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Interpolation of a regular subspace complementing the
span of a radially singular function

by

Konstantin Zerulla (Karlsruhe)

Abstract. We analyze the interpolation of the sum of a subspace, consisting of reg-
ular functions, with the span of a function with rα-type singularity. In particular, we
determine all interpolation parameters, for which the interpolation space of the subspace
of regular functions is still a closed subspace. The main tool is here a result by Ivanov
and Kalton on interpolation of subspaces. To apply it, we study the K-functional of the
rα-singular function. It turns out that the K-functional possesses upper and lower bounds
that have a common decay rate at zero.

1. Introduction. Many relevant problems in mathematics and physics
demand for a thorough study of functions that have a radial singularity of rα-
type. Important examples are elliptic boundary value problems on domains
with irregular boundary, or interface problems for an elliptic operator (see
[12, 10, 21, 3, 16, 8, 9] for instance). These functions furthermore play an
important role in the analysis and numerical solution of Maxwell equations
on homogeneous and heterogeneous domains with irregular boundary (see [8,
9, 7, 2] among others). The error in numerical approximations for problems
involving singular functions of rα-type is also investigated in [4, 5, 6] for
instance.

This paper is motivated by the regularity analysis of Maxwell equations in
heterogeneous cuboids, which is in preparation. Indeed, Theorem 1.1 below
is essential for the study of the behavior of the electric field near interior
edges of a heterogeneous material, as the regularity of the electric field can
be expressed by means of the first interpolation space in Theorem 1.1.

We consider here the singular function

(1) ω(r cosφ, r sinφ) = χ(r)rαψ(φ), r ∈ [0, 1], φ ∈ [0, 2π),
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on the open unit disc D. The definition (1) involves a smooth cut-off function
χ : [0,∞) → [0, 1] with χ = 1 on [0, 1/2] and support in [0, 3/4], a number
α ∈ (0, 1), and a piecewise C2-function ψ : [0, 2π] → R with ψ(0) = 1. For
simplicity, we assume that ψ is C2-regular on [0, π/2] and on [π/2, 2π]. Other
partitions of [0, 2π] or restrictions to subintervals can be handled with similar
arguments. For brevity, we always write ω(r, φ) instead of ω(r cosφ, r sinφ).
The span of ω is denoted by

V := span{ω}.(2)
We next present the main result of this paper. The relevant notation is

introduced in Section 2. In particular, PHs(D) denotes the space of piecewise
Hs-regular functions on D for s > 0 (see (3)).

Theorem 1.1. The identities

(PH1(D),PH2(D)⊕ V )θ1,2 = PH1+θ1(D)⊕ V, θ1 ∈ (α, 1),

(PH1(D),PH2(D)⊕ V )θ2,2 = PH1+θ2(D), θ2 ∈ (0, α),

are valid. For the critical value α, the space PH1+α(D) is not closed in
(PH1(D),PH2(D)⊕ V )α,2.

We point out that the statements in Theorem 1.1 are sharp. Note also
that the space PH1+θ1(D) ⊕ V is equipped with the sum of the norms in
PH1+θ1(D) and V .

To the best of our knowledge, Theorem 1.1 is the first one to answer
the question for which interpolation parameters θ the interpolation space
(PH1(D),PH2(D))θ,2 = PH1+θ(D) is a closed subspace of the interpolation
space (PH1(D),PH2(D) ⊕ V )θ,2. This question has been investigated for
other spaces in the literature:

Consider an interpolation couple (X0, X1), and closed subspaces
Y0 in X0 and Y1 in X1. Is the interpolation space (Y0, Y1)θ,p still
a closed subspace of (X0, X1)θ,p?

The issue is addressed in [17, Chapter 1, Problem 18.5], and [17, Chap-
ter 1, Remark 11.4] implies that the answer is no, in general. In [22, Satz 5],
Triebel gives an example of Hilbert spaces H0, H1, H2 with H1 ↪→ H0,
H2 ⊆ H1 being closed with (arbitrary) finite codimension, and (H0, H2)1/2,2
not closed in (H0, H1)1/2,2. Wallstén [23] analyzes this issue for a codimen-
sion 1 subspace M in L1, and interpolates with L∞. Depending on the choice
of M and the interpolation parameter, the interpolation space between M
and L∞ is or is not a closed subspace of the interpolation space between L1

and L∞. Note that it can also happen that the non-closedness occurs for any
interpolation parameter in (0, 1) (see [23]).

