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Continued fractions for strong Engel series
and Lüroth series with signs

by

Andrew N. W. Hone (Canterbury) and Juan Luis Varona (Logroño)

1. Introduction. Given a sequence of positive integers (xn) such that
xn |xn+1 for all n ≥ 1, the sum of the reciprocals is the Engel series

(1.1) S =
∞∑
j=1

1

xj

and the alternating sum of the reciprocals is the Pierce series [23]

(1.2) S′ =

∞∑
j=1

(−1)j+1

xj
.

(To ensure convergence it should be assumed that (xn) is eventually increas-
ing, i.e. for all n there is some n′ > n with xn′ > xn.) Every positive real
number admits both an Engel expansion, of the form (1.1), and a Pierce ex-
pansion (1.2) [6, 11], and these S, S′ are unique: after removing the integer
part it is sufficient to consider numbers in the interval (0, 1), and then (xn)
is strictly increasing with x1 ≥ 2 in (1.1) and x1 ≥ 1 in (1.2). Although
they are not quite so well known, Engel expansions and Pierce expansions
have much in common with continued fraction expansions, both in the way
that they are determined recursively, and from a metrical point of view; for
instance, see [10] for the case of Engel series and [29] for Pierce series.

In recent work [12], the first author presented a family of sequences (xn)
generated by certain non-linear recurrences of second order, of the form

(1.3) xn+2xn = x2n+1(1 + xn+1G(xn+1)), n ≥ 1, G(x) ∈ Z[x],
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where G(x) > 0 for x > 0, such that the corresponding Engel series (1.1)
yields a transcendental number with a regular continued fraction expansion

S = [a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

whose coefficients (partial quotients) a0, a1, . . . are explicitly given in terms
of the xn.

More recently [30], the second author proved that, when the sequence
(xn) is generated by the same sort of non-linear recurrence as (1.3), an anal-
ogous result holds for the associated Pierce series (1.2), although the struc-
ture of the corresponding continued fractions is different. It was subsequently
noted in [14, 15] that the recurrence (1.3) could be further generalized, and
at the same time allow the explicit continued fraction expansion to be de-
termined for the sum of an arbitrary rational number r = p/q and an Engel
series, that is,

(1.4)
p

q
+
∞∑
j=2

1

xj
, with q = x1 |x2,

and similarly for the case of p/q ± a Pierce series.
The key to the results in [12, 14, 15, 30] was that, subject to a recurrence

like (1.3), the truncation of the particular series (1.1) or (1.2) at the nth
term yields a convergent of the continued fraction of S or S′, whose length
depends linearly on n. Continuing in this vein, Duverney et al. showed in [7]
that a finite sum

(1.5)
n∑
j=1

yj
xj

can be expanded as a continued fraction of general type, of length 2n, i.e.

(1.6)
a1

b1 +
a2

b2 +
a3

· · ·+
a2n

b2n

,

where aj , bj are explicit rational functions of the indeterminates xj , yj , and
they presented a similar formula for the alternating sum

∑n
j=1(−1)j−1yj/xj

as a general continued fraction of length 3n− 4.
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The formulae for the continued fraction (1.6) are conveniently written in
terms of the “exponentiated shift” operator θ from [7], defined by

(1.7) θ[un] =
un+1

un
,

and if it is assumed that (xn) is an increasing sequence of positive integers
with x1 ≥ 2 and (yn) is another sequence of positive integers, then (writing
θ2[xn] = θ[θ[xn]]) the recurrence

(1.8) θ2[xn]− θ2[yn] = αnxn,

for an arbitrary sequence (αn) consisting of positive integers, provides a
natural generalization of (1.3), with the results on Engel and Pierce series in
[12, 14, 30] corresponding to the special case yn = 1 for all n. Moreover, the
irrationality exponents of transcendental numbers given by suitable Engel
and Pierce series were explicitly calculated in [15]; and in [8] (based on a
result from [9]) this was further extended to find the irrationality exponents
of the limits n→∞ for more general series (1.5), subject to the recurrence
(1.8) with appropriate assumptions on the growth of the sequences (xn), (yn)
and (αn).

In a separate development [13], the first author showed that if the de-
nominators in an Engel series satisfy the stronger divisibility property

(1.9) x2n |xn+1, n ≥ 1,

then the continued fraction expansion of (1.1) can be written explicitly in
terms of the integers zj defined by

(1.10) z1 = x1, zj+1 =
xj+1

x2j
∈ Z>0, j ≥ 1.

Henceforth we refer to a series (1.1) with the property (1.9) as a strong Engel
series.

