
Some generalizations of the retract theorem 
of T. Ważewski with applications to ordinary 

and partial differential equations of the first order

ANNALES
POLONICI MATHEMATICI

XXIX (1974)

by Andrzej Pelczar (Kraków)

Abstract. There are given some extensions and generalizations of the classical 
retract theorem of T. Wazewski, in various forms, for generalized semidynamical 
systems and certain applications of them in the theory of ordinary and partial dif
ferential equations of the first order.

By a generalized semidynamical system we mean a triple (X, T, π), where X 
is a topological space, T is an abelian, ordered semigroup, satisfying some additional 
conditions, and π:T× X→Y is a continuous mapping, such that the family {πt}tϵT 
of mappings πt: X ϶ x → -π(t, x)ϵ X have the semigroup structure with respect to the 
composition.

The general theory is given in the first part of the paper. Some applications of 
a local form of the generalized retract theorem in the theory of ordinary equations 
given as an illustration of the method, and some essentially new results obtained by 
using the generalized retract theorems, with respect to partial differential equations 
of the first order, are presented with proofs detaily given, in the second part of the 
paper.
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The classical retract theorem of T. Ważewski from [37] and [38] 
(see also [41], [42]) was extended and generalized by many authors. In 
particular some general results are given by Albrecht [1], Bielecki and 
Kluczny [8], Kluczny [14], [15], Fedorov [11], Pelczar [22], [23], [27] 
Pliś [28] (in the paper [28] the concept of quasi-isotopic deformative 
retract, introduced by K. Borsuk in [9] was used). Extensions of the 
Ważewski,s method for contingent equations, and — generally — for 
multivalued mappings, are due to Bebernes and Schuur [3], [4], Bielecki 
[7], Pelczar [23]. For references concerning dynamical systems given 
by multivalued mappings (in particular by paratingent and contingent 
equations), we refer to the papers of Bronstein [10] and Roxin [29]. 
The fundamental applications are given by Ważewski [37], [38] and by 
the other authors, for instance Kaplan, Lasota and Yorke [13], Fedorov 
[11], A. Pelczar [24], [25], [26].

There are many papers concerning asymptotic behaviour of solutions 
of ordinary differential equations of many types, and structures of certain 
sets generated by solutions having some asymptotic properties. Among 
them, there are papers using the retract method of T. Ważewski in various 
version, or some particular notions closely related to this method, for 
instance the notion of egress points; there are many papers using some 
other qualitative methods being in close connection with the Ważewski,s 
retract method. We cite only: Kluczny [16], [17], Lojasiewicz [18]. 
Mikołajska [19], Szmydt [35], Szarski and Ważewski [34], Tatarkiewicz 
[36], Olech [20], Onuchic [21], Staikos [31]. The purpose of the present 
paper is to give a generalization of the classical retract theorem of T. Wa- 
żewski, for general semidynamical systems defined by local semigroups 
of transformations of a topological space into itself. Such generalizations 
give some possibilities of applications, in particular, in the theory of 
partial differential equations of the first order.
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The paper has two parts. The first part contains in its 9 sections 
the general results concerning generalized semidynamical systems. Some 
of these results were given already (in a little different form) in [22] (see 
also [23] for additional remarks and a correction to [22]). The second 
part has 6 chapters; each chapter is divided into sections, some sections 
are divided into subsections. In the second part we give applications of 
general results in the theory of differential equations. In the first chapter 
we give an application for (local) investigation of the behaviour of solutions 
of ordinary differential equations; there are no essentially new results, 
but only an example of applications of general results in a local form. 
Chapters 2-5 contain the results concerning families of regular surfaces, 
with particular applications in the theory of partial differential equations 
of the first order. Some of these results are signalized (without details) 
in [24]. The last Chapter 6 contains some other applications of the main 
results from the first part, in the investigations of the behaviour of so
lutions of partial differential equations.

The author is indebted to Professor T. Ważewski for giving helpful 
ideas while preparing this thesis and many valuable remarks; in particular 
the author would like to underline that Theorem 8 in Chapter 6 was stated 
owing to suggestions of Professor T. Ważewski.

Tho author would like to express his sincere thanks to Professors 
J. Szarski, A. Pliś and D. Bushaw for their valuable advice and remarks.

1. LOCAL ABELIAN ORDERED SEMIGROUPS

Let (T, ≤) be an ordered space (that is: "≤"  is a transitive, reflexive
and antisymmetric binary relation, and for every s, tϵT: s≤t or t≤ s), 
having the minimal element 0.

For s, tϵT (such that s ≤ t or s < t if it will be necessary for the 
correctness of definitions of corresponding sets), we put:

By <∙,∙> (or <∙,∙,∙>) we denote elements of cartesian products;
thus <s,t> denotes (for s, tϵT of course) the pair belonging to T×T.

Definition 1. We say that (N, +) definies in T the local abelian 
semigroup structure (in this case (T, ≤,∙N, +) will be said to be a local 
abelian ordered semigroup, shortly LAO-semigroup) if and only if the fol
lowing seven conditions hold:
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(C1)

(C2)
(C3)
(C4)
(C5)

(C6)
(C7)

N ⊂⊂ τ×τ,

for every tϵ T, there is sϵT, s > 0, such that [0, t] × [0, s]⊂ N,
if <t, s> ϵ N, then <s, t> ϵ  N and t + s, = s + t,
if <t, s>, <t÷s, u> ϵ then <t, s + u>, <t + u, s> ϵ N and (t + s) + 
+ u = t + (s + u),
<0, t> ϵ N and 0 + t = t for every tϵT,
if<t, s>, , <t + u> ϵ N and s ≤ u, then t + s ≤ t + u.

Remark la. If N = T×T fulfils the above conditions (C1)-(C7), 
then (T, ≤, +) is an ordered abelian semigroup with the neutral element 
0, being also the minimal element. Hence the notion of LAO-semigroup 
is a generalization of the notion of ordered abelian semigroups. In the 
other words, (T, ≤,T×T, +) can be identified with an abelian ordered 
semigroup (T, ≤, + )∙

Remark lb. If (T, ≤, +) is an abelian, ordered, dense semigroup 
without a maximal element, having the neutral element 0, which is also 
the minimal element, and condtion (*) (see Section 2, below) is satisfied, 
and, moreover, w0 >0 is a fixed element of T, then putting T0 
= [0,w0) and N0 = {<s,t>: s,t,s + tϵT0} we obtain a LAO-semigroup 
(T0,≤0, N0, +0), where ≤0 and +0 are the natural restrictions of ≤ 
and + to T0 and T0 × T0 respectively.

An important example of such a situation is the case: T = R* 
= [0, ∞) with To = [0, w0), where w0 is a positive real number, and + 
and ≤ are the usual addition and ordering relation in real number 
space.

On the other hand we have the following

2. GENERALIZED SEMIDYNAMICAL SYSTEMS

Let X be a topological space and let (T, ≤, N, +) be a LAO-semi
group (with some N ⊂ T×T) having the neutral element 0, being also 
the minimal element of T, without a maximal element, such that for 
every S ⊂ T, S ≠ 0, inf S exists. We assume that (T, ≤) is dense: for 
every s, t ϵ T, s < t, there exists a u ϵT such that s < u < t. We will con
sider T also as a topological space (but not necessarily as a topological 
semigroup!) with the natural topology given by the ordering relation; 
this means that the basis of neighbourhoods for any t0ϵ T, t0 > 0 is the 
family {(s,t): s < t0 < t} and the basis of neighbourhoods of 0. is the
family {[0, t): t> 0}. We will assume the following condition:

(*) (s, t ϵ T, s < t) => (there exists a λ ϵ T, λ > 0, such that s + λ ≤ t).

A. Pelczar18



Remark 2. The density of (T, ≤) and condition (*) imply imme
diately that:
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(**) (s, tϵ T, s < t) => (there exists a λϵ T, λ> 0, such that s + λ<t).

Conversely, condition (**) implies trivially condition (*).
Assumption. Throughout the whole first part of the present paper, 

X and (T,≤, N, + ) trill be as above, we shall consider them as fixed in
the sequel.

Definition 2. Suppose that T0 = T or T0 = [0, w0), where w0ϵ T, w0 
> 0, and that T × T ⊂ N in the first case (and observe that obviously 
{0} × [0, w0) ⊂ in the second case).

A mapping π,. To ×X→X is said to be of the class G(T0) (or shortly: 
πϵ G(T0)) if and only if

(G1) π is continuous as a mapping from the topological space T0 ×X 
provided with the natural topology of the cartesian product given in the 
usual way by the topology on T0 (induced by the topology on T) and X, 
into the topological space A;

(G2) the family {πt: tϵT0}, where for every tϵT0

(1)

fulfils the following (local) semigroup conditions:

πs° πt = πt° πs = πt+s for every s,tϵT0, (<s,'>ϵ N,(2)

(3) π0 = idx( <=> π0(x) = x for every xϵ X).

If — in some particular questions — the set To will be fixed, then 
G(T0) will be denoted shortly by G

Definition 3. For every πϵ G(T0), we will call the triple (X, T0, π) 
a generalized semidynamical system (GSD-system).

Remark 3. Perhaps a natural name for triples (A, T0, π) with π 
belonging to G would be local semidynamical systems. But Bhatia and 
Hajek [5] have already used the name “local semidynamical systems” 
for some other systems, and therefore to avoid confussion, we will use 
here a terminology slightly different from that used in [5]. Note, that 
GSD-systems considered here are special cases of local semidynamical 
systems from [5] if T = R*.

Remark 4. In the present paper we will prove general theorems con
cerning GSD-systems for arbitrary T (under assumptions introduced 
above, of course). However, applications given in the second part of the 
paper concern only the case, namely T = R* = [0, ∞). Hence, from the
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practical point of view, one can think always about T being the real half- 
line. An example of T being not the positive real half-line, and an appli
cation of the general results presented here for such strange T, is given 
in [21].

3. SOME PRELIMINARY LEMMAS

Lemma 1. If T0 = [0, w0) or T0 = T and the mapping λ: T0→X is 
continuous, M ⊂ X, t,t'eT0, t<t', λ(t)e M, λ(t')j XL, then putting

8 = {s<= [t, f]: λ(s)<f M} and s0 = infβ,
we have

ζ(s°)∈ ∂M ( = the boundary of 31).
Proof. Let U ⊂⊂ X be a neighbourhood of λ(s0)∈A∖ Since λ is contin

uous, there is a neighbourhood Q ⊂ T0 of s0 (Q = (u,v) with some u, v ϵ. T0, 
u < s0 < v if s0 > 0 and Q = [0, v) with some v > 0, if s0 = 0), such that 
λ (Q ∩ [t,t']) ⊂ U. Since s0 = inf S, we have S∩Q∩[ζ,∕z] ≠0 and then 
U∩(X\M) ≠ ∅. On the other hand Q∩[t,t']∩{T0\S) ≠0 (if not, 
there will exist an element sϵS such that s < s0), and then we have: 
U∩M ≠ ∅. The neighbourhood U of λ(s0) was arbitrarily fixed. Then, 
we have proved, that for every neighbourhood U of λ(s0) we have: U ∩ M
≠∅ and U ∩(X\M) ≠∅. This means that and
then λ(s0)ϵ ∂ M.

Lemma 2. For every t1,t2 ϵ T,t1≤ t2, the interval [t1 , t2] is compact.
Proof. We will repeat here the classical reasoning showing that 

a closed and bounded interval in R = ( -∞, +∞) is compact. Let 
[t1, t2] ⊂ T be fixed and let H be a family of open sets covering [t1, t2], 
that is such that [t1, t2] ⊂ U {H ϵ H) Suppose that there are no finite 
subfamilies of H covering [t1, t2]. Thus, the set P = {tϵT: t1≤t≤t2, 
[t1, t] is not contained in the union of any finite subfamily of is non
empty. Put s = infP. Let H0 be such that sϵ H0ϵ H∖ Since H0 is open, 
there exist s',s''ϵ T, such that s'< s < s'' and (s',s'') ⊂ H0. Consider 
[t1,s]. Because of the definition of s = infP, for every sϵT such that 
s ϵ [t1,s]. there exists a finite subfamily of of open sets, say H1, ..., Hp, 
such that [t1, ŝ] ⊂ U (Hi: i = 1, ...,p}. Hence, for ŝϵ [t1, s)∩(s' s''), 
we have:

[t1, s) ⊂ [t1, ŝ] U (s,s'') ⊂ U {Hi∙. i =0,1, ...,p}.
Thus, we have proved, that [t1, s] can be covered by a finite subfamily 
of This, in virtue of the assumption that the set P is non-empty, 
yields us the inequality s < t2. Let us consider again the set H0ϵ H,, such 
that s ϵ H0. There are s',s''ϵT, such that sϵ (s',s''), (s', s'') ⊂ H0 and 
s'' < t2. As previously, take s ϵ (s', s'')n[t1, s). Take also a point ŝ ϵ (s, s'').
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We have

[t1, š) ⊂ [t1, ŝ] U (s, s'') ⊂ U {Hi∙. i =0,1, ...,p}

which is impossible in virtue of the definition of s = infP, because š > s. 
Corollary. Every closed interval [s, t] ⊂ T0 is compact in T0, with 

respect to the topology induced in T0 by the topology of T.