Ivanov and Kalton [13] studied Banach spaces X0, X1 and Y0, with Y0 be-
ing a closed subspace of codimension 1 in X0, and (X0, X1) an interpolation
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couple. They derived formulas for numbers σ0 ≤ σ1 such that (Y0, X1)θ,p is
a closed subspace of (X0, X1)θ,p for θ ∈ (0, σ0) ∪ (σ1, 1), p ∈ [1,∞) (see [13,
Theorem 2.1]). Note that some of the statements in [13] were earlier obtained
in [18]. Theorem 2.1 from [13] is the essential tool in the proof of Theorem 1.1
in this paper. In [1], the findings of [13] are generalized. In particular, the
closed subspace Y0 is allowed to have arbitrary finite codimension in X0.

The major difficulty in the proof of Theorem 1.1 is to obtain a sharp
lower bound for the K-functional of the singular function ω. To that end, we
study the modulus of smoothness of ω. It turns out that a subtle analysis
of ω near zero is needed to provide estimates for the modulus of smoothness
(see the proof of Lemma 3.1).

The paper is organized in the following way. In the next section, we
fix some notation from interpolation theory, and we introduce the relevant
(broken) Sobolev spaces of fractional order. In Section 3, we derive the crucial
upper and lower estimates for the K-functional of the singular function ω.
Finally, we deduce Theorem 1.1 in Section 4 by combining our results from
Section 3 with [13, Theorem 2.1].

As a byproduct of our preparations in Section 3, we also obtain a precise
regularity statement for ω in terms of interpolation spaces (see Corollary 3.3).
To the best of our knowledge, only parts of the statement are available in
the literature (see [4] for instance).

2. Analytical preliminaries. We first recall basic constructions from
real interpolation theory via the K-method. Our presentation follows [19,
Section 1.1]. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be real Banach spaces, which both
embed into a common Hausdorff space. The K-functional is given by the
formula

K(t, z,X, Y ) := inf
z=x+y

x∈X, y∈Y

(∥x∥X + t∥y∥Y )

for z ∈ X + Y and t > 0. It is used to define the real interpolation spaces

(X,Y )θ,p :=
{
z ∈ X + Y

∣∣∣ ∥z∥p(X,Y )θ,p
:=

∞�

0

t−1−θpK(t, z,X, Y )p dt <∞
}

for θ ∈ (0, 1) and p ∈ [1,∞). The spaces

(X,Y )θ :=
{
z ∈ X+Y

∣∣∣ lim
t→0

t−θK(t, z,X, Y )= lim
t→∞

t−θK(t, z,X, Y )=0
}
,

(X,Y )θ,∞ := {z ∈ X + Y | t 7→ t−θK(t, z,X, Y ) ∈ L∞(0,∞)}

also arise in this paper. Both are complete with respect to the norm

∥z∥(X,Y )θ,∞ := ∥t−θK(t, z,X, Y )∥L∞(0,∞), z ∈ (X,Y )θ,∞.
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We next recall the definition of fractional order Sobolev spaces. Let
O ⊆ R2 be a bounded domain with compact Lipschitz boundary. We de-
note the standard Sobolev space of order k ∈ N by Hk(O), and set

Hs(O) := (L2(O),H2(O))s/2,2, s ∈ (0, 2).

Fractional Sobolev spaces can also be defined by means of weighted dif-
ference quotients (see [20, Section 2.3.8] for instance). Note that both def-
initions are equivalent in the current setting. (This well known fact is for
instance verified by combining the main theorem in [15, Section 1] with [11,
Corollary 6.8].)

Having the choice of the function ψ in (1) in mind, we introduce the open
disc segments

D1 := {(r cosφ, r sinφ) | r ∈ (0, 1), φ ∈ (0, π/2)},
D2 := {(r cosφ, r sinφ) | r ∈ (0, 1), φ ∈ (π/2, 2π)},

using polar coordinates (r, φ) on D. To study functions that are only regular
on D1 and D2, but not on D, we use the broken fractional order Sobolev
spaces

(3) PHs(D) := {f ∈ L2(D) | f |Di ∈ Hs(Di), i ∈ {1, 2}}, s ∈ (0, 2],

which are complete with respect to the norm

∥f∥PHs(D) :=
( 2∑
i=1

∥f |Di∥2Hs(Di)

)1/2
, f ∈ PHs(D).