Included in this class of strong Engel series is the set of numbers

(1.11)
∞∑
n=0

1

u2n

for integer u ≥ 2, with the case u = 2 being known as the Kempner num-
ber [1]. All of these numbers are transcendental, with irrationality exponent 2
(see [3]). Their continued fraction expansions were found in recursive form
in [26], with a non-recursive representation described in [28]; further gen-
eralizations with a similar folded recursive structure were given in [27] and
later [24]. The series that are treated in the latter works all depend on a
single integer parameter, e.g. the integer u in (1.11), whereas strong Engel
series and their generalizations to be considered in this paper depend on the
infinite set of parameters zj .
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In the next section we generalize the results of [13] to the case of a series

(1.12)
∞∑
j=1

εj
xj
, εj = ±1,

where the denominators satisfy the strong Engel property (1.9) and the se-
quence of signs εj is arbitrary. In fact, using the same approach as in [15]
we provide the explicit continued fraction expansion for a sum of the form
p/q + a strong Engel series. In the third section we give an application of
these results to a family of Lüroth series, that is, series of the type

(1.13)
1

u1
+
∞∑
j=2

1

u1(u1 − 1) · · ·uj−1(uj−1 − 1)uj
,

where we impose the condition that the sequence (un) satisfies a non-linear
recurrence of second order analogous to (1.3). We also consider one of the
alternating analogues of Lüroth series introduced in [16], and other general-
izations along similar lines. The final section is mostly devoted to calculat-
ing exact irrationality exponents for certain families of series of generalized
Lüroth type, defined by particular recurrences of second order for un. In-
spired by [8], these recurrences are given in terms of “pseudo-polynomials”
with arbitrary real exponents (see (4.2) below), rather than polynomials like
G in (1.3). We conclude with a conjecture about transcendence of strong
Engel series with signs.

2. Some explicit continued fractions. To fix our notation, we briefly
recall some standard facts about continued fractions. In what follows, we
denote a finite regular continued fraction by

(2.1) [a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

=
pn
qn
,

where a0 ∈ Z, aj ∈ Z>0 and the convergent pn/qn is in lowest terms with
qn > 0. We define the length of (2.1) to be the index of the final partial
quotient, written as

`([a0; a1, a2, . . . , an]) = n;

so we ignore the integer part a0 when counting the length. Every r ∈ Q can
be written as a finite continued fraction (2.1), although this representation
is not unique (there is both an odd and an even length representation),
but each ξ ∈ R \ Q is given uniquely by an infinite continued fraction with
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convergents pn/qn of the form (2.1), that is (with a0 = bξc),

(2.2) ξ = [a0; a1, a2, . . . ] = lim
n→∞

[a0; a1, a2, . . . , an] = lim
n→∞

pn
qn
.

The three-term recurrence relation satisfied by the numerators and de-
nominators of the convergents is equivalent to the matrix relation

(2.3)
(
pn+1 pn

qn+1 qn

)
=

(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
for all n ≥ −1, with (

p−1 p−2

q−1 q−2

)
=

(
1 0

0 1

)
.

Taking determinants in (2.3) yields the standard identity

(2.4) pjqj−1 − pj−1qj = (−1)j−1, j ≥ −1.

Given a finite continued fraction (2.1), written as [a0;a], where a =
(a1, a2, . . . , an) is the word of length n defining the fractional part, let aR =
(an, an−1, . . . , a1) denote the reversed word, and introduce the modified word
of length n+ 1 given by

ã = (a1, a2, . . . , an−1, an − 1, 1),

together with its reversal ãR. Then it is convenient to define the following
two families of transformations, labelled by a parameter z:

(2.5) ϕ(+1)
z : [a0;a] 7→ [a0;a, z−1, ãR], ϕ(−1)

z : [a0;a] 7→ [a0; ã, z−1,aR].

These operators are analogous to the folding maps employed in [24]; with a
slightly different notation, the operator ϕ(+1)

z was defined previously in [15].
For words of length zero, the action of these operators is defined by

(2.6) ϕ(+1)
z ([a0]) = [a0; z − 1, 1], ϕ(−1)

z ([a0]) = [a0 − 1; 1, z − 1].

(In what follows, we will sometimes omit the subscript z, but the implicit
dependence on a parameter z should be understood.)

For each z, starting from a continued fraction of length `([a0;a]) = n,
each of the operators ϕ(±1)

z generically produces a new continued fraction
of length `(ϕ

(±1)
z ([a0;a])) = 2n + 2. However, if it happens that z = 1 or

an = 1 in (2.5), then a zero coefficient will appear in the continued fraction
obtained by applying one of these operators, and so in order to obtain only
positive partial quotients one must use the concatenation operation

(2.7) [. . . , A, 0, B, . . .] 7→ [. . . , A+B, . . .]

(see e.g. [24, Proposition 3]), which reduces the length by 2. Henceforth we
will assume that, whenever this occurs, the action of ϕ(±1)

z is understood as
producing the result of concatenation of any zero that appears.
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Our interest in the above transformations is due to

Lemma 2.1.

(2.8)
pn
qn
± (−1)n

zq2n
= ϕ(±1)

z ([a0;a]).

Proof. This is a version of what is referred to as the Folding Lemma
in [1], where it is attributed to Mendès France [22]. The formula for ϕ(+1)

z

is [15, Lemma 4.1], and is also a corollary of [24, Proposition 2], so we just
give details of the proof for ϕ(−1)

z . Using matrix identities, similarly to the
proof of [13, Proposition 2.1], we define

Aa :=

(
a 1

1 0

)
so that

Mn := Aa0Aa1 · · ·Aan =

(
pn pn−1

qn qn−1

)
,

by (2.3). Then the continued fraction ϕ
(−1)
z ([a0;a]) = [a0; ã, z − 1,aR] of

length 2n+ 2 corresponds to the matrix product

M̃2n+2 := Aa0Aa1 · · ·Aan−1Aan−1A1Az−1AanAan−1 · · ·Aa1

= MnA
−1
an Aan−1A1Az−1M

T
nA
−1
a0 ,

which simplifies further to give

M̃2n+2 =

(
p̃2n+2 p̃2n+1

q̃2n+2 q̃2n+1

)

=

(
pn pn−1

qn qn−1

)(
z 1

−1 0

)(
qn pn − a0qn
qn−1 pn−1 − a0qn−1

)
,

where the entries in the first column of M̃2n+2 are

p̃2n+2 = zpnqn + pnqn−1 − pn−1qn, q̃2n+2 = zq2n.