4. CONDITION (C)

Definition 4. Let M be an open subset of X, M ≠ ∅, let w0 ϵ T, 
w0 > 0 be fixed, and let π be a mapping from [0, w0) × X into X (resp. 
from T × X into X). We say that M fulfils condition C(w0; π) (resp. C(π)) 
if and only if, for every t,t' [0, w0) (resp. t, t'ϵ T) such that t<t' and 
every x ϵ M such that π(s, x)ϵ Mfor 0 ≤ s ≤ t', there exists a neighbourhood 
IF of the point x such that

(4) y ϵ W => π(s, y)ϵ M for 0 ≤ s ≤ t.

We say that π fulfils condition (C(w0)) (resp. ((C)) if and only if condition 
C(w0; π) (resp. C(π)) is satisfied for each open and non-empty subset 
M of X, that is for every <x, t, t', M>e X ×T × T × 0(X), where 0(X) 
denotes the family of all open and non-empty subsets of X, such that 
0 ≤ t < t' < w0 (resp. 0 ≤ t < t') and π(s,x)ϵM for 0 ≤ s < t', there 
exists a neighbourhood W of x such that implication (4) holds true.

Since M is open, W can be required to be a subset of M.
Remark 5. In the classical cases of dynamical systems given by sys

tems of differential equations, the usual conditions of regularity assumed 
there imply conditions (C). In the general theory of generalized dynamical 
systems, one assumes very often some stronger conditions; for instance, 
Hale and Infante assume in [12] uniform continuity of π in bounded sets. 
We shall prove below a lemma concerning condition (C) in the case of 
continuous π; more precisely, we shall prove that (C) is satisfied for π 
belonging to G.

Lemma 3. For every πϵ G  = G(T0), where T0 = [0, w0) or T0 = T 
(w0 > 0), condition (C(w0)∖ or (C) — respectively — is satisfied.

Proof. Let M ⊂ X be open and non-empty. Let t, t' ϵ T0 and x ϵ M 
be such that t < t' and πs(x)ϵ M for se [0, t'). Consider the interval [0, t]. 
For every s ϵ [0, t] (and for the fixed point x), there exist neighbourhoods 
Ss,x = (ts1, ts2) of s (or Ss,x = [0, ts2)> if β = θ) and Vs,x of the point x, such 
that:

{u ϵ Ss,x, y ϵ Vs,x) => πu(y)∖ϵ M.

This is obvious in virtue of the continuity of π.



Of course, the family of open sets {Ss,x}Sϵ[0,t] covers the interval 
[0, t]. Since [0, t] is compact (see Lemma 2), we can choose a finite sub
family convering the interval [0, t]. Put
i = 1,..., p}. We have the following sequence of implications:

Thus, if y ϵ V, then πu(y)ϵ  M for uϵ  [0, t].
Corollary. For every open set M ≠ ∅, and every π ϵ G(T0), the con

dition C(w0∙, π) is satisfied.

5. NOTATION

Let (X, T0, π) be a GSD-system (with T0 = [0, w0)). Let πϵG = G(T0) 
and let yϵ X.

We put
π(y) = {πt(y): tϵ T0},(5)

(6) π -1(y)= {zϵX: yϵπ(z)}.

If z ϵ π -1(y), then we define:
t(z,y) =inf{tϵT0∙. πt(z) = y},
(z,y) = {πt(z): 0< t < t(z, y)},

[z,y) = (z,y)U{z} (=πt(z): 0≤ t< t(z, y)}).

(7)
(8)
(9)

The same notation will be used in the case of GSD-systems (x, T, π) 
where T is a semigroup.

6. INVARIANT SETS. EGRESS AND STRICT EGRESS POINTS

Let (X, T0, π) be a GSD-system and let N ⊂ X be non-empty.
Definition 5. We say that N is invariant (with respect to π) if and 

only if π(y) ⊂ N for every y ϵ N.
Definition 6. Let N ⊂ X  be open and non-empty. We say that 

yϵ∂M is an egress point if and only if there exists zϵ π-1(y)∩M, such 
that [z,y) ⊂ M. The point yϵ ∂M is said to be a strict egress point if and 
only if y is an egress point, and for every λϵT0, λ > 0, there is ηϵT0,
η<λ, such that (y, πη (y)} ≠ ∅ and

A. Pelczar22



By Me and Mse we will denote the sets of all egress and all strict 
egress points respectively.

Remark 6. The definition of a strict egress point can be given equi
valently in the following, slightly modified form: yϵ ∂M is a strict egress 
point if and only yϵ Me and there is an ηϵ T0, η > 0, such that (y, πλ(y)] 
≠∅ for 0 < λ ≤ η and  ̅M (y, πη(y)) =∅.

Remark 7. Suppose that M ⊂ X is open and non-empty. Then 
the following three conditions (a), (b), (c) are equivalent: (a) y ϵ Me, 
(b) for every open and invariant set N ⊂ X such that M ⊂ N, yϵ∂M∩N 
and there is an z ϵ π-1(y)∩M for which [z, y) ⊂ M, (c) there exists an open 
and invariant set N ⊂ X, containing M, such that yϵ ∂M∩N and there 
is an ze π-1(y)∩M, for which [z,y)⊂ M.

In book [6] the definition of egress points is given in a form similar 
to (c). Our first definition is an extension of the original definition of 
Ważewski [33], [34], by using the notation similar to that of [6].

Remark 8. Let M ⊂ N ⊂ X be open, N be invariant, M ≠ ∅ and 
let πe G = G(T0) (in particular, N can be equal to X}. If ∂M ∩ N ∩Me = ∅, 
then M is invariant. Indeed, if M is not invariant, then there is y ϵ M, 
such that π(y) ⊄ M. Hence, there is t ϵ T0, such that πt(y) does not belong 
to M. Put σ = inf{t ϵ T0: πt(y)∉ M}. We have πσ(y)ϵ ∂M (see Lemma 1). 
Since N is invariant and yϵN, we have πσ(y)ϵN. Putting w = πσ(y), 
we have σ = t(y,w). Hence [y,w) ⊂⊂ M. Thus wϵ Me. Then, we have 
proved, that there is wϵ Me∩N∩∂M this is impossible because of the 
assumption.

The above remark generalizes a lemma from [6] (p. 96) and gives 
some information about of properties of Me.
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7. A GENERALIZATION OF THE WAZEWSKΓS RETRACT THEOREM

Proposition 1. If M ⊂⊂ X is open and non-empty, S ⊂⊂ M ∪ ∂M is 
non-empty, π ϵ G(T0) and

S' = {yϵS-. π(y) ⊄ M}(10)

is non-empty, then for every y

(11)

is a well defined element of T0 (see Lemma 1). Then we can define the following 
mapping

S’϶ y → σ(y)ϵT0.(12)
Moreover, if y ϵ S'∩M, then σ(y) = {t ϵ T0: πt(y)ϵ Me} and 

πσ(y)(y)ϵMe. If ye S'∩∂M, then σ(y) = 0.



Theorem I. Let (X, T0, π) be a GSB-system, let M ⊂ X be open and 
non-empty, B be a subset of ∂M (the case B = 0 is not excluded). Suppose 
that S ⊂ M ∪ Me ∪ B is non-empty, such that there is a retraction (Me ∪ (B∩S)) 
→S∩(MeuB), but there are no retractions S→S∩(Me∪B). Suppose, moreo
ver, that if S' defined by (10) is non-empty, then the mapping f: S' ϶ x 
∖→πσ(x)(x)ϵ Me∪B, where σ(x) is given by (11), is continuous.

Under the above assumptions, there is a y ϵ S∩M, such that π(y)  ⊂⊂ M.
Proof. Suppose that the set {y ϵ S: π(y) ⊂ M} is empty. Then 

S = S', and f is defined and continuous in S. The mapping h = g°f, 
where g: Me∪{B∩S)→S∩(Me∪B) is a retraction, is evidently a retrac
tion S→S∩{Me∪ B). This, however, contradicts the assumptions.

The above theorem is a generalization of the retract theorem of 
T. Ważewski in the version of [38]. A generalization of another form of 
the retract theorem (cf. [37]) will be given below.

A special case of Theorem I, is the following
Theorem la. Let (X, T0, π) be a GSD-system, M ⊂ X be open, M ≠ ∅, 

a set S ⊂ M ⊂ Me be non-empty and such that there is a retraction Me→ 
S ∩ Me, but there are no retractions S→S ∩∖ Me. Suppose that if S' defined 
by (10) is non-empty, then the mapping f: S'϶ x∖→ πσ(x)(x) ϵ Me is continuous. 
Then there exists a y ϵ S ∩ M, such that π(y) ⊂ M.

This form of the retract theorem is presented in [20] as Theorem A''.
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8. CONTINUITY OF σ AND SOME SPECIAL FORM 
OF THE RETRACT THEOREM

It is easy to see that a fundamental role in Theorem I is played by 
the continuity of σ. Indeed, the mapping f introduced in the assumptions 
of Theorem I is equal to π°(σ, identity) and then it is continuous if σ 
is continuous. Thus, it is very important for applications to give some 
conditions sufficient for σ to be continuous.

Let us put, for non-empty open M  ⊂  X:

(13) for every λϵ T0, λ > 0 there exists η ϵ T0 ,η<λ
such that (y, πrl(y)) ≠ ∅ and

Remark 9. For a set N ⊂ X define A-start points as follows: xeN 
is said to be an N-start point if and only if there are no y ϵ A\{a?} such that 
xeπ{y) (in the other words: π-1(x)∩N = {x} and if π(t,y) = x, then 
t = 0 and y = x or y ϵ N). This definition is an extension of the definition 
of start points given by Bajaj [2]. Using this notation, and denoting by 
Xs the set of all N-start points, we can state the following obvious re
lations:



σ(y) =inf{tϵT0; πt(y)∉ M} = inf{tϵT0; πt(y)ϵ ∂M}

= inf {tϵT0; πt(y)∉ Me} =t(y, πσ(y)(y)) for every yϵS∩M,

and σ(y) = 0 for y ϵ S∩M* ⊂ ∂M.
Let y be a point of S\M* = S∩M. Consider σ(y) and an arbitrarily 

fixed neighbourhood (t1,t2)⊂T0 of σ(y). Of course, 0 ≤ t1 < σ(y) < t2. 
Since πσ(y)(y)ϵMe= Mse and σ(y) = t(y, πσ(y)(y)), we have [πt1(y), 
πσ(y)(y)) ⊂ and

(15) (πσ(y)(y), πs,(y)) ≠ ∅ and

In order to underline certain particular properties of some sets, we 
will use in the sequel the set

(14)
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for some sϵT0, such that σ(y) < s < t2. Indeed, we can choose t'e To, 
t, > 0, such that σ(y) + t' < t2 (see condition (*) from the second section). 
On the other hand, putting z = πσ(y)(y), we obtain: zϵMse, and then 
we can find for the t' chosen previously an element s' e T0 such that 0 < s' 
< t', (z, πs'(z))≠ ∅ and (z, πa'(z))∩̅M = ∅. We have obviously πs'(z) 
= πs'(πσ(y)(y)) = πσ(y)+s'(y), and then putting s = σ(y) + s', we obtain the 
element s having the required properties (15).

Furthermore, we can require the condition
a little stronger than the second condition of (15) (if πs(y) belongs to
then we can replace s by some ˜s ϵ (σ(y), s), for which
= ∅).

case M' ∪ Mse = M* and then Theorem II can be equivalently stated with 
M* replaced by Me∪M', or by Me∪M*, or by Mse∪M', or finally by 
Mse∪M*.

