dk
}
csχ{cs>1} ds,

and by the first fundamental theorem of calculus, we get∫ T

t

exp
{
−
∫ s

t

θαck dk
}
cs ds = 1

θα

[
− exp

{
−
∫ s

t

θαck dk
}]T

t

= 1
θα

[
1− exp

{
−
∫ T

t

θαck dk
}]
.

Consequently, ∫ T

t

exp
{
−
∫ s

t

θαck dk
}
cαs ds ≤ T + 1

θα
.

Thus, there exists a constant D1 > 0 such that
|Gm1,m2,R(x, t)| ≤ D1, (x, t) ∈ Rn × [0, T ]. (9)

By substituting c ≡ 1 and q ≡ 0 and using the fact that the function h is bounded
and β is bounded away from zero, we get the lower bound for |Gm1,m2,R(x, t)|, i.e. there
exists D2 > 0 such that for all (x, t) ∈ Rn × [0, T ]

|Gm1,m2,R(x, t)| ≥ Ex,t
[
exp
{∫ T

t

(h(Xq
k(x, t))− θα) dk

}
β(Xq

T (x, t))
]
≥ D2 > 0. (10)

Case 2: k > 1.
In this case we are interested in the solution to the equation

Gt + 1
2 Tr(Σ(x)D2

xG) + b∗(x)DxG+ max
q∈BR

(
D∗xGV (x)q − 1

2 |q|
2G
)

+ θ min
0≤c≤m2

(−αcG+ cα) + h(x)G = 0. (11)

Note that in this case we have α > 1.
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Proposition 3.2. Assume k > 1, conditions (A1)–(A3) hold and G0,m2,R(x, t) is a
bounded classical solution to equation (11). Then there exist D1, D(m2) > 0 such that

D(m2) ≤ G0,m2,R(x, t) ≤ D1, (x, t) ∈ Rn × [0, T ], m2 > 0.

Proof. First we find an upper bound for G. Note that min0≤c≤m2(−αcG+ cα) < 0 and

min
0≤c≤m2

(−αcG+ cα) = min
0≤c≤m2

(−αc+ cαG−1)G.

Therefore, the stochastic representation (of the game type) has the form

G0,m2,R(x, t)

= sup
q∈AR

inf
c∈C0,m2

Ex,t
[∫ T

t

θ exp
{∫ s

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck + θcαkG
−1
k

)
dk
}
ds

+ exp
{∫ T

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck + θcαkG
−1
k

)
dk
}
β(Xq

T (x, t))
]
.

In the above expression the infimum is taken over C0,m2 , so it is smaller than the
expectation taken under the assumption that m2 > 0 with the control c ≡ 0. In that
case, in the above exponent, all expressions are bounded above, so there must exist a
constant D1 > 0 such that

G0,m2,R(x, t) ≤ D1, (x, t) ∈ Rn × [0, T ], m2 > 0.

In addition, we have α > 1, so

0 < G0,m2,R(x, t)1/(α−1) ≤ D1/(α−1)
1 , (x, t) ∈ Rn × [0, T ], m2 > 0

and we can setm2 = D
1/(α−1)
1 . With those parameters fixed, with the help of the stochas-

tic representation

G0,m2,R(x, t) = sup
q∈AR

inf
c∈C0,m2

Ex,t
[∫ T

t

θcαs exp
{∫ s

t

(
h(Xq

k(x, t))− 1
2 |qk|

2−θαck
)
dk
}
ds

+ exp
{∫ T

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}
β(Xq

T (x, t))
]

and substituting q ≡ 0, we have

G0,m2,R(x, t) ≥ Ex,t exp
{∫ T

t

(h(Xq
k(x, t))− θαm2) dk

}
β(Xq

T (x, t)).

The function β is bounded away from 0 and h is bounded. This ensures existence for the
constant D(m2) > 0 such that

G0,m2,R(x, t) > D(m2) > 0, (x, t) ∈ Rn × [0, T ], m2 > 0.