Then, from the determinant formula (2.4) it follows that the final convergent
of the finite continued fraction [a0; ã, z − 1,aR] is

p̃2n+2

q̃2n+2
=
zpnqn + (−1)n−1

zq2n
=
pn
qn
− (−1)n

zq2n
,

as required.

We now have the necessary tools to describe the continued fraction ex-
pansion of a series (1.12), subject to the strong Engel property (1.9). For
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ε1 = ±1, after subtracting the integer part, we arrive at a series of the form

(2.9) S =
p

q
+

∞∑
n=2

εn
xn
, q = x1, εn = ±1,

with 0 < p/q < 1; so we proceed to describe the continued fraction expansion
for a sum of the form (2.9) with an arbitrary positive rational number p/q.
Due to the property of finite continued fractions that

(2.10) [a0;a, b, 1] = [a0;a, b+ 1],

we can always write p/q in the form

(2.11)
p

q
= [a0; a1, . . . , ak], ak > 1.

The main result of this section is the following generalization of [24,
Theorem 1].

Theorem 2.2. Given a rational number p/q in lowest terms, if it is an
integer then write p/q = a0 = [a0], or otherwise let [a0;a] be its continued
fraction expansion (2.11) of length k > 0. Then, subject to the strong Engel
property (1.9), the continued fraction expansion of the series (2.9) is given
in terms of [a0;a] and the integer parameters zj = xj/x

2
j−1 > 0 for j ≥ 2 by

(2.12) S =
∞∏
j=3

ϕ
(εj)
zj (ϕ(ε2(−1)k)

z2 ([a0;a])) = · · ·ϕ(ε4)
z4 ϕ(ε3)

z3 ϕ(ε2(−1)k)
z2 ([a0;a]).

Suppose further that k > 0 and zj > 1 for all j, with a1 > 2 if k = 1,
and a1 > 1 otherwise. Then the length `n = `(Sn) of the continued fraction
for Sn, the nth partial sum of the series, is

(2.13) `n = (k + 2)2n−1 − 2.

Proof. The formula (2.12) for S follows by induction from Lemma 2.1,
using the fact that

Sn+1 = Sn +
εn+1

xn+1
=
p`n
q`n

+
εn+1

zn+1q2`n
,

so the continued fraction for Sn+1 is obtained by applying the operator
ϕ
(εn+1)
zn+1 to the continued fraction for Sn, except if n = 1 and k is odd, when

one should apply ϕ
(−ε2)
z2 instead; and note that the length `n is even for

n > 1, since the operators ϕ(±1)
z always produce an even length continued

fraction. The exact expression (2.13) for the lengths in the case of k > 0 and
generic parameters follows immediately from the recurrence `n+1 = 2`n + 2
with the initial value `1 = k.

Remark 2.3. Theorem 2.3 in [13] covers the special case p/q = 1 with
εj = +1 for all j, while Theorem 4.2 in [15] is the case of k even with all εj
equal to +1.
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It is worth briefly commenting on the non-generic cases, when the formula
(2.13) is no longer valid. If zj = 1 for some j ≥ 2 then a zero appears and
concatenation reduces the length of the continued fraction by 2. When k = 0,
starting from [a0] = a0 we see from (2.6) that ϕ(+1)

z2 ([a0]) and ϕ(−1)
z2 ([a0]) in-

clude 1 as a partial quotient, which means that in the first case a single
application of ϕ(+1) or ϕ(−1) produces a zero, while in the second case ap-
plying ϕ(+1) or ϕ(−1) moves the 1 to the end, so that a zero appears at the
next step.

Otherwise, for k ≥ 1 the initial application of ϕ(±1)
z2 moves the coefficient

a1 to the end of the continued fraction, where it remains thereafter, so if
a1 = 1 then a zero appears at the next step. In the particular case k = 1,
applying ϕ(+1) twice sends

[a0; a1] 7→ [a0; a1, z2 − 1, 1, a1 − 1]

7→ [a0; a1, z2 − 1, 1, a1 − 1, z3 − 1, 1, a1 − 2, 1, z2 − 1, a1],

and the situation is similar when ϕ(+1) is followed by ϕ(−1), while ϕ(−1)

followed by ϕ(+1) sends

[a0; a1] 7→ [a0; a1 − 1, 1, z2 − 1, a1]

7→ [a0; a1 − 1, 1, z2 − 1, a1, z3 − 1, 1, a1 − 1, z2 − 1, 1, a1 − 1],

so that a1 − 2 appears at the next step, and similarly when ϕ(−1) is applied
twice. So the case a1 = 2 is also degenerate when k = 1.

The latter considerations allow us to state the following corollary of The-
orem 2.2, which will be relevant to the series of Lüroth type treated in the
next section.