We also note the interpolation property

(L2(D),PH2(D))s/2,2 = PHs(D), s ∈ (0, 2).

An essential part of the proof for Theorem 1.1 is the derivation of sharp
upper and lower estimates for the functional K(·, ω,L2(D),PH2(D)) (see
Lemmas 3.1 and 3.2). By sharp we mean that the upper and lower bounds
have the same decay rate near zero. To obtain the inequalities, it is useful to
analyze the second modulus of smoothness for the singular function ω on an
appropriately chosen open subset D0 of D1. To define the second modulus
of smoothness, we use the set

D0(h) = {v ∈ D0 | v + th ∈ D0 for all 0 ≤ t ≤ 1}

for h ∈ R2. Denoting the characteristic function of a set O ⊆ R2 by 1O, the
second modulus of smoothness of ω on D0 is defined as

(4) m2(t, ω) := sup
0<|h|≤t

∥1D0(2h)(ω − 2ω(·+ h) + ω(·+ 2h))∥L2(D0),

for t > 0 (see [14, Section 1] for instance). [14, Lemma 1] and the definition
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of the K-functional then provide the inequality

K(t2, ω,L2(D0),H
2(D0))

≥ inf
g∈H2(D0)

(
∥ω − g∥L2(D0) + t2 sup

k1+k2=2
∥∂k1x ∂k2y g∥L2(D0)

)
≥ Cm2(t, ω), t > 0,

with a uniform constant C > 0. We then infer the useful estimate

(5) K(t2, ω,L2(D),PH2(D)) = inf
ω=f+g

f∈L2(D), g∈PH2(D)

(∥f∥L2(D) + t2∥g∥PH2(D))

≥ inf
ω=f̃+g̃

f̃∈L2(D0), g̃∈H2(D0)

(∥f̃∥L2(D0) + t2∥g̃∥H2(D0))

= K(t2, ω,L2(D0),H
2(D0)) ≥ Cm2(t, ω)

for t > 0, which comes into play in the proof of Lemma 3.1.

3. Estimates for the K-functional. In this section, we derive upper
and lower estimates for the K-functional of the singular function ω from (1).
The inequalities are crucial for the proof of Theorem 1.1 in Section 4. In par-
ticular, it is important to have upper and lower bounds for the K-functional
that have the same decay rate near zero.

In the next lemma, we start with the lower estimate.

Lemma 3.1. We have

K(t2, ω,L2(D),PH2(D)) ≥ Clt
α+1, t ∈ (0, 1],

with a uniform constant Cl = Cl(ω) > 0.

Proof. 1) We consider the problem in cartesian coordinates (x, y) on the
open subset

D0 := {(x, y) | 0 < x2 + y2 < 1/16, 0 < y < x}
of D1. Note that the cut-off function χ from (1) is then equal to 1 on D0.
As a result, ω has the representation

ω(x, y) = ψ(arctan(y/x))|(x, y)|α, (x, y) ∈ D0.

On D0, we then calculate

∂xω(x, y) = −yψ′(arctan(y/x))|(x, y)|α−2 + αxψ(arctan(y/x))|(x, y)|α−2,

∂2xω(x, y) =
(
y2ψ′′(arctan(y/x))− 2(α− 1)yxψ′(arctan(y/x))

+ α(α− 2)x2ψ(arctan(y/x))
)
|(x, y)|α−4

+ αψ(arctan(y/x))|(x, y)|α−2.

We next derive a lower estimate for −∂2xω on an appropriate part of D0.
For convenience, we denote the piecewise C2-norm of ψ by ∥ψ∥C2 (the supre-
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mum of the C2-norms on D1 and D2). Recall that ψ(0) = 1 (see Section 1).
By continuity, there is a δ ∈ (0, π/2) such that ψ(φ) ≥ 1/2 for all φ ∈ [0, δ].
Let furthermore x ∈

(
0, 1

4
√
10

)
and 0 < y ≤ γx with

γ := min
{
tan δ, (1−α)α

12∥ψ∥C2

}
.