Proof of Theorem II. Let y ϵ S. We have π(y) ⊄ M and then 
there is a t ϵ T0, such that πt(y)ϵ ∂M (see Lemma 1 in the case yϵ M∩S; 
in the case y ϵ M*∩S the existence of such t is trivial, since π0(y) 
= y ϵ M*∩S ⊂ ∂M). Then there exists a tϵT0 such that πt(y)ϵ Me∪M* 
= Mse∪M* = M*; if, moreover, yϵ S\M*, then πt(y)ϵ Me = Mse. We 
have (see Proposition 1):

Theorem II. Let (X, T0, π) be a GSD-system, M ⊂ X be open and 
non-empty stιch that Me = Mse. Suppose that S ⊂ M ∪ M* is non-empty 
and such that for every y ϵ S, π (y) ⊄ M. Then the mapping S ϶ y>→ σ(y) ϵ T0, 
with σ given by (11), is continuous.

Remark 10. Since Me = Mse, we have Me∪M* = Mse∪M* 
= M* ⊃⊃ M' ∪ Mse (see Remark 9). An important (for applications) case
is which gives In this



Since πt(y)ϵM for 0≤ t <σ(y), there is a neighbourhood W of 
the point y such that W ⊂ M and πt(w)ϵ M for 0 ≤ t< t1 and w ϵ W. 
This follows directly from the condition C(π), which is satisfied (see Lemma 
3) because π ϵ G

Hence (see Lemma 1) for xe W∩V∩S we have: t1 < σ(x) ≤ s ≤ t2.

for x ϵ W∩V∩S. Thus, for such x, we have t1 < σ(x) < t2. Then, for every 
neighbourhood Q of σ(y), there is a neighbourhood U (=W∩V∩S) 
of yϵ S, such that

Because of the relation: the equality σ(x) = s is impossible

Theorem III. Suppose that (X, To, π) is a GSD-system, M ⊂⊂ X is 
non-empty and open, Me = Mse. Suppose that S ⊂⊂ M ∪ M* ( = M ∪ Me ∪ M*) 
is non-empty and such that S n Me ( =S ∩ Me ∩ M*) is a retract of Me ∪ (M* ∩/S), 
but there are no retractions S→S∩M* ( = S ∩(Me∪M*)).

Then there exists a y ϵ S ∩ M such that π(y) ⊂ M.
(The equalites noted in parantheses follow directly from the equality 

Me = Mse, see Remark 10.)
The above Theorem III is a generalization of the retract theorem 

given by T. Ważewski in [37]; see also [22] for a generalized form.
As a trivial consequence of Theorem III, we obtain the following
Theorem IV. Suppose that (X, T0, π) is a GSD-system, M ⊂ X, 

M ≠ ∅, Mis open, Me = Mse, S ⊂ M∪Me∪M' is non-empty, S∩(Me∩M') 
is a retract of Me∪(M'∩S) but there are no retractions S→S∩(Me∪M').

xϵ U =>σ(x)ϵ Q.

From Theorems I and II we obtain immediately the following

This means that σ is continuous in the set S\M*.

If x∉M*, then xϵ M and then σ(x)ϵ (0, s) ⊂ [0, t2). Then, for every 
neighbourhood Q of σ(y) =0, there is a neighbourhood U (= V∩S) 
of y, such that xϵ U =>σ(x)ϵ Q. Thus, σ is continuous in S∩M*. Since 
S' = (S∩ M*) ∪ (S \ M*), we have proved the continuity of σ in the whole 
set S.

If xϵ M* , then σ(x) = 0 and σ(x) belongs to the interval [0, t2) trivially.

Let now yϵS∩M* ⊂⊂ ∂M. Then σ(y) = 0 and πσ(y)(y) = π0(y) = y. 
Consider a neighbourhood [0, t2) ⊂⊂ T0 of σ(y). Since yϵ M*, there is a

from the definition of M*, we have only but as in the
preceding case, we can replace s by some s* ϵ (0, s) for which the required
stronger condition holds true). Hence, in particular, From

se T0 such that 0 < s ≤ t2, (y, πs(y)) ≠ ∅ and (formally,

the continuity of π, it follows that there is a neighbourhood V of y such
that πs(x)ϵ for xϵ V∩S ⊂ M∪M*. Consider a point xϵ V∩S.

we have: πt(x)ϵ M for tϵ[0 , t1) and
for xϵ V. Then, for any point xϵ W∩V∩S,

Moreover,
of y, such that

and then there is a neighbourhood V (⊂ M)
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9. EQUIVALENCE OF THEOREMS III AND IV' FOR COMPACT SETS

Suppose that (T, ≤, +) is an abelian ordered and dense semigroup, 
with the neutral element 0, which is also a minimal element and suppose 
that for every T' ⊂ T, T' ≠ ∅, there exists infT'. Then {T, ≤, T × T, +)

Finally, we will formulate explicitly a very special case of Theorem III, 
because it will be useful for some applications in the theory of partial 
differential equations of the first order. Namely, we have the following

Theorem R. Let us consider R* = [0, ∞) with the natural topology 
and ordered semigroup structure with respect to the usual addition and 
the usual ordering relation ≤. Let a > 0 be fixed and let X be a topological 
space, π∖ [0, a) × X→X be a mapping belonging to G([0, α)) {in the sense 
of Definition 2 for T = R*, T0 = [0, α)). Let M ⊂ X be non-empty and 
open, such that Me = Mse, and let S ⊂ M ∪ M* be non-empty, such that 
M ∩ S* is a retract of (S ∩ M*)∪ Me, but there are no retractions S→S ∩ M*.

Then, there exists a y ϵ S ∩ M, such that π(y) ⊂ M.
The reduction of Theorem R to Theorem III is trivial, because of 

the obvious fact that T = R* and T0 = [0, a) fulfill all assumptions intro
duced in the two first sections.

is non-empty and S ∩ Me is a retract of Me, but S ∩ Me is not a retract of β. 
Under the above assumptions, there exists y ϵ S ∩ M such that π(y) ⊂ M.

for every η ϵ To, η < λ. Suppose finally that S ⊂ M ∪ M,

Theorem IV bis. Let (X, T0, π) be a GSD-system and let M, N ⊂ X 
be two open and non-empty sets, such that N is invariant and M ⊂ N. Sup
pose that if y ϵ ∂ M ∩ N and there is an element ze M ∩ π -1(y) such that 
[z, y) ⊂ M, then there exists λeT0,λ>0, such that (y,πλ(y)] ≠ ∅ and

We shall give below a modification of Theorem IV' based on Remark 7 
which is a generalization of the retract theorem in the form given by Bhatia 
and Szegö in [6], namely the following

Theorem V. Suppose that (X, T0, π) is a GSD-system, M ⊂ X is 
non-empty, M is open, Me = Mse, S ⊂ M ∪ M is non-empty and such that 
S ∩ M* is a retract of Me ∪ (M' ∩ S), but there are no retractions S→ S ∩ M'. 
Then there exists a y ϵ S ∩ M, such that π(y) ⊂ M.

Another simple consequence of Theorem III is the following

Theorem IV'. If (X, T0, π) is a GSD-system, M ⊂ X is open, M ≠ ∅, 
S is non-empty and S ⊂ M ∪ Me, Me = Mse, there is a retraction Me →S ∩ Me, 
but there are no retractions S → S ∩ Me, then there exists a y ϵ S ∩ M, such 
that π(y) ⊂ M.

Then there exists a y ϵ S ∩ M, such that π(y) ⊂ M.
As a corollary, we have the following:



is an LAO-semigroup. Let w0 ϵ T, w0 > 0 be fixed. Then, for T0 = [0, w0) 
the system T0,≤, N0, +), where N0 = {<s ,t>ϵ T0 × T0∙. s + tϵT0} is 
an LAO-semigroup.

Now we assume the following condition of a local (in T0) sub
traction :

(S) For every s,t ϵ T0 such that s ≤ t there exists exactly one element u
= u(s, t) ϵ T0 such that s + u = t. We shall write

Proposition 2. Let X be a topological space and let (X, T0, π) be 
a GSD-system, with T0 as above (that is T0 = [0,w0) ⊂ T, To fulfilling 
(S)) and πϵG(T0). Let M ⊂ X be an open set, M ≠ ∅, M is compact, Me = Mse. 
Suppose that S ⊂ M∪Me∪M' is non-empty such that there is a retraction 
Me∪M'→S∩(MeuM'), but there are no retractions S→S∩( Me∪M').

Then there exists a GSD-system and there are sets M˜ ⊂ X˜
and such that is open, and there
is a retraction but there are no retractions (closure
of and furthermore the following two conditions (α) and (α) are
equivalent:
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Theorem VI. Under the above assumptions on T and To, Theorems 
III and IV' are equivalent for every M which is relatively compact (that is 
such that ̅  Mis compact) and fulfils the condition: ∂M = M* = Mse∪M.

Proof. The implication Theorem III =>Theorem IV' is trivial because 
Theorem IV' is a special case of Theorem IV, which is of course a special 
case of Theorem III (without any supplementary assumptions on T 
and M).

there is y ϵ S∩M, such that π(y) ⊂ M,(α)

In order to prove the inverse implication we shall construct for 
a given system (X, To, π) with T0 as above and for given M ⊂⊂  X, S ⊂ M
∪(Me∪ M') another system and sets

is empty, and then also More
precisely, we shall prove the following
such that the set (closure of

It is clear that if the above Proposition 2 holds true, then for T and 
JI as we have assumed, Theorem IV' implies Theorem III.

Indeed, assuming Theorem IV' and the assumptions of Theorem III
and corresponding setswe can apply Theorem IV' to

and then we will obtain condition In virtue of Proposition 2, condi-
implies (α), and then Theorem III holds true.tion

Thus, under all assumptions of Theorem III and the conditions 
introduced above for T and T0 (in particular (S)) we will construct a system



and define an ordering relation -3 in U, as follows:

<t,0> ⊰ <0,0> ⊰ <0, t>
<t, 0> ⊰ <s, 0>

<0,0> ⊰ <0 , s>

for every t ϵ [0, w0),
if and only if t ≤ s in T (in T0), 
if and only if t ≤ s in T (in T0).

An easy proof that this is really an ordering relation will be omitted. 
Observe that (U, ⊰) is such that for every V ⊂ U, V ≠ ∅∅, such 

that there is a <s1, s2>ϵ U, for which <s1, s2> ⊰ <t1, t2> for every <t1, t2>ϵ V. 
there exists inf V.

Moreover, the space (U, ⊰) is also dense. There are no maximal 
and minimal elements in U.

It is clear, that the mapping

(16)

is an increasing bijection between (T0,≤) and (U+, ⊰+), where ⊰+ 
is the restriction of ⊰ to U+.

T0 ϶ t →<0, t> ϵ U

Hence, the mapping

(17)

can be considered as an embedding (inclusion) compatible with the ordering 
relation. This mapping is also a homomorphism of the (local) semigroup 
T0 into the (local) semigroup U in a sense which we will define below.

Let now M ⊂ U × U be defined as follows

(18) M = {<<0,s>,<t,0>>: s,tϵ T0} ∪ {<<0,s>,<t,0>>: s,t ϵ T0} 
∪ {<<0,s>,<t,0>>: s,tϵ T0, s + t ϵ T0} 
∪{<<0,s>, <0,t>>: s,tϵ T0, s + t ϵ T0}.

We now define +∙: M→U as follows:

<0 , s>+∙<0, t > = <0 , s+t>, <s,0>+∙<t,0> = <s+t,0>,

<0 , s>+∙<t , 0>
<0, s - t> if t ≤ s
<t — s, 0>    if s1 ≤ t.
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<s , 0> + ∙<0,t> = <0,t>+∙<s,0>.

having the required properties. Of course M is assumed to be
relatively compact and such that Consider the set∂M = M* = MuM'.
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Here, + and — denote the addition and the subtraction (in the sense 
of (S)) in T0.