Corollary 2.4. For a strong Engel series with signs, that is,

(2.14)
1

x1
+

∞∑
j=2

εj
xj
, εj = ±1,

with z1 = x1 > 1, zj = xj/x
2
j−1 > 1 for all j ≥ 2, the nth partial sum Sn

has length

(2.15) `n = 3 · 2n−1 − 2, n ≥ 1,

in the generic case that x1 > 2. In the special case x1 = 2, for a strong Engel
series with εj = 1 for all j, the formula should be modified to

(2.16) `n = 5 · 2n−2, n ≥ 3,

while for a strong Pierce series with εj = (−1)j−1, the formula becomes

(2.17) `n = 5 · 2n−2 − 2, n ≥ 3.

Proof. This is the case k = 1 of Theorem 2.2 with a0 = 0 and a1 =
x1 = z1, so the generic length formula (2.13) yields (2.15) immediately. In
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the degenerate case x1 = a1 = 2, for a strong Engel series one must start by
applying ϕ(−1) followed by ϕ(+1), which sends

[0; 2] 7→ [0; 1, 1, z2 − 1, 2] 7→ [0; 1, 1, z2 − 1, 2, z3 − 1, 1, 1, z2 − 1, 1, 1],

while at the next stage ϕ(+1) together with (2.7) produces

[0; 1, 1, z2−1, 2, z3−1, 1, 1, z2−1, 1, 1, z4−1, 2, z2−1, 1, 1, z3−1, 2, z2−1, 1, 1].

Then, because this and all subsequent continued fractions begin [0; 1, 1, . . .],
each successive application of ϕ(+1) requires concatenation, so the recurrence
for the lengths is modified to `n+1 = 2`n for n ≥ 3, which gives the formula
(2.16). For a strong Pierce series one should repeatedly apply ϕ(+1) followed
by ϕ(−1), so that with x1 = 2 the sequence begins

[0; 2] 7→ [0; 2, z2 − 1, 1, 1] 7→ [0; 2, z2 − 1, 2, z3 − 1, 1, 1, z2 − 1, 2],

where we used (2.7) in the second step, and thereafter there is always a 2 at
the beginning and end of each continued fraction, so no further concatenation
is required and we just have the generic recursion `n+1 = 2`n + 2 for n ≥ 3,
giving (2.17).

Remark 2.5. Note that in the strong Engel case with x1 = 2 the contin-
ued fractions from n = 3 onwards all end with [. . . , 1, 1], so we could instead
use (2.10) to make them end with [. . . , 2] and write a reduced length formula

`n = 5 · 2n−2 − 1

in that case. However, the non-reduced continued fractions maintain the
property of having even length at each stage, which we prefer to keep. Sim-
ilarly, in the strong Pierce case we instead take the reduced continued frac-
tions ending in 2 for the same reason.

3. Lüroth series and generalizations. It was shown by Lüroth [20]
that every real number in the interval (0, 1) admits an expansion of the form
(1.13) for a certain sequence of integers uj ≥ 2. As well as being used for
Diophantine approximation of real numbers [4, 5], Lüroth series have also
been employed in the context of rational function approximations of power
series [17, 18].

In [16], Kalpazidou et al. introduced two different alternating analogues
of Lüroth series, each of which provides a unique representation of a real
number. For a number in (0, 1), the first type of alternating Lüroth expansion
defined in [16] takes the form

(3.1)
1

u1
+
∞∑
j=2

(−1)j−1

u1(u1 + 1) · · ·uj−1(uj−1 + 1)uj
,

for a sequence of integers uj ≥ 1.
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It is clear from the form of (1.13) that if we set x1 = u1 and

xj = uj

j−1∏
k=1

uk(uk − 1), j ≥ 2,

then xj |xj+1, so a Lüroth series is a particular example of an Engel series,
and similarly an alternating Lüroth series (3.1) is a particular type of Pierce
series.

In order to consider these two examples together it is convenient to start
with a more general family of series, of the form

(3.2) S′ =
1

u1
+
∞∑
j=2

εj
u1v1 · · ·uj−1vj−1uj

, εj = ±1,

for sequences of integers uj , vj ∈ Z>0. If we now take

(3.3) x1 = u1, xj = uj

j−1∏
k=1

ukvk, j ≥ 2,

then it turns out we can further obtain the strong Engel property (1.9) for the
sequence (xn) whenever (un) satisfies certain recurrence relations of second
order, analogous to (1.3).

Proposition 3.1. Suppose that the sequence (un) satisfies either the
recurrence

(3.4) un+2un = αnu
3
n+1vn+1, n ≥ 1,

where u2 = mu21v1, or

(3.5) un+2 = αnu
2
n+1vn, n ≥ 1,

where u2 = mu1, and in each case (αn) is an arbitrary sequence of positive
integers, with u1,m ∈ Z>0 arbitrary. Then the associated sequence (xn) de-
fined by (3.3) has the strong Engel property, that is, zj = xj/x

2
j−1 ∈ Z for

all j ≥ 2.

Proof. For the proof it is convenient to write the various relations be-
tween un, vn, αn and xn in terms of the exponentiated shift operator, as in
(1.7). From (3.3) we have

θ[xn] = unvnθ[un], n ≥ 1,

which implies
θ2[xn] = θ[un]θ[vn]θ2[un]

also holds for n ≥ 1. Then, by rewriting the first recurrence (3.4) as

θ2[un] = αnun+1vn+1,
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we calculate
z2 =

x2
x21

=
u2v1
u1

= mu1v
2
1 ∈ Z>0,

while for n ≥ 1 we have

zn+2 = αnun+1v
2
n+1ρn,

with

ρn :=
θ[un]

xnvn
, n ≥ 1.