Note that γ < 1, as ψ(0) = 1 and α < 1. The choice of γ in particular implies
that arctan(y/x) ∈ (0, δ]. In view of the assumption α ∈ (0, 1), we get

(6)
(
α(2− α)x2ψ(arctan(y/x))− y2ψ′′(arctan(y/x))

− 2(1− α)yxψ′(arctan(y/x))
)
|(x, y)|α−4

≥
(1−α−2γ

2−α α(2− α)x2ψ(arctan(y/x)) + 1+2γ
2−α α(2− α)x2ψ(arctan(y/x))

− y2∥ψ∥C2 − 2yx∥ψ∥C2

)
|(x, y)|α−4

≥
(
1
2(1− α− 2γ)αx2 + (1 + 2γ)αx2ψ(arctan(y/x))

− 3γx2∥ψ∥C2

)
|(x, y)|α−4.

We next use γ ≤ (1−α)α
12∥ψ∥C2

< 1−α
4 to deduce that

(7)
(
1
2(1−α−2γ)αx2+(1+2γ)αx2ψ(arctan(y/x))−3γx2∥ψ∥C2

)
|(x, y)|α−4

≥
(
1
4(1− α)αx2+(1 + 2γ)αx2ψ(arctan(y/x))−3γx2∥ψ∥C2

)
|(x, y)|α−4

≥ (1 + 2γ)αx2ψ(arctan(y/x))|(x, y)|α−4.

Combining (6)–(7) and using again the relation y ≤ γx, we infer that

(8) −∂2xω(x, y)
≥ −αψ(arctan(y/x))|(x, y)|α−2+(1+2γ)αx2ψ(arctan(y/x))|(x, y)|α−4

= α
(
−(x2 + y2) + (1 + 2γ)x2

)
ψ(arctan(y/x))|(x, y)|α−4

≥ α(−(1 + γ) + 1 + 2γ)x2ψ(arctan(y/x))|(x, y)|α−4

= αγx2ψ(arctan(y/x))|(x, y)|α−4.

2) We now bound the second modulus of smoothness m2(·, ω) for ω on D0

from below (see (4)). To that end, we choose t < 1
12

√
10

and h = (h1, 0) with
h1 = t in (4). Combining the choice of h1 and γ < 1, we obtain

m2(t, ω)
2 ≥

h1�

0

γx�

0

(
ω(x, y)− 2ω(x+ h1, y) + ω(x+ 2h1, y)

)2
dy dx

=

h1�

0

γx�

0

( h1�

0

−∂xω(x+ s, y) + ∂xω(x+ h1 + s, y) ds
)2

dy dx

=

h1�

0

γx�

0

( h1�

0

h1�

0

∂2xω(x+ s+ τ, y) dτ ds
)2

dy dx.
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Inserting now also (8), we infer that

m2(t, ω)
2 ≥

h1�

0

γx�

0

( h1�

0

h1�

0

αγ(x+ s+ τ)2ψ
(
arctan

( y
x+s+τ

))
· |(x+ s+ τ, y)|α−4 dτ ds

)2
dy dx.

Taking also into account the facts that ψ
(
arctan

( y
x+s+τ

))
≥ 1

2 for x, s, τ ∈
(0, h1) and y < γx, we arrive at

m2(t, ω)
2

≥
h1�

0

γx�

0

( h1�

0

h1�

0

α

2
γ(x+ s+ τ)2(1 + γ)α−4(x+ s+ τ)α−4 dτ ds

)2

dy dx

=

h1�

0

γx�

0

( h1�

0

α

2
γ
(1 + γ)α−4

1− α

(
(x+ s)α−1 − (x+ s+ h1)

α−1
)
ds

)2

dy dx

≥
h1�

0

γx�

0

( h1�

0

α

2
γ
(1 + γ)α−4

1− α

(
1−

(
3

2

)α−1)
(x+ s)α−1 ds

)2

dy dx

≥
h1�

0

γx�

0

( h1�

0

α

2
γ
(1 + γ)α−4

1− α

(
1−

(
3

2

)α−1)
2α−1hα−1

1 ds

)2

dy dx

=
α2

41−α
γ3

(1 + γ)2α−8

8(1− α)2

(
1−

(
3

2

)α−1)2

h2α+2
1 =: C1h

2α+2
1 .

In view of (5), we hence get

K(t2, ω,L2(D),PH2(D)) ≥ C
√
C1 t

α+1, 0 < t < 1
12

√
10

=: t0.

The monotonicity of the K-functional furthermore implies

K(t2, ω,L2(D),PH2(D)) ≥ K(t20, ω,L
2(D),PH2(D)) =: C2 ≥ C2t

α+1

for t ∈ [t0, 1]. Altogether, we arrive at the desired statement.