It is easy to see that the restriction of +∙ to U+ (which we will denote 
by the same symbol +∙) makes (U+, ⊰+, M∩(U+ × U+), +∙) an LAO- 
semigroup which can be identified with (T0,≤,N0, +) by the mapping 
(16). More precisely, the mapping (16) is a bijection compatible with both 
the additions and both the orders. The spaces (T0, ≤) and (U+, ⊰ + ) are 
also topologically equivalent (by (16)), with respect to the topologies given 
by the ordering relations. These facts permit us to identify <0, t> ϵ U+ 
with t ϵ T0, +∙ with +, and ⊰+ with ≤. In order to simplify, in this line, 
the notation with respect to the whole U, we will use the following con
vention: if <s, t>ϵ U, then by - <s, t> we will denote the element ζt, s') 
belonging of course also to U. Hence - ( - <s,t>) = <s,t>. According 
to this convention and to the identification of <0,t> with t (for t ϵ T0), 
we will write t in the place of <0, t> and - t in the place of <t, 0>, for every 
t ϵ T0. Then, the following formal rule: - ( - t) =t, - 0 = 0, for every 
t ϵ T0, is a natural consequence of the previous conventions. Moreover, 
we will write ≤ in the place of -3 and + in the place of +'. Thus, we 
have -  t ≤ 0 ≤ s for every s , t ϵ T0, and we can write simply U = ( —w0, 0]∪ 
∪[0,w0) = (- w0, w0). This means that we can consider (U,≤) as an 
extension of (T0,≤)j moreover, the local abelian ordered group 
(U,≤, M, +) is in this sense an extension of the LAO-semigroup 
(T0, ≤, .//°, +). We have: t ≤ 0 <=> 0 ≤ - t and - t ≤ 0 <=> 0 ≤ t for every 
te U and ∕≤ s ≤ 0 <=> 0 ≤ - s ≤ - t for every s, t ϵ U. The formulas in 
the definition of +∙ (denoted in the sequel by +) have now the 
following forms:

s + t = s÷< (in the sense of + in To for 0 ≤ s, t,

s +"t =  - (( - s) + (-t)) for s, t ≤ 0,

s + t = max(s, ( - t)) — min(8, ( —t))

s + t — max(t, ( - s)) — min(<, ( — s))

for 0 ≤ s, t ≤ 0,

for 0 ≤ t, s ≤ 0.

We have indeed in U the structure of a local ordered abelian (and 
dense) group: t + s = s + t, t + 0 = t, t+(-t) = 0,t + (s+ u) =(t + s) + u 
(if at least one side is well defined) and if s,t, u ϵ U, u ≤ t, 0 ≤ s, then 
s + u ≤ s +t.

Furthermore, for s, t ϵ U such that 0 ≤ s < t, there exists λ ϵ U, 
λ > 0, such that s + λ ≤ t and for s, t ϵ U, such that t < s ≤ 0 there exists 
λ ϵ U, λ< 0, such that t< s + λ; this follows directly from condition (*) 
in Section 2.

In U we will consider the topology given by the ordering relation.



πmax(0,t+s)(x) =  πt+s(x) = πt(πs(s)) = πt(πmax(0,s)(x)) =  πt(πmax(0,s)(x'))
= πt (πs(x')) = πt+s(x') = πmax(0,t+s) (x').

This means, that πmax(0,t+s)(x) does not depend on x, chosen in such 
a way that πmax(0,s)(x) = y.

A simple computation gives the following equality:
(19)

such that <u, t> ϵ M.

(20)

∪{<s, x> ϵ X: 0 ≤ s and there is y ϵ M such that x = πs(y)
and πu(y)ϵ M for every 0 ≤ u ≤ s},

(21)
We will prove that

there is a retraction

there are no retractions
In order to show (22) observe that for every

(26)

(25)

(24)

(23)

(22)
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for u,t ϵ T0, <s , y> ϵ

y =πmax(0,s)(x)∙ This definition is correct, since for x,x' ϵ X such that 
πmax(0,s)(x) =  πmax(0,s)(x') we have.

where x ϵ X is such that
defined as follows:

for
Let us consider a mapping

lº if s ≤ 0, then x = x' and then of course πmax(0,s)(x) = πmax(0,s)(x')
2º if 0 ≤ s, then max (0,s) = s, max(0,t + s) =t + s and then

Since the continuity of follows directly from the continuity of π,
we can consider as a GSD-system.

Let us define now the sets and as follows:

we have

In U ×X we consider the topology of the cartesian product, induced
on the usual way by the topologies of U and X. In we consider the
restriction of the topology of U × X.

if and only if, there exists x ϵ X, such that y = πmax(0,s) (x).
if and only if s ≤ 0 or 0 ≤ s and there is x ϵ X, suchThus

that y = πs(x).

Now, we will define a space which is a subspace of U × X, as
follows:



which is continuous and fulfills of course the condition  
and is therefore a retraction.
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= <s, π0 (x)>= <s, x>.
<λ + s + η, πmax(0,λ+s+η ) (x)> = <s,πmax(0,s) (x)>

if and only if s = 0 and  xϵ  S ∩ ∂M = S ∩ (Me∪M')
In order to prove (25) consider the mapping

In case (f),  xϵ  Me = Mse and then also
We will prove (24). In virtue of (22) the set is empty and then

Furthermore if and only if s = 0,
then

for every η > 0, η ≤ λ with some λ > 0; this follows directly from the fact, 
that  xϵ  M*.

Now we will prove (23). Let <s, x> be a point of This means that
(e) s =0 and xϵ ∂M+*  , or (f) 0 < s,  xϵ  ∂M and there is a point yϵ  M, 
such that πs(y) = x, πu(y) ϵ M for 0 ≤ u < s. In case (e), we have <s,x>ϵ Mse,

does not belong to the closure ofbecause

Then, in virtue of the obvious relation <0,y>e (closure of we
have: for every <s, x> ϵ ∂ such that s > 0, there is an element <0, y>
belonging to the closure of such that = <s, x>. The proof
of (22) is completed.

convergent to s. Hence, in virtue of the continuity of π, we have ∙.π(s,y) =x.
of {yn}, convergent to a point the subsequence is obviously

Since M is relatively compact, we can choose a subsequence
is a ynϵ M ⊂ such thut π(sn, yn) = xn
quence {<sn, xn>}n=1, 2,... ⊂⊂ convergent to <s,x>. For every n, there

or (d) 0 < s. In this case (d), there is a seas in case (a) for
then (c) s =0 (and we can use the same reasoningIf

of some element <t,y>ϵ M, for some u ϵ T0.by
such that <s, x>. Then, each element <s, x> of is an image
y ϵ M such that x = πs(y), and then we have an element <0,y>

In case (b) we have directly from the definition of an element

(a) s ≤ 0 or (b) 0 < s and there exists a y ϵ M such that x = πs(y) and
πu(y)ϵ M for 0 ≤ u ≤ s. In case (a), we can find t < s, such that putting

=<t +u, πmax(0,t+s) (x)> = <s, π0 (x)>u = ( -t) - ( -s),we obtain

Remark 11. It is possible to reason another way, based on the exten
sion of (*) for U, namely: we can find λ < 0 such that - w0 < λ + s < - s, ≤ 0 
and then putting η = -λ, we obtain ηϵT0 such that

= <s, ^>∙



Finally, suppose that there is a retraction

Remark 13. All applications given in the second part of the present 
paper concern questions in which corresponding sets Jf are relatively 
compact, the space T is equal to [0, ∞) and the LAO-semigroup To is 
equal to a bounded interval [0,w0); this moans that all assumptions of 
Theorem VI are fulfilled in these particular problems. We underline this 
fact, because in the papers [22]-[25] the retract theorem in the version 
of Theorem IV' is presented and applied.

In virtue of the above remark, this form is enough to the applications 
in the theory of partial differential equations. Of course, having here 
the general form (Theorem III) we will use it in the sequel. Note finally, 
that the reasoning presented in the present section in the proof of the last 
theorem, was used by the author previously in a special case in [25 ].

Remark 14. From the formal point of view, the equivalence of Theo
rems III and IV' is trivial, since the both are true; the essence of Theorem 
VI is contained in the fact that in the case of compact sets M such that 
∂M = M* = Mse∪M' and T0 having property (S), the formally more 
general Theorem III gives really nothing new with respect to Theorem IV'.
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but since the converse implication is immediate, we formulated the cor
responding condition in the form of an equivalence.

Remark 12. It was sufficient to prove only the implication

πu(y)ϵM for 0 ≤ u ≤ s and, moreover, πs+u(y) ϵ M for every u ϵ T0 such 
that s + u ϵ T0. Let t ϵ To be arbitrary fixed. If t ≤ s, then of course πt(y)ϵ M. 
If s < t, then putting u = t - s, we obtain πt(y) = πu(πus(y)) = πu+s(y)ϵ M, 
since u+s = tϵT0. This means that (α) is fulfilled.

The mapping induces in a natural way a mapping w: S→S∩∂JI
= S∩(Me∪M') as follows: ψ(x) is equal to that element yϵ ∂M for which
the pair <0, y> is the value of the mapping at the point The
mapping ψ is continuous and its restriction to S∩(Me∪M') is the identity,

is the identity. Hence ψ is
a retraction S→S∩(Me∪M'); the existence of such a retraction is, however, 
impossible in virtue of the assumptions of Theorem III supposed here. 
This proves (26).

to the setbecause the restriction of

In order to finish the proof of Proposition 2 (and then also the proof
of Theorem VI) we shall show the equivalence (α) <=> Suppose that

is fulfilled. Then, there is a <s,x>ϵϵ such that for
every s + u ϵ T0. This means that there is yϵ  M such that πs(y) =x and

is also satisfied, since for
with y ϵ M such that π(y)  ⊂ M we have obviously

Conversely, if (α) is satisfied, then

for every s ϵ To.
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1. INVESTIGATIONS OF LOCAL BEHAVIOR OF SOLUTIONS 
OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

We will give an example of applications of Theorem III (more pre
cisely, of a special case of Theorem III, namely Theorem R) from Section 
8 of Part I, showing that the generalizations of the classical retract theorem 
for GSD-systems are useful — especially from the technical point of view — 
even in the theory of ordinary differential equations. Por further comments 
we refer to Section 1.4.

1.1. Notation and assumptions. Let a be a positive real number and 
let f: U→Rn, where U is an open subset of Rn be a lipschitzian (vector-) 
function, such that for every y0eRn, there exists a solution (necessarily 
at most one) y of the following Cauchy problem

(1.1) y' =f(y),

y(0) = y0,(1∙2)

defined in [0, a). Of course, in virtue of the assumptions of regularity 
of f (the Lipschitz condition), the local existence of solutions is trivial; 
the only non-trivial assumption in this situation, is that every solution 
exists in [0,a).

The unique solution of (1.1)-(1.2) we denote by y[y0]; thus we have:

for tϵ[0,a) andy[y0](0) = y0.

1.2. Theorem 1. Assume the above conditions. Assume, moreover, 
that r is a positive number and that for every y ϵ Rn belonging to the sphere

(1.5)

holds true.
Under the above assumptions, there exists y0ϵ Rn, belonging to the open

ball

(1.4)

(which is assumed to be contained in U) the following inequality

(1.3)



such that the solution y[y0] of (1.1)-(1.2) fulfills the inequality
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(1.6)

for every t ϵ [0, a). This means, that y[y0](t) belongs to the ball B(r) for every 
tϵ [0, a).

Then all assumptions of Theorem R from Section 8 of Part I, are 
fulfilled for the above X, T, M, S and π, and then the assertion of this 
theorem holds true. This means that there exists x ϵ M, such that π(x) ⊂⊂ M. 
The last inclusion is equivalent to the relation π(t,x) = y[x](t)ϵM for 
tϵ [0, a). Hence, there is a solution y[x] (for some xϵB(r)) of (1.1)-(1.2) 
with y0 replaced by x, satisfying (1.5) for tϵ[0,α).

lo In virtue of Remark la from the first part (Section 1), it is possible 
put T0 = T. This means that also a global version of Theorem 1 can be 
deduced from Theorem R.

2o The above Theorem 1, a local version of the classical retract 
theorem of T. Ważewski, seems to give no essentially new results; it 
is only a modification of well-known results, a slight formal generalization 
of the original version [37], [38], [41]. We have presented it here to il
lustrate some technical advantages of using local forms of extended retract 
theorems stated for GSD-systems. Notice also that semigroup structure 
introduced in Part I instead of the natural group structure in R considered 
in the classical versions of the Ważewski,s retract theorem is very useful 
and makes it possible to state several results in more general form. This is 
important in the case of time-lag differential equations; see for instance [26].

1.4. Remarks.

= π(s, y[x](t)) =y[y[x](t)](s) = y [x](t + s) = π(t + s, x), for every s, t ≥ 0, 
such that t + s<a. The mapping π is continuous in virtue of well- 
known theorems from the theory of differential equations. Hence 
(X, T0, π) forms a GSD-system. The set M is open and non-vide. The 
boundary ∂M of M is equal to M'∪Me. Since Me = Mse (this is a simple 
consequence of inequality (1.4) for yϵS(r) = ∂M), we have: ∂M = M* 
= M'∪Me = M'∪Mse. Of course the set S is equal to M ∪ M* and then 
S∩M* = S∩(M∪Me) = M* = (M'∪Me) is not a retract of 8, since
there are no retractions of the closed ball on his boundary S(r).
On the other hand S∩M* = ∂M is a trivial retraction of (S∩M*)∪Me 
= M∪Me = ∂M.

