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Existence of solutions of orientor fields 
with non-convex right-hand side

by H. Kaczyński and C. Olech (Warszawa)

Abstract. The existence of solutions of an orientor field
ẋ ϵ F(t, x), x ϵ Rn, 0 ≤ t <≤ 1

is proved under the assumption: F(t, x) ⊂ Rn is compact (but not necessarily convex) 
continuous in the Hausdorff sense in x for each fixed t, measurable in t for each fixed 
x and there is an integrable function φ : [0, 1]→ R such that |v| ≤ φ(t) if v ϵ F(t, x). 
This is an extension of a recent result of Filippov, where existence was proved under 
the assumption that F is continuous with respect to both variables t and x.

Consider an orientor field, called also a generalized differential equation 
or a differential equation with multivalued right-hand side,

ẋ ϵ F(t, x),(1)
where x ϵ Rn and F(t, x), is a subset of Rn for each t ϵ I = [0,1] and x ϵ Rn. 
We shall consider solutions of (1) in the Carathćodory sense; that is x (t) 
defined on I is a solution of (1) if it is absolutely continuous and satisfies 
(1) almost everywhere in I.

The usual way to show existence of solutions of the initial problem 
of (1) is to construct an equi-absolutely continuous sequence xn (t) of ap
proximate solutions and to prove that there is a subsequence convergent 
to a solution of (1). To be more specific one constructs xn (t) with two 
properties:

d(xn(t), F(t, xn(t)))→ 0 as n → ∞ a.e. in I,(2)
where d stands for the distance of a point from a set and xn (t) contains 
a subsequence convergent uniformly to an absolutely continuous function 
x0(t). Then one tries to show that x0(t) is a solution of (1).

From (2) the only information one can have about the derivative 
x0(t) is that (cf. [5])

Thus the limit function would be a solution of (1) if = F(t,x),
which is the case if F is compact convex and upper semicontinuous in x 
for each fixed t. In fact the later property was usually assumed in the known 
existence theorems (cf. [1], [7]).
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If convexity of F(t, x) is not assumed then the upper semi-continuity 
is not enough for existence of solutions of (1). .

Hermes [3] posed a question: does there exist a solution of (1) if 
F is not assumed to be convex but is compact and continuous in x? Filip
pov [2] solved this question in the case when F(t,x) is assumed to be 
compact and continuous in both variables. The purpose of this note is 
to show the existence of solutions of (1) in the case of Carathéodory as
sumptions. Namely we will prove the following theorem.

Theorem 1. Assume that F(t, x) is compact for (t, x)e I ×Rn, contin
uous in x in the sense of Hausdorff metric for each fixed t, measurable in t 
for each fixed x and that there is an integrable function m: I→R such that
(3) |-υ| ≤ m(t) if υ ϵ F(t, x) for each xeRn.

Under these assumptions there exist a solution of (1) satisfying the 
initial condition a?(0) = x0.

(For the definition and basic properties of measurable set-valued 
functions we refer the reader to [6].)

The difficulties which one has to face when one wants to construct 
a solution of (1) if F(t, x) is not convex is that approximate solution have 
to be defined in a more accurate way to assure not only convergence of

ẋn(t)

ẋ0(t)
ẋn(t)

for t ϵ I.

Denote by K the closed ball in Rn centered at zero and of radius

By (3), any possible solution of (1) assumes values in K

1. In this section we shall define an L1 - conditionaly compact se
quence of integrable functions which we will use in the next section to 
construct approximate solutions of (1).

Without any loss of generality we restrict ourselves to the initial 
condition x(0) = 0.

This is what Filippov [2] did and the construction of approximate 
solutions we are presenting in this note is very much like the one in Filip
pov’s paper except that in our case xn(t) cannot be piece-wise linear be
cause F is not continuous in t.

In Section 1 we introduce some notations and-an auxiliary construc
tion while in Sention 2 the approximate solutions are defined and Theorem 
1 is proved.

This note is a part of a paper of the first of the authors presented as 
his thesis for master (magister) degree at Warsaw University in June, 1972. 
Theorem 1 was obtained independently by Hermes and Van Vleck [4] in 
a paper to be published in Journal of Differential Equations.

xn(t) but also of in some stronger sense. It is evident that if xn(t)
converges uniformly to absolutely continuous x0(t) and

a.e. in t, then (2) implies that x0(t) is a solution of (1).point-wise to
converges



η(t, r) = max{h F(t, x)) K,

Bi ={b|b = (a1,. . . ,ai-1,ai), (a1,...,ai-1)ϵBi-1,aiϵAi

and |ai-1- ai| ≤ri-1}.

a.e. in I,

a.e. in I.

Such ub exists since ∖|ai 1- ai|≤rn-1 and therefore the intersection

Notice that for each aiϵA there are ajϵAj, j =1, . . . ,i-1 such that 
(a1,..., ai-1, ai)ϵ Bi. To each bϵBi we assign, in an inductive way, an 
integrable function ub: I→Rn satisfying the following conditions:

We define now inductively sets Bi ⊂ A1 × A2 × . . . ×Ai. For i =1 
we put B1 = A1. If Bi-1 is defined, then

(4)

where h stands for the Hausdorff distance between two sets. One can check 
that assumptions of Theorem 1 imply that η is integrable in t for each 
fixed r, is non-increasing and continuous in r for each fixed t.

