

ANNALES POLONICI MATHEMATICI V. (1958)

Sur les équations du mouvement d'un système holonome

par S. Łojasiewicz (Kraków)

On peut se poser la question si les équations du mouvement d'un système à liaisons peuvent être obtenues comme cas asymptotique des équations du mouvement d'un système libre

$$x_i = f_i(t, x_i, x_k) - M^2 F_i(t, x_i, x_k)$$
 $(i, j, k = 1, ..., n)$

lorsque le paramètre M tend vers l'infini. Il existe une théorie de A. Tichonov (1) sur un effet asymptotique de ce genre. Cette théorie ne s'applique pas dans le cas où F_i ne dépendent pas de x_k ; ce cas a été considéré par V. Volosoff(2) pour n=1.

Dans cette note, je montre comment le mouvement d'un système holonome s'obtient comme limite du mouvement d'un système libre sur lequel agissent p. ex. des forces élastiques très grandes; ces forces ne dépendent pas des vitesses, elles s'annulent sur la surface des liaisons et peuvent être dérivées d'un potentiel

$$M^2 V(t, x_j) \quad (M \to \infty).$$

Soit S(t) une hypersurface à n-p dimensions (dépendant du temps t) donnée par un système d'équations

(1)
$$\varphi_n(t, x_1, ..., x_n) = 0 \quad (\nu = 1, ..., p).$$

où $\varphi_{\nu}(t, x_i)$ sont de classe C^4 dans un ouvert de (t, x_i) et

(2)
$$\operatorname{rang de} \left[\partial \varphi_{\mathbf{r}} / \partial x_i \right] = p$$

en tout point de la surface S(t). Soient $f_i(t, x_j, x_k)$ (i, j, k = 1, ..., n) des fonctions de classe C^1 dans un ouvert de (t, x_j, x_k) contenant l'ensemble:

$$(x_1, \ldots, x_n) \, \epsilon S(t), \quad \frac{\partial \varphi_v}{\partial t} \, (t, x_j) + \frac{\partial \varphi_v}{\partial x_i} \, (t, x_j) x_i = 0.$$

⁽¹⁾ Cf. [3] et aussi [2], p. 119-138, où l'on trouvera la bibliographie.

⁽²⁾ Cf. [4] ou [5], où l'on trouvera la bibliographie.

Soient $F_i(t,x_j)$ $(i,j=1,\ldots,n)$ des fonctions de classe C^2 dans un ouvert de (t,x_j) contenant l'ensemble: $(x_1,\ldots,x_n) \in S(t)$. Supposons que, pour $(x_1,\ldots,x_n) \in S(t)$, on ait

$$(3) \quad F_i(t,x_j)=0\,, \quad \frac{\partial F_i}{\partial x_i}(t,x_k)=\frac{\partial F_j}{\partial x_i}(t,x_k) \quad (i,j,k=1,\ldots,n)\,,$$

$$(4) \quad \frac{\partial F_i}{\partial x_j}(t,x_k)\,\xi_i\,\xi_j\geqslant 0, \quad \text{ rang de } \left[\frac{\partial F_i}{\partial x_j}\right]=p \quad \ (i,j,\,k=1,...,n)\,.$$

Considérons le système suivant avec un paramètre M:

(5)
$$x_i^* = f_i(t, x_j, x_k) - M^2 F_i(t, x_j) \quad (i, j, k = 1, ..., n)$$

et le système (équations de Lagrange de première espèce)

(6)
$$x_{i}^{\cdots} = f_{i}(t, x_{j}, x_{k}) - \lambda_{\nu} \frac{\partial \varphi_{\nu}}{\partial x_{i}}(t, x_{j})$$
$$\varphi_{\nu}(t, x_{j}) = 0.$$

$$(i = 1, ..., n; \nu = 1, ..., p)$$

Nous avons:

THÉORÈME. Soit $X_1(t), \ldots, X_n(t)$ une solution du système (6) telle que $(X_1(t), \ldots, X_n(t)) \in S(t)$, où $a < t < \beta$. Soit $a < a_0 < t_0 < \beta_0 < \beta$, c > 0; il existe alors un $c_1 > 0$ et un $M_1 > 0$, tels que si

(7)
$$\begin{aligned} M > M_1, & |x_i(t_0) - X_i(t_0)| \leqslant c/M, & |x_i(t_0) - X_i(t_0)| \leqslant c/M, \\ |\varphi_r(t_0, x_j(t_0))| \leqslant c/M^2 & (i, j = 1, ..., n; \nu = 1, ..., p), \end{aligned}$$

pour une solution $x_1(t), \ldots, x_n(t)$ du système (5), alors cette solution existe dans (a_0, β_0) et on a

$$|x_i(t) - X_i(t)| \leqslant c_1/M, \quad |x_i(t) - X_i(t)| \leqslant c_1/M, \quad |\varphi_r(t, x_j(t))| \leqslant c_1/M^2$$

$$pour \quad a_0 < t < \beta_0.$$

Remarque 1. Les hypothèses sur F_i sont remplies si $F_i = \partial V/\partial x_i$, où $V(t,x_j)$ est une fonction de classe C^3 qui satisfait aux conditions suivantes: on a $V(t,x_j)=0$ sur S(t) et pour tout point de S(t) il existe une const nte K>0 telle que $V(t,x_j)>Kr^2$ dans un voisinage de ce point, où r désigne la distance de (x_1,\ldots,x_n) à la surface S(t).