The remaining upper estimate for the K-functional essentially follows
from a modification of the arguments in the proofs of [5, Theorem 2.3] and
[6, Theorem 2.5]. For the sake of a clear presentation, however, we elaborate
the proof.

Lemma 3.2. There is a uniform constant Cu = Cu(ω) > 0 such that

K(t2, ω,L2(D),PH2(D)) ≤ Cut
α+1, t ∈ (0, 1].

Proof. 1) Throughout the proof, C = C(ω) > 0 is a constant that is
allowed to change from line to line. Let δ ∈ (0, 1) be a fixed number, to be
determined later. Let furthermore χδ : [0, 1] → [0, 1] be a smooth cut-off
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function with χδ = 1 on [0, δ/2], with support in [0, δ], ∥χ′
δ∥∞ ≤ C/δ, and

∥χ′′
δ∥∞ ≤ C/δ2. We then write ω as the sum

ω(r, φ) = χδ(r)ω(r, φ) + (1− χδ(r))ω(r, φ) =: v1(r, φ) + v2(r, φ)

for r ∈ [0, 1] and φ ∈ [0, 2π). By construction, v2 is piecewise C2-regular on
the partition

⋃2
i=1Di. As a result,

(9)
K(t2, ω,L2(D),PH2(D)) = inf

ω=ṽ1+ṽ2
ṽ1∈L2(D), ṽ2∈PH2(D)

(∥ṽ1∥L2(D) + t2∥ṽ2∥PH2(D))

≤ ∥v1∥L2(D) + t2∥v2∥PH2(D).

We next bound the quantities on the right hand side of (9) separately. Note
that we only focus on the disc segment D1; the remaining one can be handled
in the same way, by symmetry.

2) Recall the definition
ω(r, φ) = χ(r)rαψ(φ)

of ω in (1). Since the cut-off functions χ and χδ are bounded by 1, we have

(10) ∥v1∥2L2(D1)
≤ C∥ψ∥2∞

δ�

0

r2α+1 dr ≤ Cδ2α+2.

3) Similar to 2), we first bound the L2-norm of v2:

(11) ∥v2∥2L2(D1)
≤ Cδ2α−2.

To estimate the H2-norm of v2 on D1, we note that

(12) ∥v2∥2H2(D1)
≤ C

(
∥v2∥2L2(D1)

+

1�

δ/2

π/2�

0

(
r|∂2rv2|2+ 1

r |∂r∂φv2|
2+ 1

r3
|∂φv2|2

+ 1
r |∂rv2|

2 + 1
r3
|∂2φv2|2

)
dφdr

)
,

which follows from the representation of all first and second order derivatives
in polar coordinates, and the location of the support of χδ. The expressions
on the right hand side of (12) are given by

∂rv2 =
(
−χ′

δχr
α + (1− χδ)(χ

′rα + αχrα−1)
)
ψ,

∂2rv2 =
((

−χ′′
δχ− 2χ′

δχ
′ + (1− χδ)χ

′′)rα + 2α
(
(1− χδ)χ

′ − χ′
δχ

)
rα−1

+ α(α− 1)(1− χδ)χr
α−2

)
ψ,

∂φv2 = (1− χδ)χr
αψ′,

∂2φv2 = (1− χδ)χr
αψ′′,

∂φ∂rv2 =
(
−χ′

δχr
α + (1− χδ)(χ

′rα + αχrα−1)
)
ψ′.
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Combining the choice of χδ, (11) and (12), we then obtain the estimates

∥v2∥2H2(D1)
≤ C

(
∥v2∥2L2(D1)

+

δ�

δ/2

(|χ′′
δ |2r2α+1 + |χ′

δ|2r2α−1)∥ψ∥C2 dr

+

1�

δ/2

r2α−3 dr ∥ψ∥C2

)

≤ C
(
δ2α−2 +

δ�

δ/2

(
1
δ4
r2α+1 + 1

δ2
r2α−1

)
dr

)
≤ Cδ2α−2.

By symmetry, an analogous inequality is true on D2. As a result,

(13) ∥v2∥PH2(D) ≤ Cδα−1.

4) In view of (9), (10) and (13), we arrive at

K(t2, ω,L2(D),PH2(D)) ≤ C(δα+1 + t2δα−1).

The asserted statement follows by choosing δ = t.