In both cases k < 0 and k > 1 we look for estimates for |DxGm1,m2,R|. Usually, the
authors use the approach based on using the Itô formula and estimate only |Xq

k(x, t) −
Xq
k(x̄, t)|2 (see for example Fleming and McEneaney [14, Lemma 4.1] or Zawisza [43,

Theorem 4.3]) and this is insufficient in our setting. Therefore, we need the following
lemma.
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Lemma 3.3. If the functions V , σ are Lipschitz continuous and bounded, b is Lipschitz
continuous, processes (Xq

k(x, t), t ≤ k ≤ T ), (Xq
k(x̄, t), t ≤ k ≤ T ) are strong solutions to

dXq
k = [b(Xq

k)− V (Xq
k)qk] dk + σ(Xq

k) dWk,

and (qk, k ≤ T ) takes its values in BR, then there exists a constant L̃ > 0 such that for
all (qk, k ≤ T )

E sup
t≤k≤T

exp
{
−1

2

∫ k

t

|qs|2 ds
}
|Xq

k(x, t)−Xq
k(x̄, t)| ≤ L̃|x− x̄|, x, x̄ ∈ Rn, t ∈ [0, T ].

Moreover, the constant L̃ does not depend on the choice of the radius R > 0.

Proof. Applying the Itô formula, we get

exp
{
−1

2

∫ s

t

|ql|2 dl
}

(Xq
s (x, t)−Xq

s (x̄, t))

= (x− x̄) +
∫ s

t

exp
{
−1

2

∫ k

t

|ql|2 dl
}

[ζ(Xq
k(x, t), qk)− ζ(Xq

k(x̄, t), qk)] dk

+
∫ s

t

exp
{
−1

2

∫ k

t

|ql|2 dl
}

[σ(Xq
k(x, t))− σ(Xq

k(x̄, t))] dWk, (12)

where
ζ(x, q) =

[
b(x)− V (x)q − 1

2 |q|
2x
]
.

Taking the maximum in q yields the existence of a constant M > 0 such that for all
x, x̄ ∈ Rn

(x− x̄)∗(ζ(x, q)− ζ(x̄, q))

= (x− x̄)∗(b(x)− b(x̄))− (x− x̄)∗(V (x)− V (x̄))q − 1
2 |q|

2|x− x̄|2 ≤M |x− x̄|2. (13)

Applying the Itô formula once again, using the process (12) and the quadratic function,
we have

exp
{
−2 · 1

2

∫ s

t

|qk|2 dk
}
|Xq

s (x, t)−Xq
s (x̄, t)|2 = |x− x̄|2

+
∫ s

t

2 exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}

[Xq
k(x, t)−Xq

k(x̄, t)]∗[ζ(Xq
k(x, t), qk)− ζ(Xq

k(x̄, t), qk)] dk

+
∫ s

t

exp
{
−2· 12

∫ k

t

|ql|2 dl
}

Tr
(
[σ(Xq

k(x, t))−σ(Xq
k(x̄, t))]∗[σ(Xq

k(x, t))−σ(Xq
k(x̄, t))]

)
dk

+
∫ s

t

2 exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}

[Xq
k(x, t)−Xq

k(x̄, t)]∗
[
σ(Xq

k(x, t))− σ(Xq
k(x̄, t))

]
dWk.

If the process (qk, t ≤ k ≤ T ) takes its values in BR, then by the standard estimates for
the controlled processes (cf. Pham [34, Theorem 1.3.15]), we have

E sup
t≤k≤T

|Xq
k(x, t)−Xq

k(x̄, t)|4 < +∞

and consequently, the process

Zs =
∫ s

t

exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}

(Xq
k(x, t)−Xq

k(x̄, t))∗
[
σ(Xq

k(x, t))− σ(Xq
k(x̄, t))

]
dWk
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is a square integrable martingale. Using the martingale inequality, we get

E
[∫ s

t

exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}

[Xq
k(x, t)−Xq

k(x̄, t)]∗
[
σ(Xq

k(x, t))− σ(Xq
k(x̄, t))

]
dWk

]2
≤M

∫ s

t

E sup
0≤k≤p

exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}
|Xq

k(x, t)−Xq
k(x̄, t)|2 dp, (14)

for some constant M > 0. For fixed x, x̄ ∈ R define a new function

v(p) := E sup
0≤k≤p

exp
{
−2 · 1

2

∫ k

t

|ql|2 dl
}
|Xq

k(x, t)−Xq
k(x̄, t)|2.