Remarque 2. Au lieu des conditions (3) et (4) on peut supposer que pour $(x_1, \ldots, x_n) \in S(t)$ on ait $F_i(t, x_j) = 0$, que les vecteurs $\left(\frac{\partial F_1}{\partial x_j}, \ldots, \frac{\partial F_n}{\partial x_j}\right)$ $(j = 1, \ldots, n)$ soient perpendiculaires à la surface S(t) et que p racines caractéristiques de la matrice $[\partial F_i/\partial x_j]$ soient posi-

tives, n-p — égales à zéro, leurs multiplicités étant constantes et les diviseurs élémentaires étant simples. La démonstration est tout à fait pareille à celle du théorème (3).

Démonstration du théorème. Soit $\alpha < t^* < \beta$; en vertu du théorème de Borel-Lebesgue il suffit de prouver que (7) entraîne (8) dans un intervalle $\langle t_0, t_1 \rangle$ tel que $t_0 < t^* < t_1$ (resp. $t_1 < t^* < t_0$). Nous allons faire le changement de variables

(9)
$$x_i = x_i(t, y_\mu, u_\nu)$$
 $(i = 1, ..., n; \mu = 1, ..., n-p; \nu = 1, ..., p)$

(nous convenons dans la suite que $i,j,k=1,\ldots,n;$ $\varkappa,\lambda,\mu=1,\ldots,n-p;$ $\nu,\varrho,\sigma=1,\ldots,p)$ dans un voisinage de $(t^*,X_1(t^*),\ldots,X_n(t^*))$, tel que $x_i=x_i(t,y_\mu,0)$ soient les équations de S(t) sous la forme paramétrique, c'est-à-dire que

(10)
$$\varphi_{u}(t, x_{i}(t, y_{u}, 0)) = 0$$

et que

(11)
$$\frac{\partial x_i}{\partial y_a}(t, y, 0) \frac{\partial x_i}{\partial u_a}(t, y, 0) = 0.$$

A cet effet résolvons les équations (1) dans le voisinage de $(t^*, X_1(t^*), \ldots, X_n(t^*))$:

$$x_1 = \psi_1(t, x_{p+1}, \ldots, x_n), \quad \ldots, \quad x_p = \psi_p(t, x_{p+1}, \ldots, x_n)$$

(en vertu de (2) on a par exemple $\det \frac{\partial \varphi_r}{\partial x_\sigma} \neq 0$) et posons

^(*) Une seule modification concerne la définition des $A_{r\sigma}$ et $B_{r\sigma}$: on pose $[A_{r\sigma}] = P'P$, $[B_{r\sigma}^*] = P'JP$, où $[\partial G_r/\partial u_\sigma] = P^{-1}JP$, J est une matrice diagonale et P' désigne la matr¹ce transposée de P.

Posons $Y_{\mu}(t) = X_{p+\mu}(t)$; pour $t = t^*$, $y_{\mu} = Y_{\mu}(t^*)$, $u_{\nu} = 0$, on a

$$\det\left[rac{\partial x_i}{\partial y_\mu},rac{\partial x_i}{\partial u_
u}
ight] = \det\left[rac{\partial \psi_
u}{\partial y_\mu}, \quad \delta_{
u\sigma}
ight]
otag 0\,,$$

done

(12)
$$\det \left[\frac{\partial x_i}{\partial y_{\mu}}, \frac{\partial x_i}{\partial u_{\nu}} \right] \neq 0$$

et la transformation (9) est biunivoque dans un ensemble

$$(13) t_0 \leqslant t \leqslant t_1, |y_{\mu} - Y_{\mu}(t)| \leqslant d, |u_{\nu}| \leqslant d,$$

où $t_0 < t^* < t_1$ et 0 < d < 1. Les équations: $x_i = x_t(t, y_\mu, 0)$ sont celles de S(t); les relations (10) et (11) subsistent pour $t_0 \leqslant t \leqslant t_1$ et $|y_\mu - Y_\mu(t)| \leqslant d$; les fonctions $x_i(t, y_\mu, u_\nu)$ sont de classe C^3 dans l'ensemble (13).

Le changement de variables (9) conduit du système (5) au système

$$(14) \frac{d}{dt} \left(\frac{\partial T}{\partial y_{\mu}} \right) - \frac{\partial T}{\partial y_{\mu}} = \frac{\partial x_i}{\partial y_{\mu}} (f_i - M^2 F_i), \quad \frac{d}{dt} \left(\frac{\partial T}{\partial u_{\nu}} \right) - \frac{\partial T}{\partial u_{\nu}} = \frac{\partial x_i}{\partial u_{\nu}} (f_i - M^2 F_i),$$

où $T=\frac{1}{2}\sum x_i^2$. Puisque la courbe $y_{\mu}=Y_{\mu}(t),\ u_{\nu}=0$ correspond à la courbe $x_i=X_i(t)$ et comme les seconds membres de (5) sont définis dans un voisinage de la courbe $x_i=X_i(t),\ x_i=X_i(t),$ les fonctions qui interviennent dans (14) sont définies dans l'ensemble