The latter definition gives ρ1 = u2/(u
2
1v1) = m and

(3.6) θ[ρn] =
θ2[un]

θ[xn]θ[vn]
= αn,

which just says that ρn+1 = αnρn, so by induction we have ρn ∈ Z>0 for
all n ≥ 1, and this implies zj ∈ Z>0 for all j ≥ 2, as required. Similarly, we
rewrite the second recurrence (3.5) as

θ2[un] = αnunvn,

then calculate
z2 =

u2v1
u1

= mv1 ∈ Z>0,

and for n ≥ 1 we find
zn+2 = αnvn+1ρn,

where in this case we instead take the definition

ρn :=
unθ[un]

xn
, n ≥ 1.

The latter definition gives ρ1 = m once again, and also

θ[ρn] =
θ[un]θ2[un]

θ[xn]
= αn,

which is the same final result for θ[ρn] as in (3.6), so the conclusion is the
same.

Example 3.2. Taking αn = 1, vn = un − 1 for all n ≥ 1, the recurrence
(3.4) becomes

(3.7) un+2un = u3n+1(un+1 − 1),

and setting u1 = 3, m = 1 gives u2 = u21(u1 − 1) = 18, so the sequence (un)
begins with

(3.8) 3, 18, 33048, 66266659938624768, . . . .

We have x1 = 3, xn+1 = xnun+1(un − 1) for n ≥ 1. Hence

3, 108, 60676128, 132875521042766180738219532288, . . .
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is the beginning of the sequence (xn). Then we find z2 = 108/32 = 12, z3 =
60676128/1082 = 5202, z4 = 132875521042766180738219532288/606761282

= 36091859899032, and so on.

Example 3.3. Taking αn = 1, vn = un + 1 for all n ≥ 1, the recurrence
(3.5) becomes

(3.9) un+2 = u2n+1(un + 1),

and taking u1 = 2, m = 1 gives u2 = u1 = 2, so the sequence (un) begins
with

(3.10) 2, 2, 12, 432, 2426112, . . . .

We have x1 = 2, xn+1 = xnun+1(un + 1) for n ≥ 1. Hence

2, 12, 432, 2426112, 2548646416023552, . . .

is the beginning of the sequence (xn), and it is not hard to show that in fact
xn = un+1 for all n ≥ 1, with this particular choice of initial values for (3.9).
Then we find z2 = 12/22 = 3, z3 = 432/122 = 3, z4 = 2426112/4322 = 13,
and in general zn = un−1 + 1 for all n ≥ 2.

We can now combine the results in Section 2 with Proposition 3.1 to
describe the continued fraction expansion of certain Lüroth series with the
strong Engel property, not just of the form (1.13) but also with arbitrary
signs inserted.

Theorem 3.4. Suppose that the sequence (un) satisfies either the recur-
rence

(3.11) un+2un = αnu
3
n+1(un+1 − 1), n ≥ 1,

where u2 = mu21(u1 − 1), or

(3.12) un+2 = αnu
2
n+1(un − 1), n ≥ 1,

where u2 = mu1, and in each case (αn) is an arbitrary sequence of positive
integers, with u1 ∈ Z>1, m ∈ Z>0 arbitrary. Then the continued fraction
expansion of the sum

(3.13) S =
1

u1
+
∞∑
j=2

εj
u1(u1 − 1) · · ·uj−1(uj−1 − 1)uj

, εj = ±1,

is given by

(3.14) S =
∞∏
j=3

ϕ
(εj)
zj (ϕ(−ε2)

z2 ([0;u1])) = · · ·ϕ(ε4)
z4 ϕ(ε3)

z3 ϕ(−ε2)
z2 ([0;u1]),

where either zn+1 = un(un − 1)2ρn when (3.11) holds, or zn+1 = (un − 1)ρn
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when (3.12) holds, with

(3.15) ρn = m
n−1∏
k=1

αk

in both cases, for all n ≥ 1.

Proof. This follows by combining Theorem 2.2 for k = 1 with Proposi-
tion 3.1, in the particular case that vn = un − 1 for all n, and noting that
from (3.6) we have ρn+1 = αnρn for n ≥ 1 with the initial value ρ1 = m,
which yields both (3.15) and the appropriate formula for zn+1 according to
whether (3.11) or (3.12) holds.

Example 3.5. As a continuation of Example 3.2, it follows that the
number S ≈ 0.34259260907, whose Lüroth series is defined by the sequence
(3.8), that is,

S =
1

3
+

1

108
+

1

60676128
+

1

132875521042766180738219532288
+ · · · ,

has continued fraction expansion

[0; 2, 1, 11, 3, 5201, 1, 2, 11, 1, 2, 36091859899031, 1, 1, 1, 11, 2, 1, 5201, 3, 11, 1, 2, . . .].

The infinite continued fraction is obtained by folding the sequence of finite
continued fractions for the nth truncation of the series, that is,

[0; 3] 7→ [0; 2, 1, 11, 3] 7→ [0; 2, 1, 11, 3, 5201, 1, 2, 11, 1, 2] 7→ · · · ,
where the lengths are given by (2.15), and this pattern of lengths remains
the same if arbitrary signs are inserted in S.