Since f does not depend on t, we have obviously: π(s, π(t, x)]

1.3. Proof. Let us consider X = Rn, M = B(r), ( = B(r)∪S(r),
T = [0, ∞), T0 = [0, a). Define π,. To ×X→X in such a way that π(t, x)
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The material advantages of generalizing the retract theorem to GSD- 
systems can be observed in the applications of the main results from Part I 
to partial differential equations. Examples are presented below.

3º The formally more general case of equations u' = h(t, u) with 
h: [a,b) × Rk→Rk (a ≥ 0) fulfilling suitable assumptions (we omit the 
details), can be reduced to the case discussed above, by using the usual 
method: n=k+ 1, U = [a,b)×Rk ⊂ Rn, y1 = t, yi+1 = ui, fi+1(y) = 
= hi(t, u) (i = 1, ..., n-l), f1(y) = 1.

2. PRELIMINARIES NECESSARY FOR A GENERALIZED RETRACT THEOREM 
FOR FAMILIES OF SURFACES, WITH APPLICATIONS TO PARTIAL 

DIFFERENTIAL EQUATIONS

2.1. Notation. We shall use the following notation: R = (— ∞, +∞) 
is — as usual — the real line, R+ = (0, +∞), R* = [0, +∞). The usual 
notation for closed, open and “semiclosed” (of the two types) intervals 
will be also used: [a, b], (a, b), (a, b), [a, b).

If Δ is a compact subset of R or of R2 = R×R, then by C(Δ , R) we 
denote the Banach space of all continuous functions from Δ into R, pro
vided with the usual norm: ||λ|| = max{|λ(x)|: xϵ∆}.

Let A be a positive number and let F be a real, non-negative, contin
uous function defined in [0, A]. We put

(2.1)

(2.2)

Q0(A;F) = {<x, y> ϵ R2 : 0 ≤ x< A, ∖|y| ≤ F(x)},

Q(A∙,F) = Q0v{[A, ∞)×[-F(A), -F(A)]}.

In particular, if F(x) = δ - γx with some non-negative constants δ and γ 
such that γ∙A≤ δ, then instead of Q(A,F) we will write Q(A; δ,γ)∙, 
precisely

(2.3)

2.2. Preliminary definitions and propositions. Let I ⊂ R be a compact 
interval, K be a positive constant, p and q be two real functions defined 
in I, fulfilling the Lipschitz condition with the constant K and satisfying 
the inequality p(y)<q(y} for yϵI∙ Denote by S(I,K,p,q) the set of 
all functions φϵC(I,R), such that ∖|φ(y) - φ(y')|∖ ≤ K∖|y -y'|∖, p(y)≤φ(y) 
≤ q(y) for every y,y'*I.

If q(y) = -p(y) >0 for y ϵ I, then instead of S(I,K,p, - q), we 
will write simply S(I,K,q)-, if I = [-B,B] and q(y) = D = const, 
then we put:

(2.4)
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Definition of condition (W). Let S0 be a subset of S(I,K,p, q), 
which is a subset of C(I, R). We say that S0 fulfils condition (W) (shortly: 
S0ϵ(W)), if and only if the following set

(2.5)
for some y ϵ I}

satisfies the condition

(2.6) So' ≠∅ and there are no retractions S0→S0'.

W have the following obvious
Proposition 1. If S0 is connected (in C(I, R) of course) and S0' is non

empty but not connected, then S0ϵ(W).
Corollary 1. If S0 ⊂ S(I, K, p, q) is connected and S0' ={p,q}, 

then S0ϵ(W).
Proposition 2. If q(y) = -p(y) > 0 for yϵI, and S0 ⊂ S (I, K, q) is 

convex and compact in C(I,R), S0' ≠ ∅, then S0ϵ(W).
This is a special case of well-known results from the theory of retracts. 

Since we wish to make this account reasonably self contained, we shall 
sketch here an easy proof, repeting the classical reasoning, based on well- 
known fixed point theorems.

First of all, we observe that every continuous mapping from  S0 
into itself has a fixed point; it follows directly from the properties of  S0 
assumed here, in virtue of the classical fixed point theorems. Suppose 
now, that r:  S0→ S0' is a retraction and consider a mapping ϱ∙. S0→S0' 
defined by the formula: ϱ(χ) = -r(λ) for λϵ S0. Of course ρ is continuous, 
and then it has a fixed point λ0, belonging obviously to S0'. We have: 
λ0 = ϱ(λ0) = -r(λ0) = -λ0, since λ0ϵ S0'. Then λ0 =0, but the zero
function does not belong to S0'; we have a contradiction, so there are 
no retractions from S0 onto S0'.

Corollary 2. The set  S1 = S(I, K, q) fulfils (W), because it is compact 
and convex.

3. APPLICATIONS OF GENERAL RESULTS 
FOR FAMILIES OF REGULAR SURFACES

3.1. Notation and assumptions. Suppose that K and B be positive 
constants, p and q be two functions belonging to C([ - B, B], R) fulfilling 
the Lipschitz condition with the constant K, and such that p(y) < 0 
< q(y) for yϵ [-B, B].

Corollary 3. The set of all C1-functions φ belong-

fulfils (for every KϵR*), condition (W).for y,
ing to S(I,K,q), such that ∖φ'(y)∖ ≤  K and
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Throughout the present chapter, the set S([-B,B],K,p,q) will 
be shortly noted by S*.

Suppose that S0 ⊂ S* is convex and such that
{λ(y): λe S0} = [p(y), q(y)] for every yϵ [-B, B], S0' = {p, q}∙

The above conditions imply that S0ϵ (W) (see Proposition 1).
Let A e R+ be fixed and let F: [0, A] →R+ be a decreasing lipschitzian 

function, such that F(0) = B; F will be fixed through out the present 
chapter.

We will denote by Q0 and Q, the sets Q0(A: F) and Q(A∙.F) (see

for <x,y>, <x,y>ϵQ0, and
|h(x,y)-

(2.2)) respectively. Let g and h be two functions belonging to
such that g(x, y) < h(x, y) for <x,y> ϵϵQ0,

g(0,y) = p(y), h(0,y) = q(y∕) for y ϵ [-B, B].

(3.2)

(3.1) Q(x)= {(x,y)ϵQ: y ϵ R} ( = Q∩{<x,y>: y ϵ R} = {<x, y>:
|y| ≤ F(x) for xϵ[0 , A, |y| ≤ F(A) for x≥ A),

{Qx =⋃ :{Q(t) : tϵ [0,x]}.

3.2. Theorem 2. Under the assumptions from the above Section 3.1, 
there exists a φ ϵ D0 such that g(x, y) < φ(x, y) < h(x, y) for <x, y> ϵ Q0.

Proof. Using the notation introduced in Chapter 2, we put for x ϵ R*:

20 there exists a σϵR+ such that for every xϵ [x0, x0 + σ) there 
exists a y ϵ [-F(x), F(x)] such that φ(x,y) > h(x,y) (resp. φ(x,y) 
<g(χ,y)).

1° φ(x0,y) ≠ g(x0,y) (resp. φ(x0, y) ≠ h(xo, y)) for yϵ[-F(x0),
F(x0)]∖,

(v)
for some <x0,y0>ϵ Q0, then:

for every φ ϵ D0(iv)

For every φ ϵ D0, every εϵR+ and every x'ϵ[0,A], 
there is a δϵR+ such that if ψϵ D0 and 
|φ(0, y) - ψ(0, y)∖ < δ for |y| ≤ B, then 
|φ(x', y) - ψ(x', y)∖ < ε for ∖|y'|∖≤ F(x')∙,

Let D0 be a family of functions belonging to such that:
{φ|{<0,y>:|y|.≤B}: φD0, p(y)≤φ(y) ≤ q(y) ≤} = S0
If for φ,ψϵD0 there is some x0ϵ[0,A), such that
φ(x,y) = ψ(x,y) for 0 ≤ x ≤ x0, |y| ≤ F(x), then
φ(x,y) = y(x,y) for every <x,y> ϵQ0∙

(iii)

(ii)
(i)

If φϵ D0 and φ(x0,y0) = h(x0,y0) (resp. φ(x0,y0) = g(x0,y0) )



For φ0∈ D0 and x > A we put
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(3.3)

obtaining on this way an extension φ of the given function φ0∙, the extended 
function φ is defined and lipschitzian in Q.

By the same formula we extend g and h on the whole set Q; we will 
denote these extensions also by g and h; so we will now consider g and h 
as functions defined on Q.

By D we denote the family of all extensions of functions belonging 
to D0:

D = {φ: Q→-R|φ is given by (3.3) for some φ0ϵD0}.(3.4)

For φ ϵ D and x ϵ R* we denote by φ(x) (resp. φx) the restriction of φ 
to the set Q(x) (resp. Qx). Similarly, by g(x), gx, h(x), hx we denote the cor
responding retractions of g and h, to the sets Q(x) and (respectively) Qx.

Using this notation, we can write now condition (ii) equivalently 
in the form:

{x ϵ R*, φ, ψ ϵ D, φx = ψχ} => φ = ψ.(3.5)

Put and define a set X
= X(D) ⊂ Z xR* in such a way that

(3.6) there exists φϵD∪{g,h}, such that φx = z}.

If xϵR* and λϵC(Qx, R), then we put |λ|x = ||λ|| ; this means that 
|λ|x∙ = max{∣λ(t, y) : <t,y> ϵ Qx}. For <z,x> ϵ X and η,γ ϵ R+ , we put

for w = max (t, x), where φ, ψ ϵ D∪ {g, h} are such that φx = z, ψt = u}.

Corollary 4. The family {Nη,δ(z, x): η, δϵ R+, <z, x> ϵ X} induces — 
in the usual way — a topology in X; we will denote this topology by T

Lemma 1. If <z,x> e X and ϵ Nη,χ(z,x)
then there exist ⊂  Nη,γ(z, x)

We omit an elementary proof of this lemma.

Remark. It is easy to see that (X,T) is a Hausdorff space; this 
fact, however, is inessential in the sequel.

We will consider now T = R* and an LAO-semigroup (in this case 
an abelian ordered semigroup; see Remark la in Section 1 of Part I) 
(T,≤,T × T, +).

Now we define a mapping

π.∙ T × X → X(3.7)



by the following formula
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where φ ϵ D is such that φx = z.
This definition is correct, because of condition (ii); it is sufficient 

to observe, that (3.4) implies the independence of the value π(t, <z, x>) 
on the choise of φ ϵ D in such a way that the required condition φx = z 
is satisfied.

We consider T × X as a topological space, with the topology of the 
cartesian product given as usual by T and the restriction to R* = T 
of the natural topology of R.

(3.8)

Lemma 2. The mapping π is continuous.
Proof. We use conditions (iii) and (iv). Let <t, <z, x>> and η, δ ϵ R+ 

be fixed. Let φ ϵ D be such that φx = z∙; this means that π(t,<z , x>) 
= <φx+t, x+t> Consider [x, x + t +  η] Since all functions belonging to
D satisfy the Lipschitz condition (this follows directly from (iv) and (3.3)),
we can find such that if ψ ϵ Dand ∖|φx-,ψx|x< δ/2, then |ψ(s)(s, y)|
-φ(s)(s,y)|< δ for s ϵ and every y such that <s, y>ϵ Q. We can
find a finite sequence of points x1, ...,xp, such that: lo x1 < x2<.. .< xp,

for j = 1, ..., p - 1. Con

dition (iii) implies the following: for every xj, there exists δj > 0, such 
that if ψ ϵ D and |ψ(0, y) - φ(0, y)∖< δj for ∖|y|∖≤, B, then ∖|ψ(xj,y)- 
-φ(xj, y) < δ/2 for y such that <xj, y>ϵQ. Putting μ = min(δ1, ..., δp)
and ϱ = η/2, we obtain the following implication:

which means that π is
continuous.

Lemma 3. The set
Sa = {g0,0>,<h0,0>}(3.9)

is a retract of
Sb = {<z,x>ϵX∙. z(x)(y) = g(x)(y) for some yeQ(x)

or z(x)(y) = h(x)(y) for some y ϵQ(x)}
but there are no retractions (S0 × {0}∪ Sa →  Sa

Proof. We can identify Sa and S0 × {0} with S0' = {p, q} (q = g0, 
p = h0) and S0 respectively; applying Corollary 1 of Proposition 1 from 
Chapter 2, we obtain immediately that there are no retractions from 
(S0 × {0})∪Sa onto Sa.