(15)
$$t_0 \leqslant t \leqslant t_1$$
, $|y_{\mu} - Y_{\mu}(t)| \leqslant d$, $|y_{\mu} - Y_{\mu}(t)| \leqslant d$, $|u_{\nu}| \leqslant d$, $|u_{\nu}| \leqslant d$, pourvu que l'on choisisse d suffisamment petit. Si $v_{\nu} = \varphi_{\nu}(t, x_i(t, y_{\mu}, u_{\sigma}))$ alors $\det \frac{\partial v_{\nu}}{\partial u_{\sigma}} = \det \frac{\partial \varphi_{\nu}}{\partial x_i} \cdot \frac{\partial x_i}{\partial u_{\sigma}} \neq 0$ pour $u_{\nu} = 0$ puisque, d'après (2) et

(10), le rang de la matrice $\left[\frac{\partial \varphi_{\nu}}{\partial x_{t}} \cdot \frac{\partial x_{t}}{\partial y_{\mu}}, \frac{\partial \varphi_{\nu}}{\partial u_{c}} \cdot \frac{\partial x_{t}}{\partial u_{\sigma}} \right] = \left[0, \frac{\partial \varphi_{\nu}}{\partial x_{t}} \cdot \frac{\partial x_{t}}{\partial u_{\sigma}} \right] \text{ est}$ égal à p; il existe donc une constante \overline{K} telle que si (t, y_{μ}, u_{ν}) fait partie de l'ensemble (13), alors $\sum |v_{\nu}| \leqslant \overline{K} \sum |u_{\nu}| \text{ et } \sum |u_{\nu}| \leqslant \overline{K} \sum |v_{\nu}|$, pourvu que l'on choisisse d suffisamment petit. On en conclut qu'il suffit de prouver que pour tout c > 0 il existe un $c_{1} > 0$ et un $M_{1} > 0$ tels que si

$$\begin{array}{ll} M>M_1, & |y_{\mu}(t_0)-Y_{\mu}(t_0)|\leqslant \frac{c}{M}, & |y_{\mu}(t_0)-Y_{\mu}(t_0)|\leqslant \frac{c}{M},\\ & |u_{\nu}(t_0)|\leqslant \frac{c}{M^2}, & |u_{\nu}(t_0)|\leqslant \frac{c}{M} \end{array}$$

pour une solution $y_{\mu}(t),\ u_{r}(t)$ de (14), alors cette solution existe dans $\langle t_0,\,t_1\rangle$ et on a

$$\begin{aligned} |y_{\mu}(t)-Y_{\mu}(t)| &\leqslant \frac{c_1}{M}, \quad |y_{\mu}(t)-Y_{\mu}(t)| &\leqslant \frac{c_1}{M}, \\ |u_{\nu}(t)| &\leqslant \frac{c_1}{M^2}, \quad |u_{\nu}(t)| &\leqslant \frac{c_1}{M} \end{aligned} \quad \text{dans} \quad \langle t_0, t_1 \rangle.$$

Soit maintenant $\begin{bmatrix} Q_{\mu i} \\ P_{r i} \end{bmatrix}$ la matrice inverse de la matrice $\begin{bmatrix} \frac{\partial w_i}{\partial y_{\mu}}, \frac{\partial x_i}{\partial u_{\tau}} \end{bmatrix}$. Les fonctions $Q_{\mu i}(t, y_{\lambda}, u_{\sigma}), P_{r i}(t, y_{\lambda}, u_{\sigma})$ sont de classe C^2 dans l'ensemble (13) et on a

$$(18) \qquad Q_{\mu i} \frac{\partial x_k}{\partial y_{\mu}} + P_{r i} \frac{\partial x_k}{\partial u_{\nu}} = \delta_{ik}, \quad Q_{\mu i} \frac{\partial x_i}{\partial u_{\nu}} = 0, \quad P_{r i} \frac{\partial x_i}{\partial y_{\mu}} = 0$$

et $Q_{\mu} \frac{\partial x_i}{\partial y_1} = \delta_{\mu\lambda}$, d'où l'on tire facilement (en vertu de (11))

$$(19) P_{\nu i}Q_{\mu i} = 0 pour u_{\sigma} = 0,$$

(20)
$$Q_{\mu i} Q_{\kappa i} \frac{\partial x_j}{\partial y_{\kappa}} \cdot \frac{\partial x_j}{\partial y_1} = \delta_{\mu \lambda} \quad \text{pour} \quad \dot{u}_{\sigma} = 0.$$