The above inequalities and the Lipschitz continuity of σ ensure that there exists a
constant M̃ > 0 such that

v(s) ≤ |x− x̄|2 + M̃

∫ s

t

v(k) dk, x, x̄ ∈ Rn.

The Gronwall inequality yields
v(s) ≤ |x− x̄|2eM̃(s−t), x, x̄ ∈ Rn.

4. Main theorem

Theorem 4.1. Suppose that conditions (A1), (A2) and (A3), or (A1), (A2), and (A3’)
are satisfied. Then there exists G ∈ C2,1(R × [0, T )) ∩ C(R × [0, T ]), a classical positive
solution to equation (1). Moreover, G and DxG are uniformly bounded.

Proof. It has already been proved (Propositions 3.1 and 3.2) that the analysis can be
reduced only to the case k < 0 or k > 1 and to the set of conditions (A1)–(A3). Fortu-
nately, we can consider both cases jointly because in both cases we have already proved
that there exists a suitable pair of constants m̂1 < 1 < m̂2 such that

m̂1 ≤ [G
m̂1,m̂2,R

]1/(1−α) ≤ m̂2, (x, t) ∈ Rn × [0, T ], R > 0. (15)

Now, we find a uniform bound for |DxGm1,m2,R|. The method is based on finding the
bound for the Lipschitz constant for Gm1,m2,R. To achieve our goal we use stochastic
representation for our HJB equation. In both cases k < 0 and k > 1 we have∣∣Gm1,m2,R(x, t)−Gm1,m2,R(x̄, t)

∣∣
≤ sup
q∈AR,c∈Cm1,m2

E
[∫ T

t

θ exp
{
−
∫ s

t

(θαck) dk
}

×
∣∣∣exp

{∫ s

t

(
h(Xq

k(x, t))− 1
2 |qk|

2
)
dk
}
− exp

{∫ s

t

(
h(Xq

k(x̄, t))− 1
2 |qk|

2
)
dk
}∣∣∣cαs ds

+ |β(Xq
T (x, t))|

∣∣∣exp
{∫ T

t

(
h(Xq

k(x, t))− 1
2 |qk|

2 − θαck
)
dk
}

− exp
{∫ T

t

(
h(Xq

k(x̄, t))− 1
2 |qk|

2 − θαck
)
dk
}∣∣∣

+ exp
{∫ T

t

(
h(Xq

k(x̄, t))− 1
2 |qk|

2 − θαck
)
dk
}∣∣β(Xq

T (x, t))− β(Xq
T (x̄, t))

∣∣]. (16)
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Note that the expression
∫ s
t

(h(Xq
k(x, t))− 1

2 |qk|
2− θαck) dk is bounded. For the func-

tion ex, we have |ex − ey| ≤ ez|x − y|, if x, y ≤ z. Thus, we can treat the first and the
second expression on the right hand side of (16) by taking the advantage of the estimate∣∣∣exp

{∫ s

t

(
h(Xq

k(x, t))−1
2 |qk|

2− θαck
)
dk
}
− exp

{∫ s

t

(
h(Xq

k(x̄, t))−1
2 |qk|

2− θαck
)
dk
}∣∣∣

≤ N1 exp
{
−
∫ s

t

1
2 |qk|

2 dk
}∣∣∣∫ s

t

h(Xq
k(x, t)) dk −

∫ s

t

h(Xq
k(x̄, t)) dk

∣∣∣
≤ N2 sup

t≤k≤T
exp
{
−
∫ k

t

1
2 |qk|

2 dk
}
|Xq

k(x, t)−Xq
k(x̄, t)|,

for suitable constants N1, N2 > 0.
Using the fact that β is Lipschitz continuous and bounded and summarizing all

inequalities together with Lemma 3.3 we obtain the existence of uniform constants
M1,M2 > 0 such that

|Gm1,m2,R(x, t)−Gm1,m2,R(x̄, t)|

≤M1E sup
t≤k≤T

exp
{
−
∫ k

t

1
2 |ql|

2 dl
}∣∣Xk(x, t)−Xk(x̄, t)

∣∣ ≤M2|x− x̄|

and since coefficients of V are bounded, Gm1,m2,R is uniformly bounded below, there
exists R̂ > 0 such that∣∣∣∣D∗xGm1,m2,RV (x)

Gm1,m2,R

∣∣∣∣ ≤ R̂, (x, t) ∈ Rn × [0, T ], 0 ≤ m1 < m2, R > 0. (17)

Estimates (15) and (17) ensure that G
m̂1,m̂2,R̂

is the desired solution.