Let ri be a decreasing sequence of reals tending to zero as i→∞, 
let Ai be a finite subset of such that

Denote by η(t, r) the modulus of continuity of F; that is
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is not empty for each t ϵ I and measurable as function of t. Thus any meas
urable selection of the above intersection satisfies (5) and (6).

Let hi be a decreasing to zero sequence such that both 1/hi and hi/hi+1 
are integers.

By Ci we denote the set of functions c : I → Bi such that if c(t) 
= (a1(t), ..., ai(t)), then for l≤j≤i, aj(t) = const on intervals 
[shj, (s +l)hj∙) for each integer s = 0, ..., 1∣hj - 1. It is clear from (3) 
and (5) that for each c ϵ Ci

|uc(t)(t)| ≤ m(t) if t ϵ I and i = 1,2,...
Consider now the sets

Wi = {u : I → Rn | u = uc, cϵCi}.
It is clear that Wi is finite

Denote by

and if i > 1, then
(5)

(6)



ẋn (t) = uc(t)(t)
c{t} = (al(t), . .. , an(t)],

|xn(t) -an(t)| ≤r,n for t ϵ I

n = 1,2,...

and ri are such that (7) holds and

ri+1< ri/4.

To define xn we have to define c(t) = (a1(t), ..., an(t)), where cϵCn.
(12)

(ID

For this purpose assume that hn is chosen so small that
(10)

and if then

for some cϵ Cn and each t ϵ I

2. In this section we construct the sequence xn(t) of approximate 
solutions of (1) and prove Theorem 1. For each n, xn will be an absolutely 
continuous function from I into Rn such that, xn(0) =0 and

what was to be proved.

then we put
with balls of radius ε which means compactness of U.
that Hence we will prove that there is a finite covering of U

We will prove that for each u ϵ Wm+p, p≥ 1, there is such
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We will prove the following lemma.
Lemma 1. If

(7)

then U is conditionaly compact in L1.
Proof. Take an arbitrary ε > 0. By (7) there is an integer m such that

(9)

If

(8)

Using (6) and (8) we obtain

We have:It is clear that



ai(t) = ai = const,

For tϵ [0, hn] we put
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(13)
where ai is such that

(14) |ai- x(0)| = |ai| ≤ ri/4, i = 1,2, ..., n.

For induction argument assume that c(t) is defined for tϵ[0, shn],
l≤s<l∕⅛n.

If for a fixed i< n, shn ≠ phi  for each integer p, then we put

ai(t) = ai((s-l)hn) for tϵ [shn, (s+1)hn].

If there is an integer p such that shn = phi, for a fixed i, then we put

ai(t) = ai = const for tϵ [shn, (s+1)hn], 

where aiϵAi and |ai-xn(shn)| ≤ ri∣4. Such ai exists by (4).
It is easy to check that for each i and each integer p < 1/hi, ai(t) 

is constant on [phi, (p +1)hi] and

|xn(shn) - ai(shn)| < ri∣2, i = 1,2, ...,n.(15)
The latter inequality has to be checked in the first case and it follows 

from (11). From (12) and (15) we see that so defined c has values in Bn. 
Therefore cϵCn. Inequality (10) follows easily from (11) and (15).

Proof of Theorem 1. By definition, xn are absolutely continuous
functions uniformly bounded by M and such that {ẋn} ⊂ U∙. Thus by
Lemma 1 {ẋn} is conditionally compact in L1.

Therefore there is a subsequence, for simplicity still denoted by {ẋn}
and an integrable function υ: I → Rn

(15) and ẋn(t)→υ(t) a.e. in I.

This implies that

(l6) xn(t) => υ(t)dt = x0(t).

To prove that x0 is a solution of (1) we note that

d(ẋ0(t), F(t, x0(t)))

The first component of the above sum is equal zero because of (5) 
and the second can be estimated by η(t,rn) because of (10). Hence we
have the inequality which together with
(15), (16) and continuity of F with respect to x implies
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in the proof of Lemma 1 can be estimated uniformly (for each t) and con
sequently we can prove that the convergence of xn(t) to υ(t), in (15), holds 
for each t and is uniform. Taking into account that xn(t) is piece-wiso 
constant the latter implies that υ(t) may be discontinuous only on a denu
merable subset of I. In fact this is what Filippov proved in [2] about 
the derivative of the solution of (1).

Remark 2. In the case considered by Filippov [2], when F is con
tinuous in both variables, η can be taken as independent on t and uc as 
piece-wise constant function. Therefore in this case the difference

Remark 1. Assumption (3) in Theorem 1 can be replaced by the ine
quality |υ| ≤ m(t, r) for each υ ϵ F(t, x) if |x| ≤ r, where m is assumed to 
be integrable in t for each fixed r. In this case the existence theorem would 
have local character; that is for each initial condition there is an interval 
such that there is a solution of (1) defined on this interval and satisfying 
given initial condition.

of Theorem 1.
a.e. in I, which completes the proof= 0. Hence ẋ0(t)ϵF(t, x0(t))
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