In order to prove the existence of a retraction Sb→Sa, we observe 
that the mapping <z, x> →(g0, 0) (resp. <z, x> →<h0, 0>) for z such that

(o) z(x)(y) =g(x)(y) (resp. z(x)(y) =h(x)(y) for some yϵQ(x)



is continuous, as a composition of two projections:
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(') <z, x> → (gu, u') (resp. <z, x> → <hu, u>)

for z fulfilling (0), with u = min{t: z(t, y) = g(t, y) for some y ϵ Qt} (resp. 
u = min{: z(t,y) = h(t,y) for some  y ϵ Qt}), and

('') <gx, x>→<g0, 0> (resp. <hx, x>∖→<h0, 0>).

The continuity of (') follows directly from (v); the continuity of. 
('') is obvious.

Put

(3.11) for every y,
such that <x, y>ϵQ}.

Of course, the set M is open. The set Me has as its elements such 
pairs <z, x> belonging to X, that 0 < x < A and

lo z(v)(y) < h(v)(y) and z(v)(y) < g(v)(y) for 0 ≤ v < x and y ϵ Q(v),  and
2o there is y ϵ Q(x), such that z(x)(y) = h(x)(y) or z(x)(y) = g(x)(y).
1 fence, in virtue of (v), we have: Me = Mse.
Moreover, <z, x>ϵ M' if and only if x = 0 and there is yϵ [- B, B] 

such that z0(y) = g0(y) or z0(y) = h0(y).
Put

(3.12) S = (S0 × {0})∪Sa, with Sa given by (3.9).
We have obviously: S⊂ M ∪ M*, S∩M* = S∩M' = Sa and 

(S∩M*)∪Me = Sb (see (3.10)).
Hence, from Lemma 3, we obtain the following conditions:

there is a retraction (S∩M*)∪Me→S∩M*(3.13)
and
(3.14) there are no retractions S→S ∩ M*.

Then, for the GSD-system (X, R*, π) with X and π given by (3.6) 
and (3.8) respectively, and for M and S given by (3.11) and (3.12), all 
assumptions of Theorem R, from Section 8 of Part I of the present paper are 
satisfied. Hence, the conclusion of this theorem holds true, and then there 
is <z, 0> ϵ S∩M, such that π(<z, 0>) is contained in M; this means, however, 
that there is a φ ϵ D0 such that φ(x, y) ϵ (g(x, y), h(x, y)) for every <x, y> 
belonging to Q0.

3.3. Theorem 3. Let Q0 be given by (2.1) and let S0 be the same as in Sec
tion 3.1. Suppose, moreover, that D10 is a family of real functions, continuous 
and defined in Q0, fulfilling conditions (i), (ii), (iii), (v) (see Section 3.1) 
with D0replaced by D10, and, moreover,



(iv')
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(α) there exists a 'positive constant L1, such that

(β) for every xϵ[0,A), there is L'2 = L'2 (x) such that
sup{L'2(t)≡ 0 ≤ t ≤ x}

for every φ ϵ D10 and
<x,y>,

(vi) There exists a continuous mapping 2: Q0→R, such that 
∖φ(x, y)≤ λ (x, y) for every φϵ D10 and <x,y> ϵ Q0∙

Under these assumptions, there exists a function φϵ, D10∖ such that g(x, y) 
<φ (x,y)< h(x,y) for (x,y) ϵ Q0.

Proof. Let η ϵ (0,A) be fixed. Consider

and

It is easy to see that putting:

(3.15)

we obtain immediately the situation considered previously; all assumptions

satisfied. Hence, there is a function such that
of Theorem 2 for Q0 replaced by and replaced by are obviously

g(x,y) < φ(x,y) < h((x,y) for

Of course, in virtue of the continuity, we have

g(x,y) ≤ φ(x,y) ≤ h(x,y)
for <x,y>

Let us consider a strictly decreasing sequence of numbers ηn belonging
to the open interval (0,A) and converging to zero. Put
(n = 1, 2, ...), where is defined by (3.15) with η replaced by

Prom the above considerations, we have the following obvious
Proposition. For every n there is a φ = φn ϵ D10 such that

g(x,y) ≤φ(x,y) ≤h(x,y) for <x,y>ϵ Qn.

Then, for every n, the set

En = {φ ϵ D10 g (x,y) ≤ φ (x,y) ≤ h (x,y) for <x,y> ϵ Qn}

is non-empty. The sequence {En} is decreasing (in the sense of inclusion). 
Consider the space of all real functions defined in Q0, provided 

with the topology of almost uniform convergence.
Lemma 4. The set D10∖ is relatively compact in F (that is the closure

of the set D10 is compact).

for φ ϵ D10, <x,y>,
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Proof, lº The closure of D10 is a set of continuous real functions, 
satisfying in every compact subset of Q0, the Lipschitz condition with 
the same constants (depending only on the compact set); the functions
are equibounded. 2º For every <x,y> ϵ Q0, the set is
compact in R. Then, we can apply well-known theorems (see for instance
Theorem 10.1 or 10.3 from the book [27]) and we obtain the compactness 
of

Lemma 5. For every n, the set En is closed in (which is — see Lemma
4 — compact space), and then En is compact.

We omit the trivial proof of this lemma. 
Return now to the proof of our theorem.
Using Lemmas 4 and 5 and the classical Cantor’s theorem, we obtain

the following conclusion:

Then, there is a function φ ϵ  D10 such that g(x, y) ≤ φ(x, y) ≤ h(x, y)
for <x,y) ϵ Qn for every n. Hence, there is a function φe such that
g(x, y) ≤ φ(x, y) ≤ h(x, y) for <x,y> ϵ Q0. Observe finally, that for such 
a function φ, the equality φ(x, y) = g(x, y) (or φ(x, y) = h(x, y)) for some 
<x, y> ϵ Q0 is impossible, in virtue of condition (v) (in this case we would 
have φ∉En for some n). Hence, we have the strong inequalities and then
there is a φϵ D10 such that g(x, y) < φ(x, y) < h (x, y)) for <x,y> ϵ Q0.

4. APPLICATIONS OF THE RESULTS FROM CHAPTER 3
IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

4.1. Notations and assumptions. Let us consider the following two 
sets:
(4.1) J = {<x,y,z>; 0 ≤ X < η, ∖|y|∖ ≤ b1-β1x, |z| ≤ b2-β2∙x}

subset of R3, and 
(4.2) Q* =Q(η; b1,β1) see Section 2.3)
where b1, b2, η ϵ R+ , β1, β2ϵ R* are fixed and such that βiη < bi (i = 1,2).

Let f be a real and continuous function defined in some set U ⊂⊂ R4? 
containing J ×[-K1, JK1], where K1 is a positive constant.

We suppose, that f fulfils condition (H) which is the conjunction 
of the two following conditions:

(H1): (s) ∙f(x, y, (s)(b2-β2x), 0) > -β2 for <x,y> ϵ Q* 
and

(H2): (s)sqf(x, (s)(b1-β1x), (s)sq(b2-β2x), q) > -β2 + β1 |q|∖
for 0 ≤ x < η, 
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where (s) = +, -, sq = sign q.
Remark. The following condition is sufficient for (H):

(H*): (s)∙sq∙f{x,y(s)sq(b2-β2x), q) > -β2 + β1 |q|∖, <x,y> ϵ Q*.

In particular, if

(H**): f(x,y, b2-β2x, q) > -β2 + |q| for <x,y>ϵ Q*, and

f(x,y,z,q) = -f(χ,y, -z,q), f(x, y, z, q) = -f(x, y, z, -q)

for every <x, y,z,q>ϵ U, 

then condition (H*) (and then (H) also) is satisfied.
We assume furthermore, that ∕ fulfils the Lipschitz condition:

∖|f(x, y, z, q)-f(x,y, z, g)|

for <x,y,z,q>, ϵ J×[-K1,K1].
Let be a positive constant and let be a subset the space of allK

real C1-functions defined in [— b1, ⅛1], having absolute values of deriva-
tives bounded by
yϵ[-b1,b1], and that

We assume that = [-βz, ∕‰] for every
is connected as a subset of C([ - b1, b1], R)

(see Section 2.1).

4.2. Applications of Theorem 2 to a Cauchy problem given by the 
function ∕. Consider the following Cauchy problem:

(4.3) zx = f (x, y, χ, zy),
(4.4) 

where φ is a real C1-function defined in [- b1, b1].
Theorem 4. Assume all conditions introduced above in the previous

Section 4.1. Assume, moreover, that for each there is a solution z = z[φ]
of (4.3)-(4.4), which is a C1-function defined in Q*, such that ∖|zy(x, y)|∖ ≤  K1 
for <x,y>ϵQ*. Assume finally that

(4.5) K1<(b2-β2η)∣b1.

Under the above assumptions, there is a function such that z0
— z[φ0] fulfils the inequality

|z0(x,y)| < b2-β2x> for <x,y>ϵQ*.

z(0,y) = φ(y),

Proof. First of all observe that the mapping φ → z[φ] is really well 
defined, since in virtue of the assumptions, we have for every φϵĜ the 
existence (explicitly assumed) of a solution z = z [92]; but this solution 
is therefore unique, since the function f satifies the Lipschitz condition 
(for details, see for instance Szarski [32]).
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Putting g(x,y) = -b2 + β2x, h(x,y) = +b2-β2x, A = η, Q0 = Q*,
B — b2, S0 = Ĝ, D0 = φ<S0}, we can easily verify that all assump-
tions of Theorem 2 are satisfied for these Q0, S0, D0 , in particular condition
(v) is a consequence of (H) and (4.5). Hence the conclusion of Theorem 
2 holds true; this means that the conclusion of our Theorem 4 holds true.

4.3. A modification of Theorem 3. Let us consider a subset D20 of 
C(Q0, R), with Q0 = Q* given by (4.2). Suppose that fulfils the condi
tions assumed in 3.1 and 3.4 for D10 with only one change: the set S0 is 
replaced by S20 which is a set of real functions defined on [- B, B], fulfil
ling the Lipschitz condition with the constant K, and such that for every 
y ϵ [- B, B], the set {λ(y). λϵ S20} is a closed interval contained in the 
interval [g(0, y), h(0, y)] (g,h given previously (see Section 3.1)), and, 
moreover, S20 is connected in C[-B,B],R) (for the last condition it 
is sufficient to assume that: (u,vcS20,u ≠ v) =>(u(y) ≠ v(y) for ∖|y| ≤ B)).

Define functions g* and h* as follows:

g*(x,y) = max (inf {φ (x,y): φϵ S20}, g(x, y)),

h*(x,y) = max (inf {φ (x,y): φϵ S20}, h(x, y)),

<x,y> ϵQ*,

<x,y> ϵ Q*.

Theorem 5. Suppose all assumptions of Theorem 3 for S20 and D20 
substituted in the place of S0 and D10 respectively. Assume, moreover, that 
either

(I) g*(x,y) > g(x,y) and h(x,y) > h*(x,y) for <x,y>ϵ Q*,
or

(II) there exist functions φ,ψ ϵ S2 and there are <x,y>,<u,v>
belonging to Q*, such that = g*(x,y), = h*(u, v)
for such that = φ(y),
for y ϵ [-B,B].

Under the above assumptions, there is a f unction φ e D20 such that g(x,y) 
< φ(x, y) < h(x, y) for (x, y)eQ*.

In order to prove this theorem, we apply the same reasoning as in 
the proof of Theorem 3, with the following simple modifications: we con
sider the sets

(Sa)2 = {<inf {φ(0, y):φϵD20},0>, <sup{9(0, y): φϵD20}, 0>}
and

(Sb)2  = (S20×{0})∪(Sa)2 in the place of the sets Sa and Sb, 

and corresponding mappings which are obvious modifications of the 
mappings introduced in Lemma 3. We omit the elementary details.
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Remark. Formally, Theorem 5 is a generalization of Theorem 3 
(for Q0 = Q*) of course; a general theorem for arbitrary Q0 is also true), 
Theorem 3 was, however, proved with all details, since the general idea 
of the proof (being the same in both cases) can be presented in a simpler 
manner in a little simpler case.

We will give below an application of Theorem 5.

4.4. An example. We use here the notation from Section 4.1 and 4.2. 
In particular K1 is the positive constant introduced above. Suppose that 
the constants D, Ko, D1 are positive and such that K0 < K1, D1 < D.

Let us assume, moreover, that

η =(K0)2/(32(D + K0 + 1)).