Revenons au système (14). On a

$$T(t, y_{\mu}, y_{\lambda}, u_{\nu}, u_{\sigma}) = \frac{1}{2} \sum_{i} \left[\frac{\partial x_{i}}{\partial t} + \frac{\partial x_{i}}{\partial y_{\mu}} y_{\mu}^{\cdot} + \frac{\partial x_{i}}{\partial u_{\nu}} u_{\nu}^{\cdot} \right]^{2}$$

done

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial y_{\mu}} \right) - \frac{\partial T}{\partial y_{\mu}} &= \frac{\partial x_{i}}{\partial y_{\mu}} \cdot \frac{\partial x_{i}}{\partial y_{x}} y_{x}^{\cdot \cdot} + \frac{\partial x_{i}}{\partial y_{\mu}} \cdot \frac{\partial x_{i}}{\partial u_{\nu}} u_{v}^{\cdot \cdot} + \mathcal{V}_{\mu}(t, y_{\lambda}, y_{x}^{\cdot}, u_{\sigma}, u_{e}^{\cdot}), \\ \frac{d}{dt} \left(\frac{\partial T}{\partial u_{v}^{\cdot}} \right) - \frac{\partial T}{\partial u_{\nu}} &= \frac{\partial x_{i}}{\partial u_{\nu}} \cdot \frac{\partial x_{i}}{\partial y_{x}} y_{x}^{\cdot \cdot} + \frac{\partial x_{i}}{\partial u_{v}} \cdot \frac{\partial x_{i}}{\partial u_{\sigma}} u_{\sigma}^{\cdot} + \mathcal{\Phi}_{r}(t, y_{\lambda}, y_{x}^{\cdot}, u_{\sigma}, u_{e}^{\cdot}), \end{split}$$

d'où

(21)
$$y_{\mu}^{\cdot \cdot} = h_{\mu}(t, y_{\varkappa}, y_{z}^{\cdot}, u_{\sigma}, u_{v}^{\cdot}) - M^{2}H_{\mu}(t, y_{\varkappa}, u_{\sigma}),$$

$$u_{v}^{\cdot \cdot} = g_{v}(t, y_{\varkappa}, y_{z}^{\cdot}, u_{\sigma}, u_{v}^{\cdot}) - M^{2}G_{v}(t, y_{w}, u_{\sigma}),$$

οù

$$(22) \qquad h_{\mu} = Q_{\mu i} (f_i - Q_{\lambda i} \Psi_{\lambda} - P_{\varrho i} \Phi_{\varrho}), \qquad g_{\nu} = P_{\nu i} (f_i - Q_{\lambda i} \Psi_{\lambda} - P_{\varrho i} \Phi_{\varrho})$$

sont des fonctions de classe C^1 dans l'ensemble (15) et

$$H_{\mu}=Q_{\mu i}F_{i}, \quad G_{\nu}=P_{\nu i}F_{i},$$

sont des fonctions de classe C^2 dans l'ensemble (13).

Comme les $X_i(t)$ satisfont au système (6) et $x_i=x_i(t,y_\mu,0)$ sont les équations de $S(t),\ y_\mu=Y_\mu(t)\ (\mu=1,\ldots,n-p)$ est une solution du système

$$\frac{d}{dt} \left(\frac{\partial \overline{T}}{\partial y_{\mu}} \right) - \frac{\partial \overline{T}}{\partial y_{\mu}} = \frac{\partial x_i}{\partial y_{\mu}} (t, y_{\lambda}, 0) f_i(t, x_j(t, y_{\lambda}, 0)),$$

οù

$$\overline{T}(t,y_{\mu},y_{\lambda}^{\star}) = \frac{1}{2} \sum_{i} \left[\frac{\partial x_{i}}{\partial t} + \frac{\partial x_{i}}{\partial y_{\mu}} y_{\mu}^{\star} \right]_{u_{y}=0}^{2} = T(t,y_{\mu},y_{\lambda}^{\star},0,0),$$

et par suite

$$\frac{d}{dt}\left(\frac{\partial \overline{T}}{\partial y_{\mu}}\right) - \frac{\partial \overline{T}}{\partial y_{\mu}} = \frac{\partial x_{i}}{\partial y_{\mu}} \cdot \frac{\partial x_{i}}{\partial y_{\varkappa}} y_{\varkappa}^{.} + \psi_{\mu}(t, y_{\lambda}, y_{\varkappa}^{.}, 0, 0).$$

D'après (20) il en résulte que

$$\begin{split} y_{\mu}^{..} &= Q_{\mu i} Q_{\kappa i} \left(\frac{\partial x_j}{\partial y_{\kappa}} f_j - \psi_{\kappa} \right) = Q_{\mu i} \left(Q_{\kappa i} \frac{\partial x_j}{\partial y_{\kappa}} + P_{\kappa i} \frac{\partial x_j}{\partial u_{\nu}} \right) f_j - Q_{\mu i} Q_{\kappa i} \psi_{\kappa} \\ &= Q_{\mu i} (f_i - Q_{\kappa i} \psi_{\kappa}) = h_{\mu} (t, y_{\kappa}, y_{\lambda}, 0, 0), \end{split}$$

en tenant compte de (18), (19) et (22). Ainsi nous avons

$$Y_{\mu}^{"}=h_{\mu}(t, Y_{\kappa}, Y_{\lambda}, 0, 0) \quad \text{dans} \quad \langle t_0, t_1 \rangle.$$