It is straightforward to state the analogue of Theorem 3.4 for the case of
an alternating Lüroth series (3.1), also with the inclusion of arbitrary signs.
The proof is essentially the same so is omitted.

Theorem 3.6. Suppose that the sequence (un) satisfies either the recur-
rence

(3.16) un+2un = αnu
3
n+1(un+1 + 1), n ≥ 1,

where u2 = mu21(u1 + 1), or

(3.17) un+2 = αnu
2
n+1(un + 1), n ≥ 1,

where u2 = mu1, and in each case (αn) is an arbitrary sequence of positive
integers, with u1 ∈ Z>1 and m ∈ Z>0 arbitrary. Then the continued fraction
expansion of the sum

(3.18) S′ =
1

u1
+
∞∑
j=2

εj
u1(u1 + 1) · · ·uj−1(uj−1 + 1)uj

, εj = ±1,
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is given by the same formula as for S in (3.14), but with zn+1 =
un(un + 1)2ρn when (3.16) holds, or zn+1 = (un + 1)ρn when (3.17) holds,
with ρn = m

∏n−1
k=1 αk in both cases, for all n ≥ 1.

Example 3.7. As a continuation of Example 3.3, it follows that the
number S′ ≈ 0.418981069299, whose alternating Lüroth expansion is defined
by the sequence (3.10), that is,

S′ =
1

2
− 1

12
+

1

432
− 1

2426112
+

1

2548646416023552
− · · · ,

has continued fraction expansion

[0; 2, 2, 1, 1, 2, 2, 2, 1, 1, 12, 2, 2, 2, 2, 1, 1, 2, 2, 432, 1, 1, 2, 1, 1, 2, 2, 2, 2, 12, 1, 1, . . .].

The infinite continued fraction is obtained by folding the sequence of finite
continued fractions for the nth truncation of the series S′, that is,

[0; 2] 7→ [0; 2, 2, 1, 1] 7→ [0; 2, 2, 1, 1, 2, 2, 2, 2]

7→ [0; 2, 2, 1, 1, 2, 2, 2, 1, 1, 12, 2, 2, 2, 2, 1, 1, 2, 2]

etc., and since k = 1 and a1 = x1 = 2, this is a non-generic case, with the
lengths being given by (2.17) for n ≥ 3.

The result of Proposition 3.1 requires the sequence (un) to satisfy one
of the recurrences (3.4) or (3.5), which depend on how the sequence (vn) is
specified, for instance, imposing vn = un − 1 for a Lüroth series (1.13), or
vn = un+1 for an alternating Lüroth series (3.1), as above. However, there is
another way to obtain the strong Engel property, by imposing independent
conditions on the sequences (un) and (vn).

Proposition 3.8. Suppose that the sequences (un) and (vn) satisfy

(3.19) un = βn

n−1∏
k=1

uk, vn = γn

n−1∏
k=1

vk, n ≥ 2,

where (βn) and (γn) are arbitrary sequences of positive integers, with arbi-
trary u1, v1 ∈ Z>0. Then the associated sequence (xn) defined by (3.3) has
the strong Engel property, that is, zj = xj/x

2
j−1 ∈ Z for all j ≥ 2.

Proof. We have

z2 =
x2
x21

=
u2u1v1
u21

=
u2v1
u1

= β2v1,

while for j ≥ 2 we see that

zj+1 =
uj+1

∏j
k=1 ukvk

u2j (
∏j−1
k=1 ukvk)

2
=

uj+1vj

uj
∏j−1
k=1 ukvk

= βj+1γj ,

and the result follows.
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Example 3.9. Upon setting βn=n, γn= 1 for all n≥2 and u1 =v1 = 1,
we have vn = 1 for all n, and we find

un = n
n−2∏
k=1

(n− k)2
k−1

, xn =
n−2∏
k=0

(n− k)2
k
,

where xn =
∏n
k=1 uk in this case, which implies that zn = βn = n for

n ≥ 2. So the sequence (un) begins with 1, 2, 6, 48, 2880, 9953280, . . . , and
(xn) begins with 1, 2, 12, 576, 1658880, 16511297126400, . . . . The alternating
sum

∑
j≥1(−1)j−1/xj is the strong Pierce series

(3.20) S′ = 1− 1

2
+

1

12
− 1

576
+

1

1658880
− 1

16511297126400
+ · · · ,

and the continued fraction expansion of S′ ≈ 0.5815978250 is

[0; 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 4, 2, 2, 2, 3, 1, 1, 2, 2, 5, 1, 1, 2, 1, 1, 3, 2, 2, 2, 4, 1, 1, 2, 2, . . .].

The corresponding sequence of foldings of finite continued fractions begins
[1] 7→ [0; 1, 1] = [0; 2]

7→ [0; 1, 1, 2, 2]

7→ [0; 1, 1, 2, 1, 1, 3, 2, 2, 1, 1]

7→ [0; 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 4, 2, 2, 2, 3, 1, 1, 2, 1, 1],

and so on, viewed as corresponding to k = 0 in Theorem 2.2, or to k = 1
if we combine the first two terms so that S′ = 1/x′1 +

∑
j≥2(−1)j/x′j =

1/2 + 1/12 − 1/576 + 1/1658880 − · · · , with x′1 = 2, x′j = xj+1 for j ≥ 2,
and then the sequence of lengths is given by (2.16).