Suppose that f is a real function defined for (x,y,z,q} belonging 
to [- K1, K1]4 ⊂ R4, continuous together with its derivatives fy, fz, fq∙ 
The derivatives fy,fz,fq fulfil the Lipschitz condition with respect to 
<y,z,q>with the constant D1. Furthermore |f|, ∖fy∖, |fa|, ∖|fa|∖ < D1 in

Ĝ1the set [- K1, K1]   Let be a subset of the set of all real C1-functions
φ, defined in [- K1, K1], such that |φ(0)| < K0/4, |φ'(0) |< K0/4, |φ'(y)|

for
assume that Ĝ1

We
is connected as a subset of C([ - b1, b1], R), and that for

every yϵ[-K1,K1], the set {φ(l∕).∙ φeG1} is a closed interval. In the
sequel we will use the following existence theorem:

Theorem E (cf. Ważewski [39], Szarski [32]). Under the above as
sumptions, for every φ ϵ Ĝ1,
(4.3)-(4.4), defined and of the class C1 in the set:

there exists exactly one solution z = z[φ] of

(4.6) 0≤x< η, ∖|y| ≤b1 - Dx},
where

(4.7) b1 = K0 / (4D + 4).

Lemma 6. Assume that

(4.8) K0< K1< 4(D+1)

(4.9) β2K < 8(D +1)4(4D + 4 -K1).

Then, every solution z = z[φ] of (4.3)-(4.4), with fulfils theφ ϵ Ĝ
following condition: if z(x,y) =K1-β2x (resp. z(x,y) = -K1 + β2x)
for some then

such that
≠ -K1 + β2x (resp.

for every with b1 given by (4.7).
Proof. Conditions (4.8) and (4.9) imply the inequality

K1< 4(D +1) — β2K0(8(D +1)4)-1 and then K1 < (K1 — β2η) / b1.

< D1 for ∖|y| ≤ K1 and
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fulfils the inequality ∖|zy(x, y)|< (K1 — β2η)∣b1, which gives immediately 
the conclusion of the lemma.

Remark. In Theorem 6 (see below) we will assume — among the 
other conditions — condition (H) for f (see Section 4.1). A necessary con
dition for these assumptions is the following inequality:

DK1 < D1.(4.10)

If (4.8) and (4.10) are satisfied, then K1 must be such that

K1<2(1+(1 + (D1)2) 1/2).(4.11)

Thus, the natural conditions in the sequel would be (4.10) and (4.11); 
we will assume them.

Theorem 6. If conditions (4.8)-(4.11) are satisfied for the constants 
introduced above, the function f satisfies (H) and

(0) there exist φ, ψϵĜ1, such that

for some

then there exists a function λϵĜ1, such that

l^[A](∞, 2∕)l < κ1-β2x for(4.12)

In order to prove this theorem we apply Theorem 5; here g(x,y) 
= -K1 + β2x, h(x, y) = +K1-β2x. Condition (0) implies directly as
sumption (II) of Theorem 5.

Corollary. Under the assumptions of Theorem 6 without (0), we have 
the following conclusion', among the following three conditions:

(α)
(β)
(γ)

for every φϵĜ1, there is such that z[φ](x, y) = β2x-K1,

φϵĜ1, there is such that z[φ](x,y) = -β2x + K1,
there exists such that |z[φ](χ, y)|∖ < K1-β2x in

at least one holds true.

z[φ]M = K1 — β2x, z[ψ](u, υ) = -K1 + β2u
<x, y>,

5. EXTENSIONS OF THE RESULTS FROM CHAPTER 4 FOR SYSTEMS 
OF DIFFERENTIAL EQAUTIONS

One can extend the previous results from Chapter 4 to systems of 
differential equations. We will give below an example of such extensions.

Let k,bi and δ be positive constants, βi be non-negative numbers 
(i =0,1,2) such that bi— βi δ > 0 (i = 0,1, 2). Put Q' = {(x, y): 0 
≤ x < δ, |y| ≤ b0-β0x}. Let fi: Q' ×R4→R be continuous (i = 1,2).
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Suppose that fi= fi(x, y, z1, z2, q1, q2) are such that

(s)f1(x, y, (s)(b1-β1x),z2, 0, q2) > -β1 for <x, y>ϵQ', q2ϵR,
|z2| ≤ b2- β2x,

(s)s1f1(x, (s)(b0 -β0∙x), (s)s1(b1 — β1x), z2, q1, q2) > -β1 + β0|q1| 
for 0 ≤ x < δ, |z2| ≤ b2-β2x, |q1| ≤ k, q2ϵ R;

(s)f2(x, y, z1, (s)(b2-β2x), q1, 0) < -β2 for <x, y>ϵQ', |q1| ≤ k,
|z1| ≤ b1-β1x;

(s)s2f2[x, (s)(b0 - β0x), z1, (s)s2(b2 — β2x), q1, q2) < -β2 + β0∖|q2|∖ 
for 0 ≤ x < δ, |z1| ≤ b1-β1x, |q1| ≤ k, q2ϵ R∙,

where (s) = +, - and si = sign (q1) (i = 1, 2).
Let S'0 be a set of C1-functions defined on [-b0, δ0] such that: (λ, ϱϵ S'o, 

Λ(y) = ϱ(y) for some y, ∖|y|∖ ≤ b0) =>(λ = ϱ), and {λ(y)∙. λϵ S'0} ⊃ [-b0, b0] 
for every yϵ [-b0,b0] and {λ(y)∙. λϵ S0} is a closed interval for every 
yϵ [-b0,b0]. Suppose that for every pair λ = <λ1, λ2>ϵ S' = S'0×S'0, 
there is exactly one solution z[λ] = <z1[A], z2[2]> of problem (P):

zx = fi(x, y, z1,z2, z1y, z2y) (i=1,2) <x,y> ϵ Q, with the initial condi
tions zi(0,y) = λi(y) for ∖y∖ ≤ b0 (i =1,2),
defined and continuous together with the first derivatives in Q'∙, suppose 
that the mapping z→z[λ] is continuous.

Assume finally that if λ1ϵ S'0 and |λ1(y)| ≤ b1 for ∖|y| ≤ b0, then for 
every λ2ϵ S'0, the solution z[λ] of problem (P) fulfils the inequality

|zy1(x, y)|∖ ≤ k.
Theorem 7. Assume that all conditions introduced above are satisfied. 

Suppose, moreover, that k < (b1 — β1 δ)∣b0.
Then there exists a λ = (λ1,λ2)ϵS' such that the (unique) solution 

z[λ] 0f problem (P), fulfils the inequalities ∖z1(x, y)∖ < bi - βix for 
<x, y>ϵQ', i =1,2.

This theorem is a corollary of the two following lemmas:
Lemma 7. For every λ2ϵ S'0 such that |λ2(y)| < b2 for |y| ≤ b0, there 

exists λ1ϵ S'0 such that the pair <λ1, λ2> = λ gives the solution z = z [λ] of 
(P), which fulfils the inequality

(*) ∖z1(x, y)∖ < b1-β1x for <x,y>ϵQ1.
Lemma 8. If λ = <λ1, λ2> ϵ S' is such that |λ2(y)| < b2 for ∖|y|∖ ≤ b0 

and z = z[A] fulfills the above inequality (*), then
∖z2(x,y)∖ < b2-β2x for <x,y>ϵQ'.

We will limit ourselves to giving only an outline of the proof of Lemma 
7. The proof of Lemma 8, as well as the rest of the proof of Theorem 7, 
is very simple or even trivial.
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In order to prove Lemma 7, observe that for every λϵ S' such that 
λ1(y) < bi for |y| ≤ b0 (i = 1,2), and for

we have the following implication:
if x0 < δ, then the following three conditions are satisfied:

(a)
(b)
(c)

|z2[λ](x0, y)∖ < b2-β2x0 for |y| ≤ b0-β0x0,
|z1[λ](x0, y)∖ = b1-β1x0 for some y such that |y| ≤ b0-β0x0,
there is a positive number η such that for each
xϵ (x0, x0 + η), there exists y such that and

more precisely: 2∕) > b1-β1∙x if
z1[λ](x0, y) = b1-β1x0  for some y  (see (b)), and
< — b1 + β1x if z1[λ](x0,y) = -b1 + β1x0 for some y).

Using Theorem 3 we finish the proof of Lemma 7.

6. FURTHER APPLICATIONS OF THE MAIN RESULTS FROM THE FIRST 
PART IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

6.1. Notations, preliminary assumptions and propositions. A special 
case of the existence theorem of T. Ważewski

a = 2 4-Jf1 + JST,

= {<x, y>: 0 ≤ x≤ δ, |y| ≤μ-Mx}.

6.1 (i) Let constants K, K1 M, M1 be given in such a way that 
0 < K < K1 ≤  M1 < M . Put

(6-1)

(6.2)

(6.3)
and, for x ϵ [0, δ]:

(6.4)

It is obvious that N(x) > 0 for every x ϵ [0, δ] and that N(0) == M1 
Moreover, N is an increasing function.
Denote by the set of all real C1-functions φ defined in [- μ, μ],

such that |φ'(y)| ≤ and for |y|,
Finally, we put

(6.5)

6.1 (ii) From the known results of T. Ważewski (cited partially 
in Section 4.4 as Theorem E) given in papers [39] and [40] (see also Szarski 
[32]), there follows
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Theorem W. Let the constants K, K1, M, M1, δ, μ be as above and 
let a function f: [0, K1] ×R3 → [ — M1,,M1,] be continuous. Suppose also 
that f = f(x, y, z, q) has the first partial derivatives fy,fz,fq which are 
continuous functions of <x,y, z, q>, such that ∖|fy(x, y, z, q)|, ∖|fe(x, y, z, q)|,∖ 
∖|fq(x,y,z,q)|≤M1 for each <x,y,z,q> belonging to their domain of de
finition. Assume, moreover, that fy, fz, fq satisfy the Lipschitz condition with
respect to ζy,z,q) with the constant M1

Then, for each φϵP, there exists exactly one real, C1-function z = z[φ]
defined in which is the (unique} solution of the problem:

∂z/∂x = f(x,y,z, ∂z/∂y}

z(o,y) = φ(y),(6.7)
and fulfilling, moreover, the following conditions:

(6.8) ∖|zv(x,y)| ≤ K1 for

|zy (x,y)- ≤N(x) for(6.9)
The existence and the uniqueness of solutions z = z[φ] of (6.6)—(6.7) 

for φe0f follows directly from T. Waζewski,s general result from [35] 
(see also [28]), stated for systems of differential equations. Condition 
(6.9) is not given explicitly in [39] (it is stated only that zy is lipschitzian 
with respect to y}, but it can be immediately obtained from the estimates 
for second derivatives zyy of solutions of (6.6)-(6.7) (under stronger condi
tions on regularity of f and φ), given in [40] (Remark 7, p. 177).

We will omit the details.
Technical arguments leading to estimate (6.8) can be easily found 

in [39] and [40].
6.1 (iii) Let now c and d be two constants, such that

(6.10) c≥ 0, d > 0, δc< d

r(x} = μ for xϵ [0, δ],(6.11)

and
(6.12) s(x) = r(x)∙(d-cx)∣d for xϵ [0, δ].

In virtue of the assumptions on d, c and δ and in virtue of the defi
nitions of μ and N(x), we have the following obvious properties of the 
functions r and s:

(6.13) s(x) > 0 for xϵ [0, δ], r(x)≤ μ, s is decreasing
s(0) = μ.
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(δ given by (6.1)).
We put
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Put

(6.14)

In virtue of (6.13), we have
(6.15)

6.1 (iv) Let x ϵ [0, δ] be fixed. For a real C1-f unction u: [ - s (x), s (x)] 
→[-d + cx, d - cx], we define a function w = wu,x∙. [- μ, μ]→R by the
following formula

(6.16) for yϵ [-μ, μ].

We have the following simple
Proposition 1. If u is a C1-function from [- s (x), s (x)] into [ -d + cx,

of the class C1 and: (a) |w(y)| ≤ d, (b) ∖|w'(y)|≤ K1, (c)
d — cx] and ∖|u(y)| ≤ K1, then w = wu,x is

(see (6.13)).

Proof. Condition (a) is trivial. In order to prove (b), we calculate:

Using (6.10) we can prove (c):

6.1 (v) Proposition 2. Let us consider the set as a subset of 
C([- μ, μ], -R) provided with its usual topology (see Section 2.1).

Then, the mapping P ϵ φ → z [φ] ϵ is continuous.

Proposition 3. If we denote by Cx1 the set of all C1-functions 
u: [ - s (x), s (x)] → [- d + cx,d - ex], then we obtain the following conclusion: 
the mapping Cx1϶u → wu,xϵC([-μ, μ], R) is continuous.