Combining Lemmas 3.1 and 3.2, we can directly derive the following
regularity statement for ω in terms of interpolation spaces. The first part of
the statement is well known (see [4] for instance).

Corollary 3.3. Let p ∈ [1,∞) and θ ∈
(
0, 1+α2

)
. The function ω is an

element of the space

(L2(D),PH2(D))θ,p ∩ (L2(D),PH2(D))(1+α)/2,∞,

but not of the (continuous) interpolation space (L2(D),PH2(D))(1+α)/2.

Proof. The first statement is a direct consequence of Lemma 3.2 and the
embeddings

(L2(D),PH2(D))(1+α)/2,∞ ⊂ (L2(D),PH2(D))θ,1 ⊂ (L2(D),PH2(D))θ,p

(see for instance [19, Propositions 1.3 and 1.4]). The last claim follows from
Lemma 3.1.

4. Proof of Theorem 1.1. The essential ingredients of the proof are
an application of [13, Theorem 2.1], and the estimates for the K-functional
of ω from Lemmas 3.1 and 3.2.

To transform our problem into the setting of Ivanov and Kalton, we
introduce the linear functional

Φ(v + λω) := λ, v ∈ PH2(D), λ ∈ R,

on the space PH2(D)⊕ V . The latter is equipped with the norm

∥v + λω∥′ := |λ|+ ∥v∥PH2(D), v ∈ PH2(D), λ ∈ R.
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The kernel of Φ then coincides with PH2(D), and Φ is bounded. Following
[13, Section 2], we also define the quantities

∥Φ∥t := sup {|Φ(f)| | f ∈ PH2(D)⊕ V with t∥f∥L2(D) + ∥f∥′ ≤ 1},

σ0 := lim
τ→∞

inf
0<τt≤1

1

log τ
log

K(τt, Φ)

K(t, Φ)
,

σ1 := lim
τ→∞

sup
0<τt≤1

1

log τ
log

K(τt, Φ)

K(t, Φ)
,

involving the function

K(t, Φ) := K(t, Φ, (PH2(D)⊕ V )∗,L2(D)∗), t > 0.

(Here W ∗ denotes the dual space of W .) The reasoning in [13, proof of
Proposition 3.2] then gives rise to the useful formulas

σ0 = lim
τ→∞

inf
s≥1

1

log τ
log

∥Φ∥s
∥Φ∥sτ

, σ1 = lim
τ→∞

sup
s≥1

1

log τ
log

∥Φ∥s
∥Φ∥sτ

.(14)

We next determine σ0 and σ1 in terms of the exponent α.

Lemma 4.1. We have

σ0 = σ1 =
1− α

2
.

Proof. 1) For convenience, we write K(·, ω) instead of K(·, ω,L2(D),
PH2(D)). Let t > 0, and f = v+λω in PH2(D)⊕V with t∥f∥L2(D)+∥f∥′ ≤ 1.
If λ is zero, then clearly

|Φ(f)| = 0 ≤ 1

1 + tK(1/t, ω)
.

The next goal is to establish the same estimate for nonzero real λ. By defi-
nition of the norm ∥·∥′, we infer the estimates

1 ≥ t|λ|
(∥∥ 1

λv + ω
∥∥
L2(D)

+ 1
t

∥∥ 1
λv

∥∥
PH2(D)

)
+ |λ|

≥ t|λ|K(1/t, ω) + |λ| = (1 + tK(1/t, ω))|Φ(f)|.

Taking now the supremum with respect to all f in PH2(D) ⊕ V with
t∥f∥L2(D) + ∥f∥′ ≤ 1, we conclude that

∥Φ∥t ≤
1

1 + tK(1/t, ω)
.(15)

Next, we derive a similar lower bound for ∥Φ∥t. To that end, let z ∈
PH2(D) with

(16) K(1/t, ω) + 1/t ≥ ∥z + ω∥L2(D) +
1
t ∥z∥PH2(D).