5. Extensions. For notational convenience we have omitted in the above analysis a few
possible extensions. If we assume that the parameter θ is state dependent we will get the
equation important from the point of view of the so-called stochastic differential utility
process with the Kreps–Proteus utility (see Duffie and Epstein [9], Duffie and Lions [10]).
In this case, we have

Gt + 1
2 Tr(Σ(x)D2

xG) + 1
2

1
G
D∗xGA(x)DxG+ b∗(x)DxG

+ θ(x)(1− k)Gk + h(x)G = 0, (x, t) ∈ Rn × [0, T ). (18)

We need the following condition:
(A4) The function θ : R→ R+ is Lipschitz continuous and bounded.

Theorem 5.1. Suppose that conditions (A1), (A2), (A3) and (A4), or (A1), (A2), (A3’)
and (A4) are satisfied. Then there exists G ∈ C2,1(R× [0, T )) ∩ C(R× [0, T ]), a classical
positive solution to equation (18). In addition, G and DxG are uniformly bounded.

Proof. To complete the reasoning from the proof of Theorem 4.1 it is worth to present
only one estimate. Namely, we can again use the fact |ex−ey| ≤ ea|x−y| for any x, y ≤ a
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and arrive at∣∣∣exp
{
−
∫ s

t

(
αθ(Xq

k(x, t))ck + 1
2 |qk|

2
)
dk
}
− exp

{
−
∫ s

t

(
αθ(Xq

k(x̄, t))ck + 1
2 |qk|

2
)
dk
}∣∣∣

≤ LT |α| sup
t≤s≤T

[
exp
{
−1

2

∫ s

t

|qk|2 dk
}
|Xq

s (x, t)−Xq
s (x̄, t)| exp

{
−
∫ s

t

αθck dk
}∫ s

t

ck dk
]
,

where t ≤ s ≤ T , θ = infx∈R θ(x) and L > 0 is a Lipschitz constant for the function θ.
Now, it is sufficient to note that for any γ > 0 the process

exp
{
−
∫ s

t

γck dk
}∫ s

t

ck dk, t ≤ s ≤ T,

is bounded because the function xe−γx is bounded for x > 0.
The second extension is dedicated to the robust optimal selection problem (see Zawisza

[42], [41]). We consider the equation

Gt + 1
2 Tr(Σ(x)D2

xG) + 1
2

1
G
D∗xGA(x)DxG

+ ιmin
η∈Γ

(b∗(x, η)DxG+ h(x, η)G) + θ(x)(1− k)Gk = 0, (x, t) ∈ Rn × [0, T ), (19)

where Γ ⊂ Rl is a fixed compact set and ι ∈ {−1, 1} is a parameter that allows replacing
min with max.

Here we need the following:
(A1’) The functions

b : Rn × Γ→ Rn, h : Rn × Γ→ R, θ : Rn → R+

are continuous (jointly in both variables) and Lipschitz continuous in the first variable
uniformly with respect to the second, i.e. there exists a constant L > 0 such that for all
x, x̄ ∈ R, η ∈ Γ

|b(x, η)− b(x̄, η)| ≤ L|x− x̄|,
|h(x, η)− h(x̄, η)| ≤ L|x− x̄|,
|θ(x)− θ(x̄)| ≤ L|x− x̄|.

In addition the functions h and θ are assumed to be bounded.
Theorem 5.2. Suppose that conditions (A1’), (A2), (A3) and (A4), or (A1’), (A2), (A3’)
and (A4) are satisfied. Then there exists G ∈ C2,1(R× [0, T )) ∩ C(R× [0, T ]), a classical
positive solution to equation (19). In addition, G and DxG are uniformly bounded.
Proof. The proof is a straightforward repetition of the proof of Theorem 4.1.

Acknowledgments. I gratefully acknowledge the work carried out by the Referee.
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