Nous donnerons maintenant quelques évaluations dans lesquelles la constante L ne dépend que des fonctions $h_{\mu}, g_{\nu}, H_{\mu}, G_{\nu}$ et de l'ensemble (15). Les fonctions h_{μ}, g_{ν} étant de classe C^1 , on a

$$(25) \quad |g_{\nu}|, \left|\frac{\partial g_{\nu}}{\partial t}\right|, \left|\frac{\partial g_{\nu}}{\partial y_{\star}}\right|, \left|\frac{\partial g_{\nu}}{\partial y_{\lambda}^{*}}\right|, \left|\frac{\partial g_{\nu}}{\partial u_{\sigma}}\right|, \left|\frac{\partial g_{\nu}}{\partial u_{e}^{*}}\right|,$$

$$|h_{\mu}|, \left|\frac{\partial h_{\mu}}{\partial t}\right|, \left|\frac{\partial h_{\mu}}{\partial y_{\star}}\right|, \left|\frac{\partial h_{\mu}}{\partial y_{\star}}\right|, \left|\frac{\partial h_{\mu}}{\partial u_{\sigma}}\right|, \left|\frac{\partial h_{\mu}}{\partial u_{\sigma}}\right|, \left|\frac{\partial h_{\mu}}{\partial u_{\sigma}}\right| \leqslant L$$

dans l'ensemble (15). Les fonctions $H_{\mu},\,G_{r}$ sont de classe C^{2} dans l'ensemble (13) et

$$H_{\mu}(t, y_{\kappa}, 0) = G_{\nu}(t, y_{\kappa}, 0) = 0,$$

d'après (3) et (23). On a donc

$$\begin{aligned} |G_{\nu}(t,\,y_{\varkappa},\,u_{\sigma})| &\leqslant L \sum |u_{\nu}|, \\ \left|G_{\nu}(t,\,y_{\varkappa},\,u_{\sigma}) - \frac{\partial G_{\nu}}{\partial u_{\varrho}}(t,\,y_{\varkappa},\,0)\,u_{\varrho}\right| &\leqslant L \sum u_{\nu}^{2} \end{aligned}$$

dans l'ensemble (13). D'après (23), (3), (18) et (19) on a

$$\begin{split} \frac{\partial H_{\mu}}{\partial u_{\mathbf{v}}}(t,y_{\mathbf{x}},0) &= Q_{\mu t} \frac{\partial F_{i}}{\partial x_{j}} \cdot \frac{\partial x_{j}}{\partial u_{\mathbf{v}}} = Q_{\mu k} \bigg(Q_{ik} \frac{\partial x_{i}}{\partial y_{\lambda}} + P_{\sigma k} \frac{\partial x_{i}}{\partial u_{\sigma}} \bigg) \frac{\partial F_{i}}{\partial x_{j}} \cdot \frac{\partial x_{j}}{\partial u_{\mathbf{v}}} \\ &= Q_{\mu k} Q_{ik} \bigg(\frac{\partial x_{i}}{\partial y_{\lambda}} \cdot \frac{\partial F_{i}}{\partial x_{j}} \bigg) \frac{\partial x_{j}}{\partial u_{\mathbf{v}}}. \end{split}$$

En vertu de (3) on a $F_i(t, x_i(t, y_i, 0)) = 0$, $\frac{\partial x_i}{\partial y_i} \cdot \frac{\partial F_i}{\partial x_j} = \frac{\partial F_j^{\dagger}}{\partial x_i} \cdot \frac{\partial x_i}{\partial y_i} = 0$ pour $u_r = 0$, donc $\frac{\partial H_{\mu}}{\partial u_r}(t, y_r, 0) = 0$. Il en résulte que

$$|H_{\mu}(t, y_{\kappa}, u_{\sigma})| \leqslant L \sum u_{\sigma}^{2}.$$

Pareillement on a pour $u_{\sigma} = 0$ (d'après (23), (11), (18))

$$\begin{split} \frac{\partial x_i}{\partial u_{\sigma}} \cdot \frac{\partial x_i}{\partial u_{\varrho}} \cdot \frac{\partial G_{\varrho}}{\partial u_{\bullet}} &= \frac{\partial x_i}{\partial u_{\sigma}} \cdot \frac{\partial x_i}{\partial u_{\varrho}} P_{ef} \cdot \frac{\partial F_{f}}{\partial x_k} \cdot \frac{\partial x_k}{\partial u_{\bullet}} \\ &= \frac{\partial x_i}{\partial u_{\sigma}} \left(\frac{\partial x_i}{\partial u_{\varrho}} P_{ef} + \frac{\partial x_i}{\partial y_{\mu}} Q_{\mu f} \right) \frac{\partial F_{f}}{\partial x_k} \cdot \frac{\partial x_k}{\partial x_{\nu}} &= \frac{\partial x_i}{\partial u_{\sigma}} \cdot \frac{\partial F_{i}}{\partial x_k} \cdot \frac{\partial x_k}{\partial x_{\nu}}; \end{split}$$

nous avons done

$$(28) \quad A_{\sigma\varrho} \frac{\partial G_{\varrho}}{\partial u_{\nu}}(t, y_{\varkappa}, 0) = B_{\sigma\nu}, \quad \text{pour} \quad t_{0} \leqslant t \leqslant t_{1}, \quad |y_{\varkappa} - Y_{\varkappa}(t)| \leqslant d,$$
où

$$\begin{split} A_{\nu\sigma}(t,\,y_{\varkappa}) &= \frac{\partial x_t}{\partial u_{\nu}}(t,\,y_{\varkappa},\,0)\,\frac{\partial x_t}{\partial u_{\sigma}}(t,\,y_{\varkappa},\,0)\,,\\ B_{\nu\sigma}(t,\,y_{\varkappa}) &= \frac{\partial x_t}{\partial u_{\nu}}(t,\,y_{\varkappa},\,0)\,\frac{\partial F_t}{\partial x_k}\big[t,\,x_j(t,\,y_{\varkappa},\,0)\big]\,\frac{\partial x_k}{\partial u_{\sigma}}(t,\,y_{\varkappa},\,0)\,. \end{split}$$