This is an immediate consequence of well-known theorems on con
tinuous dependence of solutions on initial data.

The proof is trivial.
6.1 (vi) In the sequel we will need the following additional assump

tion (A):
If a solution z = z[φ] of (6.6)-(6.7) with some φ ϵ P, is such that: 

1º ∖|z(x,y)|< d - cx for 0≤x<x0<δ and 2º ∖|z(x0, z0)| =d - cx0 for 
some y0ϵ [ -s(x0), s(x0)], then there exists η>0 such that for every 
xϵ(x0,x0 + η), there is y ϵ [- s(x), s(x)], for which ∖|z(x, y)| > d - cx.
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This condition (A) is satisfied, for instance, if f fulfils the following 
conditions:

(6∙17) f(x, y, d - cx, q) > d - cx, f(x,y -d + cx, q) < -d + cx,

and

(6.18)
f(x, s(x), d — cx, q)> -s'(x)∙q + d - cx for q ≥ 0,

f(x, -s(x),d-cx,q)∖>s'(x)∙q + d-cx for q ≤ 0,
f(x, (s(x), -d + cx,q)∖< -s'(x)∙q-d + cx for q ≥ 0,

f(x, -s(x), - d + cx, q) < s'(x) ∙q-d + cx for q ≤ 0,
for every <x,y>  ϵ Q(s)

and, moreover,

s' is the increasing function.(6.19)

Notice, that (6.19) is — in particular — satisfied, if for instance K 
and c are sufficiently small. Indeed, it is easy to see that the second deriv
ative s'' is positive if c = 0 and δ are sufficiently small; this means that 
for every K1, M, M1, there are positive (sufficiently small) numbers c 
and K, such that s' is increasing, or if c =0 there is a positive (sufficiently 
small) number K, such that s' is increasing. Of course, the above condi
tions, are not necessary for (A).

The author would like to note here that some numerical calculations 
necessary for checking that (6.19) is satisfied for a non-empty class of 
functions s (that is for a non-empty class of constants K,K1, ..., etc.) 
were done by Mr J. Marciński.

6.2. The main result. Theorem 8. Let us put

(6.20) P0 = {φeP: |φ(y)| ≤ d for y ϵ [- μ, μ]} .

Consider the set D(s) of all functions z: Q(s) → R, of the form: z is 
the restriction to the set Q(s) of some solution z = z[φ] of (6.6)-(6.7) with 
some φ ϵ P0; in the other words, we consider the set D(s) (a subset of 
C(Q(s), R)) defined formally as follows:

(6∙21)

In virtue of the equality r(0) = s(0) = μ (see (6.13)) and the unique
ness property, we can state the following

Proposition 4. For every  φ ϵ P there exists exactly one function z,
belonging to D(s) such that z = z[φ]|Q(s), where z[φ] denotes as previously 
the unique solution of (6.6)-(6.7).
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In virtue of Propositions 2 and 4, we have the following obvious:
Proposition 5. The mapping P϶φ∖→ z{φ}ϵC(Q(s), R) is well defined 

and is continuous.
Now, we can state our main result concerning the existence of a so

lution z of (6.6)—(6.7) having absolute value bounded by d — cx in Q(s).
Theorem 8. Suppose that f fulfils all conditions assumed in Theorem 

W, and, moreover, that condi ion (A) from Section 6.1 (vi) is also satisfied. 
Then there exists a function φ belonging to 0f such that the function z = z{φ} 
(see (6.22)) fulfils the inequality

(6.22)

(6.23) ∖z(x, y) ≤ d - cx for <x,y>  ϵ Q(s).

6.3. Proof of Theorem 8. We will use the same method as in the
proof of Theorem 2 (and Theorem 3).

Put:
(6.24) Q[s] =Q(s)∪{(x,y): 0≤ x,y ≤ s(δ)}
and consider the set D[s] of all extensions of functions z ϵ D(s) on the set 
Q[s]. More precisely, if z0 ϵ D(s), then we put for <x,y> ϵ Q[s]:

z(x,y) = z0(x, y) for <x,y> ϵ Q(s),
for <a,y> ϵ Q[s]\ Q(s)

(6.25)

and we denote by D[s] the set of all functions z, such that there is z0ϵ D(s), 
for which z is the extension given by (6.25).

As in Section 3.2 we denote by Q[s] and Q[s]x∙ the sets Q[s] ∩ ({x} × R) 
and Q [s] ∩ ([0, x] × R) respectively.

By Z(x) and zx we denote the restrictions of zϵ D[s] to the sets [s](x) 
and Q[s]x respectively.

The context will always, we hope, make it impossible to confuse 
these with the first derivatives ∂z∣∂x.

Finally we define Z(s) = {φx: φ ϵ D[s], x ϵ R*} and we consider a sub
set X(s) of Z(s) ×R* defined by the following formula:

X(s) = {<u,x>∙. xϵR* there exists zϵ D[s] such that zx = u}.
We introduce in X(s) the topology in the same way as in Section 

3.2, using the family of neighbourhoods having the same form as the 
sets Nη,δ(z,x).

We define a mapping π: R* × X(s) →X(s) in such a way that

where zϵ 0[s] is such that zx = u.
We observe, as in Section 3.2, that (X(s),R*. π) is a GSD-system.
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How, we define

(6.26) M(s)
= {<u, x>ϵ X(s): |u(t) (t, y)|∖ < d — ct for every tϵ [0, min(x, δ))}.

Observe that

(M(s))e = {<u, x> ϵ X(s): |ux(t, y)| ≤  d - c∙min (x, δ)}.

It is obvious, that Me = Mse (we write shortly M in the place of 
M(s)) and that Mse = {<u, x>: ∖|ux(x,y)|∖ = d - c∙min(x, δ) for some y 
and <ut, t> belongs to M(s) for 0 ≤ t < x}. This is a corollary of (A).

Moreover, the set S0(s) = {0} × P0 ⊂⊂ M∪M is such that, there are 
no retractions from S0(s) onto

S0(s)∩(Me∪M*) = {<u, 0>: u0ϵP0, |u0(0,y)| = d for some |y| ≤ μ}.

This follows directly from Corollary 3 in Section 3.2.
But there is a retraction of Me∪M* onto S0(s)∩(Me∪M*). It is 

given by the formula

(6.27) Me∪M* ϶<u,x> → <wx, 0> ϵ S0(s) ∩ (Me∪M*),

where the function w is such that w(0, y) = wv,x(y) with v = ux.
In order to verify the correctness of the above definition we refer 

to Proposition 1.
Hence, all assumptions of Theorem R from Part I (Section 8) are 

satisfied (the fact that M is open.is trivial). Then, we can apply this theo
rem; the conclusion of Theorem R means that the conclusion of ouι 
Theorem holds true.

6.4. A modification of the main Theorem 8. We will use the notation 
introduced in Section 6.1 (i)-6.1 (v) and we will assume all conditions 
supposed in Section 6.1 (i)-6.1 (iv).

Theorem 9. Under the assumptions of 6.1 (i)-6.1 (iv) (that is under 
the assumptions of Theorem 8, possibly without condition (A)) and under 
the following condition

(B) ∖|f(x,y, z, 0)| ≠ c for every <x, y, z>, such that <x,y,z, 0> belongs 
to the domain of the definition of function f,

there exists a function φ ε P, such that z = z[φ] fulfils the following ine
quality :

(6.28) ∖|z(x, y)|< d - cx for <x, y> belonging to the set,

.{<x , y>: 0≤x< δ, ∖|y|∖< s(x)}.(6.29)
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Corollary. Under the assumptions of Theorem 9, there is a function 
φ ϵ P such that z = z[φ]∖ fulfils

(6.30) ∖|z(x, y)| ≤ d - cx for <x,y>ϵ Q(s).

Proof of Theorem 9. Let ηϵ(0, δ) be fixed. We define, for every 
xϵ[0, δ], a function μx:. [0,x]→-R+ by the following formula:

(6.31) μx(t) = (1+t∙a∙(l-δ/x)) ∙ s(t)

with s defined by (6.12), where a ϵ R+ is fixed in such a way that 
a∙(δ-η) <1.

Of course, if x < ξ, then μx(t) < μξ(t) for 0 < t ≤ x. We put:

(6.32)

0 ≤ x ≤ t ,∖|y|∖≤μη(x)} for t ϵ [0, η],

0 ≤ x ≤ t, |y| ≤ μt(x)} for t ϵ [η, δ],

0 ≤α≤ t, |y| ≤ s(δ)} for t≥ δ.
Qt =

If z0 = z[φ] is a solution of (6.6)-(6.7).given by some φϵP, then we 
extend this function z0 to the function z defined on the whole set Q[s] 
(see (6.24)) by formula (6.25).

Let z be an extension of a solution z0 = z[φ] of (6.6)-(6.7) and let 
t be a number belonging to R*. By zt we denote the restriction of z to the 
set Qt given by (6.32). Denoting, as in Section 6.3, by D [s] the family
of all extensions z of solutions z0 = z[φ] of (6.6)-(6.7), we put: Ẑ = Ẑ(s)

and we consider a subset Y of Ẑ ×R* defined by the
formula:
(6.33) Y = Y(s)

there exists z ϵ D[s] such that zx = u}.
For <z,x> ϵ Y and <ε, γ > ϵ R+× R+ we put‘

max {|φ(ξ, y) - ψ(ξ,y) |: <ξ, y> ϵ Qmax(t,x)} < γ
for φ, ψ< D[s], such that φx = z, ψt = u}.

<z, x> ϵ Y, <ε, γ> ϵ R+ × R+}
We can prove a lemma analogous to Lemma 1, and then we can con

sider as the fundamental family
of neighbourhoods in T; this means that open sets in Y we define as
unions of sets belonging to this family. Hence, we have defined in the set
Y a topology.

Let us put T = R* and consider the GSD-system (Y, T, π) with 
π: T×Y→Y defined by the formula:

(6.34) with φϵ D[s], such that φx = z.

( = (1 - at(δ-x)∣x) ∙s(t)),



(a) there are no retractions from S0(s) onto S0(s)∩(Me∪M*) 
= {<u,0>: u0 ϵ P0, |u0(0, y)| = d for some y ≤ μ},

(b) there is a retraction of MeM* onto S0(s) ∩ (Me∪M*).

6.3, for the set S0(s) = {0} × P0, the following properties:

In each of the above cases, the corresponding implication for the 
first partial derivative of z with respect to the first or the second variable 
gives implication (I). The proof of (I) in the other possible cases is similar.

Impheation (1) means that Me = Mse.
Furthermore, M' ={<z,0>: |z(O,y)| = d for some y, |y| ≤ s(0)}. 
Using the notation from Sections 6.2 and 6.3. we have, as in Section

The definition of π is correct, in virtue of Theorem W. Moreover, 
π is continuous; the proof is trivial.

By M we denote the set of all <z, x>ϵ Y, such that x ϵ [0, δ) and 
for 0 ≤ t ≤ x, y ϵ [-μx(t), μx(t)]. Obviously M is open. 

Furthermore Me = {<z, x>ϵ Y: 0 < x < δ, |z(t, y)| < d — ct for y ϵ (- μx(t),
μx, (t)) , tϵ [0, x) and |zx(t, y)| = d - ct for some tϵ[0, x) and some y, such 
that |y| = μx(t) or |zx(x, y)| = d - cx for some y, such that, |y| ≤  μx(x)}.

It is not difficult to show, that condition (B) implies the following 
implication:
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(I) if <z,x>ϵ Me, z = (z[φ])x for some φ ϵ D then there exists a positive 
number ρ, such that the function

(z[φ])x+ϱ= Qx+ϱ→ R

satisfies the following condition: for every  tϵ(x, x + ϱ], there exists 
<u, r> ϵ Qt, for which

|(z[φ])x+ϱ(u, r)| > d - c∙r.

Indeed, if |z(x,y)| = d-cx for some yϵ (- μx(x), μx(x)}, then

(if not, then <z, x> can not belong to and then

and

if z(x,y) = - d + cx (the opposite inequalities are impossible, because
Similarly, if z(x- ε, μx(x-ε)) = d-c(x-ε) for some ε > 0

and have a contradiction with the condition:

Then and

|zx(t, y)| <d-ct
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6.5. Supplementary remarks. Some applications of Theorem R, 
similar to those given in Sections 6.2 - 6.4, one can find in the author’s 
paper [25]. There are given results on partial differential equations of 
the first order in unbounded regions. The method and the general idea 
is the same as in the present paper. The author hopes that some applications 
for partial differential equations of the second oredr will be given sepa
rately.
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