4. Irrationality exponents and transcendence. In this final section
we compute the irrationality exponents of certain families of transcendental
numbers defined by series of Lüroth/alternating Lüroth type, with arbitrary
signs, that have the strong Engel property, before concluding with a conjec-
ture concerning the whole family of series in Theorem 2.2.

Recall that the irrationality exponent µ(ξ) of a real number ξ is defined
to be the supremum of the set of real numbers µ such that there are infinitely
many rational approximations p/q satisfying the inequality

|ξ − p/q| < 1/qµ.

For an irrational number ξ we have µ(ξ) ≥ 2, and the irrationality exponent
is given in terms of qn, the denominators of the convergents of the continued
fraction expansion of ξ, by the formula

(4.1) µ(ξ) = 1 + lim sup
n→∞

log qn+1

log qn
.

If µ(ξ) > 2 then ξ is transcendental, by Roth’s theorem [25].
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Theorem 4.1. Suppose that a number ξ ∈ R>0 is defined by either a
series of the Lüroth type (3.13) with arbitrary signs, subject to a recurrence
of the form (3.11), or of the alternating Lüroth type (3.18) with arbitrary
signs, subject to a recurrence of the form (3.16), where in each case αn is
given by

(4.2) αn = dexp(Cνn)P (un, un+1)e with P (X,Y ) =
M∑
i=0

N∑
j=0

cijX
riY sj ,

for non-negative integers M,N , positive real numbers C, cij , ν, and non-
negative real exponents r = rM > rM−1 > · · · > r0 ≥ 0, s = sN > sN−1 >
· · · > s0 ≥ 0. Then ξ is transcendental with irrationality exponent

(4.3) µ(ξ) = max
(
ν, 12
(
s+ 4 +

√
(s+ 4)2 + 4(r − 1)

))
.

Similarly, if ξ is defined by one of the series (3.13) or (3.18), with arbitrary
signs, subject to a recurrence of the form (3.12) or (3.17), respectively, with
αn as in (4.2), then it is transcendental with irrationality exponent

(4.4) µ(ξ) = max
(
ν, 12
(
s+ 2 +

√
(s+ 2)2 + 4(r + 1)

))
.

Proof. For the sake of simplicity, we assume that the series (3.13) or
(3.18) being considered is generic, in the sense described in Corollary 2.4,
which means imposing the requirement u1 ≥ 3, but if this is not the case
then the same method of proof applies with only minor modifications. Clearly
(un) is an increasing sequence of positive integers. Upon setting Λn = log un
and taking logarithms in either (3.11) or (3.16), subject to (4.2), we find

(4.5) Λn+2 − (s+ 4)Λn+1 + (1− r)Λn = ∆n, ∆n = Cνn + o(1).

By applying the method of Aho and Sloane [2], the inhomogeneous linear
equation (4.5) can be solved “explicitly” to yield

(4.6) Λn = Aλn +Bλ̄n + Fn, Fn = C ′νn(1 + o(1)),

for certain constants A,B,C ′, where

(4.7) λ = 1
2

(
s+ 4 +

√
(s+ 4)2 + 4(r − 1)

)
≥ 2 +

√
3,

and λ̄ is the conjugate root of the characteristic quadratic for (4.5). More
details of the precise form of A, B and Fn can be found in [12] (see also [15]),
but are not needed here; the formula (4.6) is not really an explicit solution,
because Fn and A,B depend implicitly on the sequence (un). Then taking

µ = max(ν, λ),

we see that

(4.8) Λn = Dµn(1 + o(1)), D > 0,

where D is either C ′ or A depending on which of ν or λ is the greater.
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For what follows, an estimate of the growth of the sequence (zn) is also
required. From Theorems 3.4 and 3.6, using (3.15), we have

log zn = log un−1 + 2 log(un−1 ∓ 1) + log ρn−1

= 3Λn−1 + logm+
n−2∑
k=1

logαk + o(1).

Thus we see from (4.2) and (4.8) that

(4.9) log zn = D′µn(1 + o(1)), D′ > 0,

where the precise form of D′ is unimportant.
In order to evaluate the limit in (4.1), we now consider the three-term

recurrence relation for qn encoded in (2.3), which is qn+1 = an+1qn + qn−1,
so

Ln+1 − Ln = log an+1 + log

(
1 +

qn−1
an+1qn

)
,

where we set Ln = log qn. Performing the telescopic sum of the latter identity,
with the initial value L0 = log q0 = 0, and noting that the last term on the
right is at most log 2, since (qn) is an increasing sequence of positive integers
and an ≥ 1, we obtain

(4.10) Ln =
n∑
j=1

log aj + δn, 0 < δn < n log 2.