We then put v := ∥Φ∥tz ∈ PH2(D). Note that

(17) t∥v + ∥Φ∥tω∥L2(D) + ∥Φ∥t + ∥v∥PH2(D) ≥ 1,
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in view of the definition of ∥Φ∥t. Combining (16) and (17), we obtain

1 ≥

∥∥ 1
∥Φ∥t v + ω

∥∥
L2(D)

+ 1
t

∥∥ 1
∥Φ∥t v

∥∥
PH2(D)

K(1/t, ω) + 1/t

=

1
t∥Φ∥t (t∥v + ∥Φ∥tω∥L2(D) + ∥v∥PH2(D))

K(1/t, ω) + 1/t

=

1
t∥Φ∥t (t∥v + ∥Φ∥tω∥L2(D) + ∥Φ∥t + ∥v∥PH2(D) − ∥Φ∥t)

K(1/t, ω) + 1/t

≥
1

t∥Φ∥t (1− ∥Φ∥t)
K(1/t, ω) + 1/t

.

Simple algebraic manipulations then lead to the desired inequality

(18) ∥Φ∥t ≥
1

tK(1/t, ω) + 2
.

2) To bound σ0 from below, we plug (15) and (18) into (14), which yields

σ0 = lim
τ→∞

inf
s≥1

1

log τ
log

∥Φ∥s
∥Φ∥sτ

≥ lim
τ→∞

inf
s≥1

1

log τ
log

(
sτK

(
1
sτ , ω

)
+ 1

sK
(
1
s , ω

)
+ 2

)
.

Taking now also Lemmas 3.1 and 3.2 into account, we arrive at

σ0 ≥ lim
τ→∞

inf
s≥1

1

log τ
log

(
Cls

(1−α)/2τ (1−α)/2

Cus(1−α)/2 + 2

)
≥ 1− α

2
.

A similar reasoning leads to

σ1 ≤
1− α

2
.

Altogether, we get the desired conclusion.

Combining Lemma 4.1 with [13, Theorem 2.1], we are now in a position
to establish Theorem 1.1.

Proof of Theorem 1.1. 1) We first derive the second asserted identity

(PH1(D),PH2(D)⊕ V )θ2,2 = PH1+θ2(D), θ2 ∈ (0, α).

Let s ∈ [0, α). Applying [13, Theorem 2.1] together with Lemma 4.1, we
obtain the identities
(19)

(PH2(D)⊕ V,L2(D))(1−s)/2,2 = (PH2(D),L2(D))(1−s)/2,2

= (L2(D),PH2(D))(1+s)/2,2 = PH1+s(D).

Choosing s = 0 yields

(20) (PH2(D)⊕ V,L2(D))1/2,2 = PH1(D).
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Put now s = θ2 ∈ (0, α) in (19). Using additionally reiteration inter-
polation (see [19, Corollary 1.24] for instance), we infer the second desired
formula

(PH1(D),PH2(D)⊕V )θ2,2 = (PH2(D)⊕ V,PH1(D))1−θ2,2

= (PH2(D)⊕ V, (PH2(D)⊕ V,L2(D))1/2,2)1−θ2,2

= (PH2(D)⊕ V,L2(D))(1−θ2)/2,2 = PH1+θ2(D).

2) Let θ1 ∈ (α, 1). By [13, Theorem 2.1] and Lemma 4.1, the interpolation
space

(PH2(D),L2(D))(1−θ1)/2,2 = (L2(D),PH2(D))(1+θ1)/2,2 = PH1+θ1(D)

is a closed subspace of codimension 1 in the space

(21) (PH2(D)⊕ V,L2(D))(1−θ1)/2,2

=
(
PH2(D)⊕ V, (PH2(D)⊕ V,L2(D))1/2,2

)
1−θ1,2

= (PH2(D)⊕ V,PH1(D))1−θ1,2

= (PH1(D),PH2(D)⊕ V )θ1,2.

Note that here we employ (20) in the second identity. Furthermore,
the one-dimensional space V from (2) is also a closed subspace of
(PH1(D),PH2(D)⊕ V )θ1,2 with V ∩ PH1+θ1(D) = {0} (see Corollary 3.3
or [4] for instance). Altogether, we arrive at the first asserted identity

(PH1(D),PH2(D)⊕ V )θ1,2 = PH1+θ1(D)⊕ V.

3) It remains to establish that the space PH1+α(D) is not closed in
(PH1(D),PH2(D)⊕ V )α,2. This is a consequence of the formula

(22) (PH1(D),PH2(D)⊕ V )α,2 = (PH2(D)⊕ V,L2(D))(1−α)/2,2,

[13, Theorem 2.1], Lemma 4.1, and the relation

PH1+α(D) = (PH2(D),L2(D))(1−α)/2,2.

(Note that (22) is verified in the same way as (21).)
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