Les fonctions $A_{r\sigma}$, $B_{r\sigma}$ sont de classe C^2 dans l'ensemble $t_0 \leqslant t \leqslant t_1$, $|y_{\kappa} - Y_{\kappa}(t)| \leqslant d$, donc

$$(29) |A_{r\sigma}|, \left|\frac{\partial A_{v\sigma}}{\partial t}\right|, \left|\frac{\partial A_{v\sigma}}{\partial y_{\kappa}}\right|, |B_{v\sigma}|, \left|\frac{\partial B_{v\sigma}}{\partial t}\right|, \left|\frac{\partial B_{v\sigma}}{\partial y_{\kappa}}\right| \leqslant L.$$

Les matrices $[A_{\nu\sigma}]$, $[B_{\nu\sigma}]$ sont symétriques (en vertu de (3)) et les $A_{\nu\sigma}\xi_{\nu}\xi_{\sigma}$, $B_{\nu\sigma}\eta_{\nu}\eta_{\sigma}$ sont définies positives. En effet, d'après (4), on a $A_{\nu\sigma}\xi_{\nu}\xi_{\sigma}\geqslant 0$ et $B_{\nu\sigma}\eta_{\nu}\eta_{\sigma}\geqslant 0$; on a $\det A_{\nu\sigma}\neq 0$, car, d'après (12), rang de $\left[\frac{\partial x_{i}}{\partial u_{\nu}}\right]=p$;

finalement, si l'on aurait $B_{\nu\sigma}\eta_{\nu}\eta_{\sigma}=0$ où $\sum |\eta_{\nu}|>0$, alors $\frac{\partial F_{i}}{\partial x_{j}}\zeta_{i}^{(a)}\zeta_{j}^{(a)}=0$

$$(\alpha=0,1,\ldots,n-p)$$
, où $\zeta_i^{(0)}=rac{\partial x_i}{\partial u_\nu}\eta_\nu$, $\zeta_i^{(\mu)}=rac{\partial x_i}{\partial y_\mu}$, ce qui contredit à (4)

car, d'après (11), les vecteurs $(\zeta_1^{(a)}, \dots, \zeta_n^{(a)})$ sont linéairement indépendants. Nous avons donc

$$(30) A_{\nu\sigma}(t, y_{\varkappa}) \, \xi_{\nu} \, \xi_{\sigma} \geqslant a \sum_{\nu} \xi_{\nu}^{2} \quad \text{et} \quad B_{\nu\sigma}(t, y_{\varkappa}) \, \eta_{\nu} \, \eta_{\sigma} \geqslant b \sum_{\nu} \eta_{\nu}^{2}$$

pour $t_0 \leqslant t \leqslant t_1$, $|y_x - Y_x(t)| \leqslant d$, où a, b sont des constantes positives. Nous disons qu'il suffit de démontrer que pour tout c>0 il existe un $c_1>0$ et un $M_0>1$ tels que si $t_0< t'\leqslant t_1$ et si $y_\mu(t),\ u_\nu(t)$ dans $\langle t_0,t'\rangle$ est une solution de (21) qui satisfait aux inégalités (15), pour laquelle

$$|u_{\nu}(t_0)| \leqslant c/M^2, \quad |u_{\nu}(t_0)| \leqslant c/M,$$

alors

$$(32) |u_{\nu}(t)| \leqslant c_1/M^2, |u_{\nu}'(t)| \leqslant c_1/M dans \langle t_0, t' \rangle.$$

En effet, supposons que cette solution satisfasse de plus aux conditions $|y_{\mu}(t_0) - Y_{\mu}(t_0)| \le c/M$, $|y_{\mu}(t_0) - Y_{\mu}(t_0)| \le c/M$ et considérons les équations (21) et (24). On a, d'après (25), (27) et (32),

$$\begin{split} \left| h_{\mu} \! \left(t, \, y_{\varkappa}, \, y_{\lambda}^{\prime}, \, u_{\sigma}(t), \, u_{\varrho}^{\prime}(t) \right) \! - \! M^{2} H_{\mu} \! \left(t, \, y_{\varkappa}, \, u_{\nu}(t) \right) \! - \! h_{\mu} \! \left(t, \, y_{\varkappa}, \, y_{\lambda}^{\prime}, \, 0 \, , \, 0 \, \right) \right| \\ \leqslant L p (c_{1} \! / \! M^{2} \! + \! c_{1} \! / \! M + \! c_{1}^{2} \! / \! M^{2}) \, , \end{split}$$