From the discussion before Corollary 2.4, it is clear that the only possible
values of the coefficients appearing in the folded continued fraction (3.14)
(or its counterpart as described in Theorem 3.6) are 1, u1, u1 − 1, u1 − 2
and zj − 1 for j ≥ 2. In an initial block of length `n = 3 · 2n−1 − 2, as in
(2.15), the coefficient zn − 1 appears once, zn−1 − 1 appears twice, and in
general zj−1 appears 2n−j times. This accounts for 2n−1−1 coefficients out
of `n, while δ`n and the sum of the logarithms of the remaining coefficients
are both O(2n), so from (4.10) we have

L`n =

n∑
j=2

2n−j log(zj − 1) +O(2n) = 2nD′
n∑
j=2

(µ/2)j(1 + o(1)) +O(2n)

= D′(1− 2/µ)−1µn(1 + o(1)),

since µ > 2 by (4.7). Now if εn+1 = +1 then folding requires an application
of ϕ(+1)

zn+1 , which gives a`n+1 = zn+1 − 1 and so

L`n+1 = L`n + log(zn+1 − 1) + δ`n+1 − δ`n = L`n +D′µn+1(1 + o(1)),

which gives

(4.11)
L`n+1

L`n
= 1 +

µ

(1− 2/µ)−1
+ o(1) = µ− 1 + o(1).
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Otherwise, if εn+1 = −1 then an application of ϕ(−1)
zn+1 gives a`n+1 = 1, so

L`n+1/L`n = 1 + o(1), but a`n+2 = zn+1 − 1, and so instead L`n+2/L`n+1 =
µ− 1 + o(1). Then, by considering the sequence of coefficients until the next
folding happens at length `n+1, we may write

L`n+j = D′µn(µ+ ∆̃n,j)(1 + o(1))

for j ≥ 1 when εn+1 = +1, or for j ≥ 2 when εn+1 = −1, where 0 <
∆̃n,j = O(1) increases by an amount µk−n ≤ 1 each time the coefficient
a`n+j is equal to zk − 1, and otherwise remains the same. So there is an
initial step where L`n+j+1/L`n+j = µ− 1 + o(1) for j = 0 or 1 depending on
whether εn+1 = ±1, and at all subsequent steps until the next folding we have
L`n+j+1−L`n+j = D′µn

(
∆̃n,j+1− ∆̃n,j + o(1)

)
where ∆̃n,j+1− ∆̃n,j ≤ µk−n

for 2 ≤ k ≤ n, so ∆̃n,j+1 − ∆̃n,j ≤ 1. Hence, for these subsequent steps,

L`n+j+1

L`n+j
= 1 +

∆̃n,j+1 − ∆̃n,j + o(1)

(µ+ ∆̃n,j)
(
1 + o(1)

) ,
which in the limit is at most 1 + µ−1, until the next folding happens and
there is a term with limit µ− 1, obtained from the ratio of terms like (4.11).
Now 1 + µ−1 ≤ µ− 1 for µ ≥ 1 +

√
2, which holds by (4.7). Thus from (4.1)

we find

µ(ξ) = 1 + lim sup
n→∞

Ln+1

Ln
= 1 + µ− 1 = max(ν, λ),

as required.
For the second part of the theorem, where (un) is subject to (3.12) or

(3.17), for a series of Lüroth/alternating Lüroth type with signs, as appro-
priate, (4.5) is modified to

Λn+2 − (s+ 2)Λn+1 − (1 + r)Λn = ∆n, ∆n = Cνn + o(1),

and the largest characteristic root is

λ = 1
2

(
s+ 2 +

√
(s+ 2)2 + 4(r + 1)

)
≥ 1 +

√
2,

so µ = max(ν, λ) ≥ 1+
√

2 still holds, and the rest of the proof is the same.

Remark 4.2. A suitable modification of the preceding argument should
show that the number (3.20) defined in Example 3.9 has irrationality expo-
nent 2.

As is well known, the set of irrational numbers with irrationality exponent
greater than 2 has measure zero. If µ(ξ) = 2 then there is no simple criterion
to decide whether ξ is transcendental or not. Nevertheless, we have reason
to expect that none of the ξ defined by strong Engel series with signs are
algebraic.
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Conjecture 4.3. All of the real numbers ξ defined by a series of the form
(2.12), for arbitrary p/q ∈ Q and positive integer parameters z2, z3, . . . , are
transcendental.

To explain why the above conjecture is plausible, we return to the case
considered in [13], that is, p/q = 1 with all εj = +1, when the strong Engel
series for ξ has the form

(4.12) S = 1 +
∞∑
j=2

1

z2
j−2

2 z2
j−3

3 · · · zj

(it is necessary to assume that zj > 1 for at least one j to ensure conver-
gence). Suppose that we replace the first n of the parameters by variables,
so zj+1 = ζ−1j for j = 1, . . . , n, and regard all the other zj as fixed. Then
(4.12) becomes a power series

(4.13) S(ζ1, . . . , ζn) = 1 +
∞∑
j=1

cj

min(j,n)∏
i=1

ζ2
j−i

i

for suitable coefficients cj defined in terms of zn+2, zn+3, . . . , with cj = 1
for 1 ≤ j ≤ n. Then in principle, the series (4.13) should be amenable
to the techniques of Loxton and van der Poorten [19], who proved that,
subject to some recursive systems of functional equations being satisfied,
certain power series in several variables, with algebraic coefficients, take only
transcendental values at algebraic points.

The result of [19] is a very broad generalization of a result of Mahler [21],
who showed that the series

f(ζ) =
∞∑
n=0

ζ2
n
,

which satisfies the functional equation

f(ζ2) = f(ζ)− ζ,
takes transcendental values at algebraic points α with 0 < |α| < 1. In partic-
ular, this includes the transcendence of the Kempner number and the other
values of the series (1.11) for integers u ≥ 2.

The analysis of the series (4.13) by the methods of Loxton and van der
Poorten, and a proof of the above conjecture, is an interesting challenge for
the future.
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