pour $t_0\leqslant t\leqslant t_1,$ $|y_\star-Y_\star(t)|\leqslant d,$ $|y_\lambda-Y_\star(t)|\leqslant d,$ done (cf. [1], p. 152-153), en vertu de (25),

$$|y_{\star}(t)-Y_{\star}(t)| \leqslant c_2/M, \quad |y_{\star}(t)-Y_{\star}(t)| \leqslant c_2/M \quad \text{daus} \quad \langle t_0, t' \rangle,$$

où c_2 ne dépend que de L_1 , c_1 et t_1 . On a donc

$$|y_{\mu}(t)-Y_{\mu}(t)|,\ |y_{\mu}^{\star}(t)-Y_{\mu}^{\star}(t)|,\ |u_{\nu}(t)|,\ |u_{\nu}^{\star}(t)|,\ |u_{\nu}^{\star}(t)|\leqslant d/2$$
 dans $\langle t_{0},\,t'\rangle,$

pourvu que $M \geqslant M_1 = \max(M_0, 2c_1/d, 2c_2/d)$. Il en résulte que si $M \geqslant M_1$ et si une solution $y_\mu(t)$, $u_\nu(t)$ de (21) satisfait aux conditions (16) et aux inégalités (15) dans $\langle t_0, t' \rangle$, elle satisfait aussi aux inégalités (33). On en conclut que chaque solution de (21) satisfaisant aux conditions (16) est définie dans $\langle t_0, t_1 \rangle$ et satisfait aux inégalités (17) dans $\langle t_0, t_1 \rangle$.

Supposons done que $t_0 < t' \leqslant t_0$ et soit $y_\mu(t)$, $u_r(t)$ une solution de (21) dans $\langle t_0, t' \rangle$ satisfaisant aux inégalités (15) et (31). Posons

(34)
$$a_{\nu\sigma}(t) = A_{\nu\sigma}(t, y_{\kappa}(t)), \quad b_{\nu\sigma}(t) = B_{\nu\sigma}(t, y_{\kappa}(t))$$

et
$$\gamma_r(t) = a_{r\sigma}(t)g_{\sigma}(t, y_{\kappa}(t), y_{\lambda}(t), u_{\sigma}(t), u_{\sigma}(t))$$
. On a, d'après (28),

(35)
$$a_{\varrho \nu}(t) \frac{\partial G_{\varrho}}{\partial u_{\nu}} (t, y_{\kappa}(t), 0) = b_{\nu \sigma}(t)$$

et, d'après (29), (30), (25)

(36)
$$a \sum u_{r}^{2} \leqslant a_{\varrho\sigma} u_{\varrho} u_{\sigma}, \quad b \sum u_{r}^{2} \leqslant b_{r\sigma} u_{\varrho} u_{\sigma},$$
$$|a_{\varrho\sigma}| \leqslant L, \quad |b_{\varrho\sigma}| \leqslant L, \quad |\gamma_{\sigma}| \leqslant pL^{2}$$

 \mathbf{et}

(37)
$$|a_{\nu\sigma}^{\bullet}|, |b_{\nu\sigma}^{\bullet}| \leq L(1+pl) = L_1,$$

où $l=d+\max\max_{\mathbf{x}}|Y_{\mathbf{x}}(t)|, \text{ car, d'après (21), (26), (27), on a }|y_{\mu}^{**}|,|u_{\nu}^{**}|$

 $\leq L(1+M^2\sum |u_r|)$. Posons $V(t)=a_{\varrho\sigma}u_{\varrho}u_{\sigma}^2-2\gamma_{r}u_{r}+M^2b_{\varrho\sigma}u_{\varrho}u_{\sigma}$. On a, d'après (36),

(38)
$$V(t) \ge a \sum u_{\nu}^2 - 2pL^2 \sum |u_{\nu}| + bM^2 \sum u_{\nu}^2,$$

et, d'après (21), (34), (35), (37), (36), (26)

$$\frac{dV}{dt} \leqslant a_{\varrho\sigma}^{\star} u_{\varrho}^{\star} u_{\sigma}^{\star} - 2\gamma_{r}^{\star} u_{v} + M^{2} b_{\varrho\sigma}^{\star} u_{\varrho} u_{\sigma} + 2a_{\varrho\sigma} u_{\varrho}^{\star} u_{\sigma}^{\star} - 2\gamma_{r} u_{r}^{\star} + 2M^{2} b_{\varrho\sigma} u_{\varrho}^{\star} u_{\sigma}$$

$$\begin{split} &=a_{\varrho\sigma}^{\star}u_{\varrho}^{\star}u_{\sigma}^{\star}-2\gamma_{r}^{\star}u_{r}+M^{2}b_{\varrho\sigma}^{\star}u_{\varrho}u_{\sigma}-2M^{2}a_{\varrho\sigma}u_{\varrho}^{\star}\left(G_{\sigma}(t,y_{\star},u_{\sigma})-\frac{\partial G_{\sigma}}{\partial u_{r}}(t,y_{\star},0)u_{r}\right)\\ &\leqslant pL_{1}\sum u_{r}^{\star2}+2L_{2}\left(1+M^{2}\sum|u_{r}|\right)\sum|u_{r}|+pL_{1}M^{2}\sum u_{r}^{\star2}+2p^{2}L^{2}dM^{2}\sum u_{r}^{\star2}\end{split}$$

$$= pL_1 \sum u_{\rm r}^{\rm 2} + 2L_2 \sum |u_{\rm r}| + L_3 M^2 \sum u_{\rm r}^2.$$

Choisissons un K>0 de façon que $pL_1-Ka\leqslant -1$, $L_3-Kb\leqslant -1$, et posons $K_1=L_2+KpL^2$. On a alors, d'après (38),

$$dV/dt - KV \leqslant -\sum u_{\rm p}^{\rm 2} + 2K_1\sum |u_{\rm p}| - M^2\sum u_{\rm p}^2 \leqslant pK_1^2/M^2\,, \label{eq:dV_dt}$$

d'où

$$dV/dt \leqslant KV + pK_1^2/M^2$$
.

256

Comme on a, d'après (36) et (31),

$$V(t_0) \leqslant (p^2 L c^2 + 2 p L^2 c + p^2 L^2 c^2) rac{1}{M^2} = rac{L_4}{M^2},$$

done (cf. [6])

$$V(t) \leqslant \left(rac{L_4}{M^2} + rac{pK_1^2}{KM^2}
ight)e^{K(t_1-t_0)} - rac{pK_1^2}{KM^2} \leqslant rac{L_5}{M^2}.$$

Mais on a, en vertu de (38)

$$V(t) \geqslant a \sum u_r^2 + bM^2 \sum \left(|u_r| - \frac{pL^2}{bM^2} \right)^2 - \frac{p^2L^4}{bM^2},$$

d'où

$$|u_{\scriptscriptstyle
m p}^{\scriptscriptstyle
m s}| \leqslant rac{L_6}{M^2}, \quad \left(|u_{\scriptscriptstyle
m p}| - rac{pL^2}{bM^2}
ight)^2 \leqslant rac{L_7}{M^4};$$

en posant $c_1 = \max(\sqrt{L_6}, \sqrt{L_7} + pL^2/b)$, nous obtenons donc

$$|u_{\mathbf{r}}| \leqslant c_1/M^2$$
, $|u_{\mathbf{r}}| \leqslant c_1/M$ dans $\langle t_0, t' \rangle$, c. q. f. d.

Travaux cités

- [1] E. Kamke, Differentialgleichungen reeller Funktionen, Leipzig 1930.
- [2] Л. Э. Эльсгольп, Качественные методы в математическом анализе, Москва 1955.
- [3] А. Н. Тихонов, О зависимости решений дифференциальных уравнений от талого параметра, Мат. сборник 22 (64) (1948), р. 193-204.
- [4] В. М. Волосов, Нелинейные дифференциальные уравнения второго порядка с малым параметром при старшей производной, Мат. сборник 30 (72) (1952), р. 245-270.
- [5] Квазиоднородные дифференциальные уравнения второго порядка, содержащие малый параметр, Мат. сборник 36 (78) (1955), р. 501-554.
- [6] T. Ważewski, Systèmes des équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs applications, Ann. Soc. Polon. Math. 23 (1950), p. 112-166.

Reçu par la Rédaction le 7. 1. 1957

ANNALES
POLÓNICI MATHEMATICI
V. (1958)

The first boundary value problem for a non-linear parabolic equation

by W. Mlak (Kraków)

We consider the first boundary problem for the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x, t, u).$$

In the proof of the existence of a solution of that problem the topological method of Leray-Schauder is used. To obtain the so called a priori limitation of solutions, needed in this method, some qualitative conditions are formulated. These conditions make it possible to find in a simple way the topological degree of a suitable completely continuous vector field associated with our boundary problem. Conditions of a similar character have been discussed in [1], [2] and [6].

- 1. To begin with let us formulate the following condition:
- (A) The function $\sigma(t,y)$ is continuous for $0 \le t \le b$ (0 < b) and $y \ge 0$. For all $\eta \ge 0$ the right maximal integrals $\omega(t,\eta)$ of the differential equation $y' = \sigma(t,y)$ such that $\omega(0,\eta) = \eta$ exist in the interval $\langle 0,b \rangle$.

Theorem 3 of [5] implies the following lemma: LEMMA 1. Assume that the function $\sigma(t, y)$ satisfies the condition (A). The function f(x, t, u) is defined for $0 \le x \le a$ (0 < a), $0 \le t \le b$ (0 < b)

$$|f(x,t,u)| \leqslant \sigma(t,|u|)$$
.

Suppose that v(x,t) is continuous in $R = \underset{(x,t)}{E} \{0 \leqslant x \leqslant a, 0 \leqslant t \leqslant b\}$ and possesses the continuous derivative $\partial^2 v/\partial x^2$ in the interior of R. Assume that z = v(x,t) satisfies in the interior of R the equation

$$\partial z/\partial t = \partial^2 z/\partial x^2 + f(x, t, z)$$

and the boundary inequalities

and an arbitrary u. We assume that

$$|v(0,t)| \leqslant \eta, \quad |v(a,t)| \leqslant \eta, \quad 0 \leqslant t \leqslant b; \quad |v(x,0)| \leqslant \eta, \quad 0 \leqslant x \leqslant a.$$

Annales Polonici Mathematici V.